第一篇:制药工程进展
制药工程进展
制药工程进展
摘要:本文简述了生物制药技术在国内外的发展前景与现状,动物细胞工程制药是动物细胞技术在生物制药工业方面的应用,转基因技术的发展,生物技术制药的发展过程以及对生物技术制药的展望。
关键词:生物制药;转基因;生物技术制药;展望
现代生物制药是一个热门的话题,21世纪的科学技术以生物学的成就占主导地位,该技术的不断发展与更新将会对人类的一些目前无法医治的疾病提供帮助,在食品方面也能起到较大的作用。生物技术药物(biotech drugs)是泛指包括生物制品在内的生物体的初级和次级代谢产物或生物体的某一组成部分,甚至整个生物体用作诊断和治疗的医药品,采用现代生物技术人为创造一些条件,借助某些微生物、植物或动物来产生所需的医药品[1]。
动物细胞工程制药是动物细胞技术在生物制药工业方面的应用,涉及动物细胞融合技术、转基因动物技术和细胞大规模培养技术等。
动物细胞工程是根据细胞生物学及工程学原理,定向改变动物细胞内的遗传物质从而获得新型生物或特种细胞产品的一门技术。在生物制药的研究和应用中起关键作用,目前全世界生物技术药物中使用动物细胞工程生产的已超过80%。当前动物细胞工程制药所涉及的主要技术领域包括细胞融合技术、细胞核移植技术、转基因动物技术和细胞大规模培养技术等方面。生物制药在国际上的发展前景与现状
1.1生物制药在国际上的发展
生物制药产业的发展是随着生物技术的发展而发展的,自1971年世界上第一家生物制药公司诞生以来,世界上很多国家都在发展生物制药产业。美国在生物制药产业发展方面领先于世界各国。美国目前已有超过1000家的生物技术企业,约占世界总量的2/3,已成功研发出30多个重要的治疗药物,正式投放市场的生物工程药物也达到了40多个,广泛应用于癌症、糖尿病、肝炎等疾病的治疗。
欧洲在生物制药方面整体落后于美国,但也发展迅猛。英、法、德、俄等国在开发研制和生产生物药品方面成绩很好。如俄罗斯科学院分子生物学研究所、莫斯科妇产科研究等多个科研机构近年来在研究和应用基因治疗方面都取得了重大进展。
日本在生物制药产业上也发展较快,日本已有65%的生物技术公司从事于生物医药研究,部分公司的技术实力已经跻身世界前列。澳大利亚、中国等亚太国家在生物制药产业方面同样发展也比较快,在世界范围的市场正不断拓展壮大。
1.2转基因动物
利用转基因动物乳腺反应器生产药用或食品蛋白是生物制药领域近年来研究的热点之
一。因为乳腺是一个外分泌器官,乳汁不进人体内循环,不会影响到转基因动物本身的生理反应,从转基因动物的乳汁中获取的目的基因产物,不但产量高、易提纯,而且表达的蛋白 1
经过了充分的修饰加工,具有稳定的生物活性,因此又被称为动物乳腺生物反应器,所以用乳腺表达人类所需蛋白基因的羊、牛等产量高的动物就相当于一座药物工厂。20 世纪80 年代中期,英国科学家克拉克首先在鼠的乳腺组织高效表达了人抗胰蛋白酶因子基因,开创了研制动物乳房生物反应器的先河[2-3]。
2生物制药在国内的发展前景与现状
2.1生物制药在国内的发展
我国在20世纪80年代初就把生物技术定为科技和产业发展的重要领域之一,也取得了比较明显的成果。已研制成功的基因工程乙型肝炎疫苗,产品已投放市场。正在研制的疫苗中病毒性疫苗有新型乙型肝炎疫苗和流行性出血热疫苗等7种;细菌性疫苗有痢疾疫苗;寄生虫疫苗有13本血吸虫疫苗;疟疾疫苗、避孕疫苗有人绒毛膜促性腺激素(HCG)疫苗等。但是与世界先进国家的生物医药产业相比,我国生物医药产业还处于比较落后的状态,但是国家和地方政府都在不断加大对该产业的发展力度,从政策和资金等各方面不断加大投入。当前,我国已将生物制药作为经济发展的重点建设行业和高新技术的支柱产业来发展。全国注册的生物技术公司超过了200家。近10年来,我国开发了新的特效药物,对肿瘤、心脑肺血管、免疫性、内分泌等严重威胁人类健康的疑难病症起到了较好的治疗效果,且副作用明显低于传统药品。
2.2转基因牛制药工程
科院新疆理化技术研究所与新疆金牛生物股份有限公司合作开展的“转基因牛(羊)制药工程”项目近日取得新进展。
该所科研人员将携带目的基因的表达载体导入纯化培养的成年奶牛成纤维细胞,并将其永久性整合导入成纤维细胞染色体中,通过核移植技术,将携带目的基因的成纤维细胞植入去核的山羊卵母细胞中,得到囊胚。目前,山羊成纤维细胞的纯化培养工作也已完成,下一步计划也将通过上述技术手段完成同种胚胎发育,得到囊胚,并经胚胎移植获得转基因良种奶羊。
用转基因家畜来生产药物,能生产其它方法不能生产的产品,是未来药物生产的一个趋势。
2.3纳米水基磁性液体在肿瘤治疗领域的研究进展
生物医学应用领域纳米磁性粒子的组成结构及特点,指出高分子改性纳米磁性粒子具有生物相容性好、稳定性强、载药量高的优点,并对目前高分子改性纳米四氧化三铁颗粒的制备方法及特点进行了对比分析。指出进一步研制磁响应性强、载药量高、粒度分布均匀的纳米磁性粒,使之对癌细胞具有亲和作用,尽量避免对毛细血管网状内皮系统的清除,是未来肿瘤治疗领域纳米磁性粒子的研发目标,并对目前制备方法中存在的不足提出了改进的建议。
2.4动物细胞工程制药的现状
(1)建立动物细胞大规模培养的技术平台。该技术是转墓因工程药物、单克隆扰 [4]
体及疫苗等产品的关键技术,主要由以下几个要素构成:1)高效的真核细胞表达系统。中国仓鼠卵巢细胞(CHO)作为宿主细胞表达的外源蛋白最接近其天然构象,是生物制药最为理想的表达系统,但也存在一些问题,如表达量低、大规模培养困难、生产成本高昂。我们应从工程细胞本身着手,对细胞本身的生理特征进行改造,除了要求目的蛋白的表达量高外,必须适应无血清培养基培养,具有即抗细胞衰老凋亡能力。2)性能优越的、个性化的细胞培养基,包括低血清培养基、无血清培养基。3)先进的生物反应设备,(2)减少污染风险、提高产品质量和安全性。
(3)实行“动物药厂”计划,尽快实现转基因动物乳腺生物反应器的产业化.(4)发展下游工程,主要是转基因表达产物及产品的分离纯化,在提高产品的纯度和产量同时,降低成本。总之,我国动物细胞工程制药目前仍处于起步阶段,与欧美国家相比还有很大差距,虽然目前可生产多种有重要价值的蛋白质生物制品,如病毒疫苗、干扰素、单克隆抗体等,但大部分还处于实验和临床阶段。随着生命科学的发展和细胞工程技术研究的深入,将会有更多的细胞工程药物出现,具有广阔的应用前景[5]。
2.5核酸蛋白药物研发
首届核酸蛋白药物研发国际研讨会在北京会议中心召开。据独立市场分析报告显示,市场对于核酸及核酸蛋白和药物复合物的结构测定的需求与日俱增,生物制药作为生物技术研究开发和应用中最活跃、进展最快的领域,被公认为21世纪最有前途的产业之一。
北京康钰垚生物科技有限公司是北京市“瞪羚计划”首批重点培育企业、ABO联盟成员,拥有全球首创的 “硒核酸蛋白平台技术”,成功用于核酸和蛋白核酸复合物的高通量结构测定,可以满足制药和生物技术行业对新的潜在药物靶点(核酸和蛋白核酸复合物)的结构生物学研究的需求。
它首先发明和深度开发的硒取代核酸衍生物的技术及产品,用于非常规散射X射线法对大分子物质进行3D结构中的相位测定,这种方法已在多个实验室中采用。生物分子3D结构的测定非常有利于在原子水平上促进新药的发现,在分子水平上有助于人们对发病机理的认识,这将使人们改进疾病治疗方案,改善人们的健康状态。
3生物制药产业发展的过程趋势
生物制药按其发展过程大致划分为三代。第一代,生物制药是利用生物材料制成的含某些天然活性物质与混合成分的粗提物制剂,如脑垂体后叶制剂、肾上腺提取物、眼制剂、混合血清等。第二代,生物制药是根据生物化学和免疫学原理,应用近代生化分离纯化技术从生物体制取的具有针对性治疗的特异性生化成分,如猪胰岛素、尿激酶、肝素钠、人丙种球蛋白,转铁蛋白,狂犬病免疫球蛋白。第三代,生物药物是应用生物工程技术生产的天然生理活性物质,以及通过蛋白质工程原理设计制造的具有比天然物质更高活性的类似物或与天然物质结构不同的全新的药理活性成分,如基因工程白细胞介素(IL)、红细胞生成素(EPO)等。
未来生物技术将对当代重大疾病治疗创造出更多的有效药物,而将生物医药技术从科研
转向产业化生产是科研的重要目的,只有将技术转化为生产力,才能使得社会生活水平得到提升。生物制药产业作为高新技术产业,需要不断进行技术创新,才能不断解决产业发展中存在的问题,并不断满足医药水平提升的要求[6]。生物医药技术向产业化推进要求企业通过委托外包策略,建立技术同盟,形成优势互补,使得自身能够专注于自身专长方面,从而能够降低生产成本、提高竞争优势。而生物制药这项新兴技术的发展也将会不断应用到产业发展当中来,从而可以更好地促进产业技术水平和社会医疗水平的提升。
4生物制药展望
随着社会时代不断的发展人们对生物制品的需求将会越来越多,今后10年生物技术将会得到突飞猛进的发展,并在所有前沿性的医学领域形成一个新的领域。目前热门的生物药品主要分为:1.氨基酸及其衍生物类;2.有机酸、醇酮类;3.维生素;4.酶以及辅酶类
[7]。
生物学的发展不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向。除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素耐受性越来越强的不良趋势,对感染形成新的攻势。
5制药工程专业的发展
从2003年8月的统计数据来看,制药工程专业在各省市的分布不是十分均衡的,国外制药工程交流最多的江苏省有10所以上的高校设置了制药工程专业,但是全国却有近1/5的省、自治区则没有设置该专业。
制药工程各大区高校的制药工程专业设置也不均匀,其中华东地区所占比例最高,达到了1/3,华北地区次之,东北地区排列第三,而西北地区和华南地区则相对较少。这些制药工程专业的设置数量在某种程度上可能与该地区高校数量、办学能力、该地区的制药工业或者经济发展状况有一定的相关性。
医药产业已成为世界经济强国竞争的焦点,世界上许多国家都把建立制药工程专业视为国家强盛的一个象征。
新药的不断发现和治疗方法(如基因研究)的巨大进步,促使医药工业发生了非常大的变化。因此,无论是药品,还是过程技术都需要新型制药工程师,这类人才掌握最新技术和交叉学科知识、具备制药过程和产品双向定位的知识及能力,同时了解密集的工业信息并熟悉全球和本国政策法规。
2003年中国制药企业共5082家,生产药品的工业企业约3000家,生化制药企业300余家,其中现代生物制药企业47家;生产中药(包括天然药物)产品的企业约1600家,其中专门生产中药(包括天然药物)产品的155家。另外,还有药品批发企业16.7万多家,药品零售企业12万家,医疗机构6万家。这些企业都在近期和将来对制药工程专业人才有较大的需求量。[8]
6小结
药物的研究开发需要较大的资金支柱,而且需要大批专业的科学人士花费多年的时间才会有成效,每种药物投放市场前的平均成本大约为6亿美元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。所以说利用生物技术来制药将会越来越受人们的重视与青睐,利用这项技术来生产制造出对人们更有益更有效的药品。它将会成为未来药物研发中的一项重要技术。
综合多学科的努力以及人们不断探索创新的精神,在社会多方面的大力支持下通过新技术的创立可以大大拓宽发明新药的空间,增加发明新药的机遇与速度。因为这些手段可以寻找快速鉴定药物作用的靶,更有效地发现更多新的先导物化学实体,从而为发明新药提供更加广阔的前景。
参考文献
[1]文淑美.全球生物制药产业发展态势[J].中国生物工程杂志,2006,(1):92-96.
[2]沈子龙,廖建民.转基因动物技术与转基因动物制药[J].中国药科大学学报,2002,33(2):8-86.[3]Brink MF,BishoP MD,Pieper FR.Developlng efficient strategies for the generation of transgenic cattle which produce biopharmaceuticals in milk[J].Theriogenology.2000,53(1):139-142.[4]熊宗贵.生物技术制药[M].北京:高等教育出版社,1-13.[5]马瑞丽.动物细胞工程制药的研究进展[J].工业技术,2007,14:28-29.
[6]王明亮.贵州生物制药产业发展的SWOT分析及对策[J].凯里学院学报,2010,28(1):46-49.[7]何华,焦庆才.生物药物分析[M].北京:化学工业出版社,4-6.
[8]刘广艳.现代生物技术主要的研究与进展[J].林区教学,2011,3:122-123.
第二篇:制药工程进展
制药工程进展
浙江科技学院 生物与化学工程学院 杨乐 309044036
近年来,国际上制药研究进展很快,其发展状况和趋势呈现两个显著的特点,一是生命科学前沿如基因组、蛋白质、生物芯片、转基因动物、生物信息学等等,与药物研究紧密结合,以发现和确证药物作用新靶点作为重要目标,取得了蓬勃的发展;二是一些新兴学科越来越多地渗入到新药的发现和前期研究中。化学、物理学、理论和结构生物学、计算机和信息科学等学科与药物研究的交叉、渗透与结合日益加强,使得新药研究的进展和综合集成,将对创新药物的研究与开发产生长远的、决定性的影响。
1.世界新药研发趋势
1.1 未来制药领域的重点药物
世界卫生组织统计导致人类死亡的疾病排序为:心脏病、癌症、脑血管病、下呼吸道感染、结核病、慢性支气管阻塞、腹泻、痢疾、艾滋病和乙型肝炎。从中可以看出,除了心脑血管病和癌症外,各种传染病仍然是人类的大敌。所以,无论何时世界性的制药重点为:心脑血管用药(包括降压、强心和降脂药)、脑功能改善药(包括治疗痴呆和帕金森氏病药物)、抗癌及辅助用药、抗艾滋病药、肝炎和其它抗病毒药、抗风湿性关节炎药、免疫调节剂、抗抑郁抗精神分裂和抗焦虑药、抗血小板和升血小板药、抗前列腺肥大药物。
1.2 未来新药创新6大模式
近年来,由于计算机技术、现代合成技术、生物技术的应用以及药物化学与分子生物学、遗传学、免疫学、酶学等学科的发展与相互渗透,为新药开发奠定了基础。同时,随着社会的发展,人口结构的改变,生态环境的改变以及市场规律的作用,使得新产品生命周期日渐缩短,更新换代频率越来越快。未来新药研究与创新将向6大模式方向转变:(1)创制新颖的分子结构类型”NCE”一突破性新药研究开发;(2)创制”ME-TOO”新药一模仿性新药研制开发;(3)已知药物的进一步研究开发一延伸性新药研究开发;(4)应用现代化生物技术,开发新的生化药物;(5)现有药物的药剂学研究开发一发展新制剂产品;(6)应用现代新技术对老产品的生产工艺进行重大的技术革新和技术改造。
1.3 各公药公司更加重视新药知识产权的保护
专利新药可以为企业带来很高的经济效益,如1995年雷尼替丁销售额为34亿美元;1996年奥美拉唑销售额达35.75亿美元,取代了雷尼替丁的龙头位置。因此,为了垄断市场,收回投资,获取效益,各制药公司将会越来越重视新药知识产权的保护。1997年在我国申请的3400种医药发明专利中,外国医药企事业申请数为1408件,占41.4%,而且在继续增加。自1993年1月1日我国实施《药品行政保护条例》几年来,已有几十种外国药品的行政保护申请获得批准,在中国享有7.5年的制造或销售独占权,如吡格列酮、拓扑替康(topotecan)、塞来昔布(celecoxib)和重组干细胞因子等。
2.新药研发特点
2.l药材作用新靶标的发现
药物大多通过与人体内”靶标”分子的相互作用产生疗效。药物作用新靶点的寻找,已成为当今创新药物研究激烈竞争的焦点。新的药物作用靶点一旦被发现,往往成为一系列新药发现的突破口。
90年代以来,人类基因组计划(Human GenomeProject)进展迅速,基因测序的目标已提
前实现。在此基础上,结构和功能基因组学的研究正在紧张展开。在总数估计为3万~4万种的人类基因中,可以发现有相当数量的基因与疾病的发生和防治相关。这些疾病相关基因的发现及其结构、功能的研究,可能大大推动药物作用新靶标的发现。我国科学家在这一领域中已取得可喜的成就。对若干致病微生物如钩端螺旋体、痢疾杆菌等的基因组研究正在进行。我国科学家还克隆了遗传病高频耳聋的致病基因,定位了若干单基因疾病的染色体位点。
在白血病和某些实体肿瘤相关基因的结构、功能研究方面,取得了一批具有国际影响的成果。
近年来,蛋白质组学(Proteomics)研究迅速兴起,成为继人类基因组计划之后又一个引
人注目的新领域。通过采用双向电泳和质谱技术,分离、分析和鉴定细胞内所含有的蛋白,对正常和非正常状态(如病理状态)下细胞的蛋白质谱进行对照比较和分析鉴定,就可以找出两者蛋白质谱的定性和定量差异,从而阐明疾病发生的机制,为发现新药提供新的靶点。
生物芯片(包括DNA芯片和蛋白质芯片等),是寻找药物作用新靶点的又一重要技术。DNA
芯片,又称基因芯片或DNA阵列(DNA array),将大量特点序列的寡聚核苷酸(DNA探针)有序地固化在硅或玻璃等材料作的承载基片上,使其能与靶基因进行互补杂交形成DNA探针池。利用DNA芯片可以快速高效地获取空前规模的生物信息,因而可用于发现疾病的相关基因,为寻找新的药物作用靶点作出贡献。
Science以大量的篇幅刊登了有关drug discovery的文章。据其统计,目前治疗药物的作用靶点共483个。随着人类基因组、蛋白质组和生物芯片等研究的进展,大量的疾病相关基因将被发现,人们预测到2010年药物作用的靶标分子可能急剧增加到5000种,创新药物研究将具有前所未有的广阔用武之地。
2.2新的筛选模童和缔造技术的研究
在新药研究过程中,通过化合物活性筛选而获得具有生物活性的先导化合物,是创新药
物研究的基础。近20年来,许多药物作用的受体已被分离、纯化,一些基因的功能及相关调控物质被相继阐明,这就使得许多在生命活动中发挥重要作用的生物大分子可以直接成为大规模药物筛选的新模型,使得药物筛选模型从传统的整体动物、器官和组织水平发展到,细胞和分子水平。
现代生物技术提供的异体表达系统,使得人体的蛋白质可以以比较大的数量从大肠杆菌
或昆虫细胞中获得,用于测试各种化合物的活性,从而使得快速、准确、微量的体外酶活性和受体检测方法得以建立。
随着分子水平的药物筛选模型的出现,筛选方法和技术都发生了根本性的变化。出现了
高通量筛选(Hidl—Through put semening)的新技术,综合应用自动控制的机器人,基于新的科学原理的检测手段和计算机信息系统等技术,以酶活性、受体结合及受体功能的变化作为检测指标,在极短的时间内即可完成庞大数量的化合物活性筛选,大大加速了新药的寻找和发现。
此外,利用”基因敲除”或转基因技术,可以建立基因缺失或基因转入的动物或细胞系,作为药物研究的病理模型,对药物的作用进行试验,也将对新药研究发生重大作用。
2.3 结构生物学、生物信息学为药物分子设计提供了重要条件
结构生物学是从分子生物学和生物化学中分离出来的一门新兴学科,其主要方向是利用X衍射晶体学方法、多维核磁共振(mD—NMR)方法和电镜技术测定生物大分子的三维结构,为从原子和分子结构水平上研究生物大分子(蛋白质、核酸和多糖等)的结构与功能的关系、生物大分子一生物大分子和生物大分子一小分子间的相互作用奠定基础。随着人类基因组 和蛋白质组计划的兴起,将会有大量的新蛋白产生,目前的结构测定方法远不能满足这两个
研究计划的需求。正在发展的两项技术为高通量结构测定(high—throughput structural determination)和计算机分子模拟技术。
生物信息学(Bioinformatics)可定义为:一门包括生物信息的获取、处理、存储、传播、分析和解释等方面的学科,其目的是理解各种数据的生物学意义。人类基因计划和蛋白质组计划的开展,为生物医药研究提供了丰富的生物学信息。而从这些纷繁复杂的生物信息中寻找合适的药物作用靶标是生物信息学的重要目标之一。生物信息学还可用于药物作用机制、药物代谢动力学以及药物毒性的研究。结构生物学和生物信息学的发展为计算机辅助药物设计提供了重要的条件。计算机辅助药物设计(Computer Aided Drug Design,CADD)是化学,生物学,数学、物理学以及计算机科学交叉的产物。今天,应用各种理论计算方法和分子图形模拟技术(molecular vi—sualization),进行计算机辅助药物设计,已成为国际上十分活跃的科学研究领域。计算机辅助药物设计方法包括3类:(1)基于配体的药物设计(1igand-baseddrugdesign),这类方法根据已知的配体结构设计新的配体,主要包括定量构效关系fQSAR)方法和药效团模型方法,前者又分为2D—QSAR和3D—QSAR方法。(2)基于受体的药物设计(receptor based drug design),这类方法又称为基于结构的药物设计,主要根据受体的三维结构设计能与之匹配的配体,包括基团生长法(buiding)、模板连接法flinking)以及分子对接法(docking);(3)基于机制的药物设计(mechanism based drug design),这类方法在基于结构的药物设计基础之上,进一步考虑了药物与受体的动态结合过程,药物对受体构象的调节以及药物在体内的传输、分布和代谢。随着新世纪生命科学、计算机科学的发展,这种考虑药物作用的不同机理和全部过程的药物设计方法,将会更加完善,在新药的发现中发挥更大的作用。虚拟药物筛选(Drug Screening in Silico)是计算机辅助药物设计的另一种重要策略和方法。虚拟药物筛选指利用各种计算方法对化合物数据库进行”筛选”,可以大大减少工作量与成本,加快新药发现的步伐。当前,计算机技术的发展日新月异,已出现每秒运算lO万亿次以上的超级计算机。这种迅猛发展的势头,必将引起计算化学、计算生物学和药物分子设计领域的革命性变化。为此,要大力发展基于超级计算机、能适应复杂生物体系理论计算和药物设计要求的新方法和软件技术。
2.4产生大量新化合物的快速、高效新技术——组合化学和组合生物催化
大约在80年代,科学家提出一种新的思路,即对含有数十万乃至数十亿个化合物的化学进行同步合成和筛选,这一方法称为组合化学(CombinatorialChemistry)。短短l0年左右的时间,组合化学就已经显示了它的旺盛的活力,成为化学、药物和材料科学研究中的一个热点。组合化学的研究领域包括:(1)组合化学库的合成;(2)高通量筛选;(3)化学库编码及解析。
目前组合化学发展的一种趋势是和合理药物设计结合起来,通过分子模拟和理论计算方法合理地设计化合物库,目的之一是增加库中化合物的多样性(persity),提高库的质量;目前研究的热点,是根据受体生物大分子结合部位的三维结构设计”集中库”(focuslibrary),这将大大提高组合化学物库的质量和筛选效率。
组合生物催化(Combinatorial Biocatalyst)是药物研究领域中继组合化学之后的又一种新技术。它是将生物催化和组合化学结合起来,即从某一先导化合物出发,用酶催化或微生物转化方法产生化合物库。组合化学和组合生物催化新技术大大加快了产生新化合物的速度,经过良好设计的组合化学库还可大大提高化合物结构的多样性,从而大大提高了寻找新药的速度和效率。以上我们概括了当前创新药物研究中高技术发展的状况和趋势,可以清楚地看到,现代生命科学和生物技术已日益渗透和融人到创新药物研究中去,对药物研究产生了巨大而深刻的影响,形成了当代创新药物研究的新模式。我们应清醒地认识和掌握科学技术发展的这种趋势和规律,有效地组织力量,强化我国创新药物的研究与开发.
第三篇:制药工程(模版)
有机化学与药物
Organic Chemistry And Medicine 摘要:有机化学 又称为碳化合物的化学,是研究有机化合物的结构、性质 制备的学科,是化学中极重要的一个分支。有机化合物大量存在于自然界,如 粮食、油脂、棉、药材,天然气,石油等,他与生命科学及人民生活密切相关。由于有机化合物数目繁多,而且在结构和性质上又有许多共同的特点,所以有机化学便逐渐发展成为一门独立的学科。有机化学的研究任务之一是分离、提取自然界存在的各种有机物,测定他们的结构和性质,以便有机加以利用。例如从中草药中提取其有效成分,从昆虫中提取昆虫信息素等等,可见有机化学对于药物研究是有很大的作用,他们相互之间关系密切。药物”是指用于预防、治疗、诊断人的疾病,有目的地调节人的生理机能并规定有适应证或功能主治、用法和用量的产品。药物制备过程中,常常需要运用有机化学方法进行提取、提纯、合成、分离等,另外生物的生长过程实际上是无数的有机分子的合成与分解的过程,正是这些连续不断并互相依赖的化学变化构成了生命现象。因此,研究有机化学的深远意义之一是在于研究生物体及生命现象。
关键词有机化学药物化学联系制药工程发展前景
药物化学科学
一、药物化学
药物化学的科学包括基于在分子水平上对药物在体内的作用机制的了解、设计和合成新型药物。它是一门新兴的学科,仅有10~20年的历史。它是由有机化学、药理学、生物化学、生理学、微生物学、毒理学、遗传学和计算机模拟等多门学科组成的。确实,药物的研究离不开有机化学,两者之间是息息相关的。任何一种药物的设计过程中必须考虑以下两点。第一,药物与体内的靶分子结合,因此达到预期的药理作用最重要的是选择正确的靶点。所涉及的药物因对可能与靶点有效的、选择的结合,这在药物化学领域被称为药效学。第二,药物要达到靶点必须在体内转运,因此能顺利达到靶点药物设计是十分重要的,这在药物化学领域中被称为药物代谢动力学。
二、药物化学家
药物化学是一门多学科的科学,包括化学、生物化学、生理学、药理学和分子模拟学。当然,熟练掌握这些学科是十分重要的,但某个人却不太可能。因此,制药公司要召集各个领域的专家们来一起完成这项特殊的任务。药物化学家的主要作用式设计和合成所需的靶分子结构,他们需要有相当专业的药物化学研究知
识,包括常规化学学位所需的核心课程即生理学、无机化学、有机化学,还包括如药物设计、药理学、分子模拟、组合化学、生物有机化学和生物无机化学等课程。
三、药物
药物通常是低相对分子质量(100~500)的可与大分子靶点结合产生一种生物学反应的化学制品,药物的这种生物学反应对治疗俩说是有益的,从毒性德角度来说是有害的。再临床运用的大多数药物,如果服用剂量高于规定剂量均会产生潜在的毒性。
制药工程
制药工程是应用于生化反应或化学合成以及各种分离单元操作,实现药物工业化生产的工程技术,它包括生物制药、化学制药、中药制药。制药工程与人类生命健康密切相关,它是奠定在药学、生物技术、化学和工程学基础上的一门交叉学科,它探索和研究制造药物的基本原理、制药新工艺、新设备,以及在药品生产全过程中如何符合 药品生产质量规范要求进行研究、开发、设计放大与优化。
笼统的说,工业生产上的制造药物全过程就是制药工程。制药全过程又分为原料药生产和制剂生产两个阶段。原料药属于制药工业的中间产品,而药物制剂才是制药工业的终端产物,方可用于疾病的治疗。因此,从药学和工程学的角度来看,制药工程的定义就有广义和狭义之分。就广义而言,利用原料进行批量生产,制造出可用于治疗疾病的药物的过程就是制药工程,其所应用的技术都可归为制药工程技术的范围。而狭义的制药工程是侧重于原料药生产的过程技术。
有机化学与药物的联系 有机化学在药学课程中,是一门重要的基础理论课程,医学科学的研究对象是复杂的人体,组成人体的物质除了水和一些无机盐外,大部分都是有机物,它们在人体中进行一系列的化学变化,维持人体内新陈代谢等各种平衡,保证人体的基本生理和健康需要,医学课程中的生物化学、药理学等很多学科对需要有机化学知识来奠定。因此,有机化学和药物是密不可分的。
有机合成反应历来与经济发展和人民生活息息相关,并且随着社会的向前发展有机合成药物越来越被人们所重视。有机化学将有机合成与药物紧密地联系在了一起,让有机化学渗透到了药学中来,使有机化学和药物之间密不可分。现代药物和药物制剂的开发、医药学研究以及生命科学各领域的离不开高分子化学和高分子材料,可以说没有高分子化学和高分子材料就没有现代药物制剂。而其中有机化学则成为了关键,它是高分子化学和材料化学的基础,是它带动了高分子化学和材料化学的发展,继而加速了现代药物和药物制剂的发展。药用高分子材料用作药物辅料、药物和药品的包装储运材料,主要目的是为了提高药剂的稳定性、药物的生物利用度和药效,改善药物的成型加工性能,改变给药途径以开发新药、实现智能给药,实现物料运输、混合、反应、加工、中转和产品包装储运与安全使用。
现代科学技术正在全球范围内迅猛发展,冲击着一切科学和技术领域,使各
个方面独有可能得到重大发展和突破。科学发展的综合化、技术发展的高新化及高新技术的产业化是21世纪科学技术发展的主要特点。新技术的应用和发展是药物制剂工业发展的新浪潮。科学技术发展的成就和现代药物制剂技术的应用,使药物制剂研究、开发和生产以及从经验模式走上了科学化、现代化的道路。并且使有机化学合药物更进一步联系起来。
20世纪后期,生物高新技术的发展,开创了生命科学的新纪元,为我国医药、农业、工业、环境和能源领域带来了新的机遇,推动了新兴产业的发展,创造出巨大的社会财富。但我国在高速发展的经济建设中也遇到了一些严重的问题,如资源短缺、能源短缺和环境污染,制约了我国经济和社会的发展;相对落后的工业过程技术使我国生物技术药物产业的规模难以扩大,竞争力难以提高;传统化工业仍不能摆脱高耗能、高耗材、高污染的困境;必存在一系列食品安全问题。全方位推动酶工程技术的发展和应用是解决这些问题的重要手段之一。与传统工业过程所不同的是,一没催化为基础的工业过程具有高效率、高选择性、低能耗、环境友好和可再生的特效。酶工程技术不但可以在一定程度上解决资源和能源的可持续发展问题,也为医药生物技术产业化、农业生物技术长夜话题工支撑,有利于化工、材料、食品加工、纺织、造纸、冶金和环境保护等多个产业领域国际竞争力的提升。而有机化学的运用和发展则促使了酶工程技术的进步,为解决这一系类问题奠定了稳定的化学基础也为酶工程技术的发展创造了有利的条件。
有机化学的药物发展方向
有机化学在药学课程中,是一门重要的基础理论课程,医学科学的研究对象是复杂的人体,组成人体的物质除了水和一些无机盐外,大部分都是有机物,它们在人体中进行一系列的化学变化,维持人体内新陈代谢等各种平衡,保证人体的基本生理和健康需要,医学课程中的生物化学、药理学等很多学科对需要有机化学知识来奠定。因此,有机化学和药物是密不可分的。
有机合成反应历来与经济发展和人民生活息息相关,并且随着社会的向前发展有机合成药物越来越被人们所重视。有机化学将有机合成与药物紧密地联系在了一起,让有机化学渗透到了药学中来,使有机化学和药物之间密不可分。现代药物和药物制剂的开发、医药学研究以及生命科学各领域的离不开高分子化学和高分子材料,可以说没有高分子化学和高分子材料就没有现代药物制剂。而其中有机化学则成为了关键,它是高分子化学和材料化学的基础,是它带动了高分子化学和材料化学的发展,继而加速了现代药物和药物制剂的发展。药用高分子材料用作药物辅料、药物和药品的包装储运材料,主要目的是为了提高药剂的稳定性、药物的生物利用度和药效,改善药物的成型加工性能,改变给药途径以开发新药、实现智能给药,实现物料运输、混合、反应、加工、中转和产品包装储运与安全使用。
现代科学技术正在全球范围内迅猛发展,冲击着一切科学和技术领域,使各个方面独有可能得到重大发展和突破。科学发展的综合化、技术发展的高新化及高新技术的产业化是21世纪科学技术发展的主要特点。新技术的应用和发展是药物制剂工业发展的新浪潮。科学技术发展的成就和现代药物制剂技术的应用,使药物制剂研究、开发和生产以及从经验模式走上了科学化、现代化的道路。并且使有机化学合药物更进一步联系起来。
结束语 有机化学与药物之间关系紧密,它对于药物的研究,包括性质、作用机理、特性、药物合成等方面具有着重要的意义。有机化学在药学课程中,是一门重要的基础理论课程。有机化学将有机合成与药物紧密地联系在了一起,让有机化学渗透到了药学中来,使有机化学和药物之间密不可分。因此,我们作为制药工程专业的学生,更应该努力学好有机化学,从而将来更好的服务与制药这一行业。参考文献:
《有机化学》(第四版)
《药物化学》
《化学工业酶技术》
《现代药物制剂技术》
《天然药物化学》
百度文库
百度百科
编汪小兰高等教育出版社
第四篇:制药工程 - 副本
天津大学硕士生入学考试业务课程大纲说明
课程编号:826课程名称:化工原理(含实验或化工传递)
一、考试的总体要求
对于学术型考生,本考试涉及三大部分内容:(1)化工原理课程,(2)化工原理实验,(3)化工传递。其中第一部分化工原理课程为必考内容(约占85%),第二部分化工原理实验和第三部分化工传递为选考内容(约占15%),即化工原理实验和化工传递为并列关系,考生可根据自己情况选择其中之一进行考试。
对于专业型考生,本考试涉及二大部分内容:(1)化工原理课程,(2)化工原理实验。均为必考内容,其中第一部分化工原理课程约占85%,第二部分化工原理实验约占15%。
要求考生全面掌握、理解、灵活运用教学大纲规定的基本内容。要求考生具有熟练的运算能力、分析问题和解决问题的能力。答题务必书写清晰,过程必须详细,应注明物理量的符号和单位,注意计算结果的有效数字。不在试卷上答题,解答一律写在专用答题纸上,并注意不要书写在答题范围之外。
二、考试的内容及比例
(一)【化工原理课程考试内容及比例】(125分)
1.流体流动(20分)
流体静力学基本方程式;流体的流动现象(流体的黏性及黏度的概念、边界层的概念);流体在管内的流动(连续性方程、柏努利方程及应用);流体在管内的流动阻力(量纲分析、管内流动阻力的计算);管路计算(简单管路、并联管路、分支管路);流量测量(皮托管、孔板流量计、文丘里流量计、转子流量计)。
2.流体输送设备(10分)
离心泵(结构及工作原理、性能描述、选择、安装、操作及流量调节);其它化工用泵;气体输送和压缩设备(以离心通风机为主)。
3.非均相物系的分离(12分)
重力沉降(基本概念及重力沉降设备-降尘室)、;离心沉降(基本概念及离心沉降设备-旋风分离器);过滤(基本概念、恒压过滤的计算、过滤设备)。
4.传热(20分)
传热概述;热传导;对流传热分析及对流传热系数关联式(包括蒸汽冷凝及沸腾传热);传热过程分析及传热计算(热量衡算、传热速率计算、总传热系数计算);辐射传热的基本概念;换热器(分类,列管式换热器的类型、计算及设计问题)。
5.蒸馏(16分)
两组分溶液的汽液平衡;精馏原理和流程;两组分连续精馏的计算。
6.吸收(15分)
气-液相平衡;传质机理与吸收速率;吸收塔的计算。
7.蒸馏和吸收塔设备(8分)
塔板类型;板式塔的流体力学性能;填料的类型;填料塔的流体力学性能。
8.液-液萃取(9分)
三元体系的液-液萃取相平衡与萃取操作原理;单级萃取过程的计算。
9.干燥(15分)
湿空气的性质及湿度图;干燥过程的基本概念,干燥过程的计算(物料衡算、热量衡算);
干燥过程中的平衡关系与速率关系。
(二)【化工原理实验考试内容及比例】(25分)
1.考试内容涉及以下几个实验
单相流动阻力实验;离心泵的操作和性能测定实验;流量计性能测定实验;恒压过滤常数的测定实验;对流传热系数及其准数关联式常数的测定实验;精馏塔实验;吸收塔实验;萃取塔实验;洞道干燥速率曲线测定实验。
2.考试内容涉及以下几个方面
实验目的和内容、实验原理、实验流程及装置、实验方法、实验数据处理方法、实验结果分析等几个方面。
(三)【化工传递考试内容及比例】(25分)
1.微分衡算方程的推导与简化
连续性方程(单组分)的推导与简化;传热微分方程的推导与简化;传质微分方程的推导与简化。
2.微分衡算方程的应用
能够采用微分衡算方程,对简单的一维稳态流体流动问题、导热问题及分子传质问题进行求解。
三、试卷的题型及比例
化工原理课程部分试题包括基本概念题和应用题。基本概念题型可以是填空题,也可以是选择题,概念题约占25%;应用题包括过程计算题和过程分析题,一般5~6题,约占60%。化工原理实验部分的题型为填空题、选择题及实验设计题;化工传递部分的题型为推导(或推导与计算相结合)题。化工原理实验(或化工传递)部分约占15%。
四、考试形式及时间
考试形式均为笔试。考试时间为三小时(满分150)。
天津大学博士(硕士)研究生入学考试复试课
考试大纲
课程名称:制药分离工程(全日制工程硕士适用)
一、考试的总体要求:
掌握制药分离工程单元操作的基本概念、基本原理和计算方法,能够运用所学理论知识合理选定单元操作和进行相关的设计计算;对制药分离过程中的某些现象进行分析,并根据具体情况对操作进行优化。具有扎实的专业基础知识、能灵活应用所学知识分析并解决实际问题的能力。
二、考试的内容及比例:(重点部分)
(1)制药分离过程(10%)
制药分离过程是制药生产的主要单元操作,掌握制药分离工程单元操作的地位、特征和一般规律,以及制药单元过程设计的内容、特点。主要包括制药分离过程的特点、设计的目的和要求以及根据分离任务选择单元过程的依据。
(2)蒸馏与精馏(15%)
正确掌握精馏过程的设计计算方法,能够对给定分离要求的精馏过程进行计算分析,包括蒸
馏和精馏的区别、气液平衡、理论板和回流比和精馏过程概念与计算。
(3)萃取和浸取(10%)
掌握单级液液萃取和浸取过程的特征和设计计算方法(物料衡算),能够对萃取过程的萃取剂、萃取相和萃余相进行计算分析。包括三角形相图和杠杆定律、萃取的相平衡关系、单级萃取器的物料衡算、浸取相平衡和单级浸取。
(4)结晶(15%)
掌握结晶过程的原理、相平衡关系以及晶核生程和生长的规律,能够进行结晶器物料衡算和结晶颗粒数的计算。包括结晶-溶解的相平衡曲线及其分区、晶核的生产和晶体的成长、结晶过程的控制手段、间歇结晶器。
(5)吸附和离子交换(15%)
正确掌握吸附和离子交换装置的性能特征及设计方法,能够根据分离要求合理选用吸附剂或离子交换剂,并进行相关的计算分析。包括吸附等温线方程、吸附过程的影响因素、离子交换平衡方程和速度方程、典型吸附剂和离子交换剂。
(6)色谱分离法(15%)
正确掌握色谱分离法的基本原理和有关计算方法,能够根据分离要求选择合适的色谱法种类及进行设计。包括色谱法平衡关系及分配系数、阻滞因数和洗脱容积、色谱法的塔板理论、色谱分离的主要影响因素和应用原则。
(7)膜分离(15%)
掌握膜性能特征的表征参数,能够根据分离要求设计膜分离流程以及合理选用膜组件。包括膜性能的表征参数、浓差极化现象、膜过滤装置的设计方法。
(8)非均一系的分离(5%)
掌握沉降和过滤两类方法的原理和设计计算,能够根据分离要求合理选定分离方式,并进行相关设计。包括重力沉降、离心沉降、过滤器的设计。
三、试卷题型及比例
考试试卷主要包括以下题型:选择填空、名词解释、简答题、计算题,各类题型的比例为:选择填空占30―40%、名词解释占10%、简答题占20―30%、计算题占10―20%。
四、考试形式及时间
考试形式为笔试。
第五篇:制药工程
制药工程
1.工程项目从计划建设到交付生产的基本程序:项目建议书----批准立项----可行性研究----
审查及批准-----设计任务书-----初步设计-----设计终审----施工图设计-----施工----试车----竣工验收-----交付生产
2.上述基本工作程序分为3个阶段:设计前期(项目建议书,可行性研究,设计任务书)、设计期(初步设计,施工图设计)、设计后期(施工,试车,竣工验收,交付生产)
3.项目建议书重要性:是投资前对工程项目的轮廓设想,主要说明项目建设的必要性,同
时初步分析项目建设的可能性。
4.制药装置调试的总原则:从单机到联机到整条生产线,从空车到以水代料到实际物料
5.厂址选择重要性:是基本建设前期工作的重要环节,是工程项目进行设计的前提
6.厂址选择的基本原则:a、贯彻国家的政策方针 b、正确处理各种关系c、注意制药工业
对厂址选择的特殊要求d、充分考虑环境保护和综合利用e、节约用地 f、具备基本的生产条件g、节约用地
7.总平面设计:是在主管部门批准的厂址上,按照生产工艺流程级安全,运输等要求,经
济合理的确定各建(构)筑物、运输路线、工程管网的设施的平面及立面关系。
重要性:是工程设计的一个重要组成部分,其方案是否合理直接关系到工程设计的质量和建设投资的效果
8.建筑系数:指建筑用地范围内所有建筑物占地的面积与用地总面积之比。反映了厂址范
围内的建筑密度。
建(构)筑物占地面积堆场、作业场占地面积100% 全场占地面积
9.建筑坐标系:厂区和建(构)筑物方位一致的坐标系。
特点:以厂区和建(构)筑物的方位为坐标轴,故在确定厂区和建(构)筑物方位的位
置时可避免烦琐的换算,给现场施工带来方便。
10.洁净厂房:由于生产等原因,需要采用空气净化系统以控制室内空气的含尘量或含菌浓
度的厂房。
11.工艺流程设计的作用:在确定的原料路线和技术路线的基础上进行的,是整个工艺设计的中心。是工程设计中最重要、最基础的设计步骤,对后续的物料衡算、工艺设备设计、车间布置设计和管道布置设计等单项设计起着决定性的作用,并与车间布置设计一起决定这车间或装置的基本面貌。
12.确定工艺流程的重要性:确定工艺流程中个生产过程的具体内容、顺序和组合方式,是
工艺流程设计的基本任务。
13.工艺流程设计通常采用2阶段设计:即初步设计(绘制工艺流程框图,工艺流程示意图,物料流程图和初步设计阶段带控制点的工艺流程图)和施工图设计(绘制施工阶段带控制点的工艺流程图)。
14.物料的回收与套用:以降低原辅材料的消耗,提高产品收率,是降低产品成本的重要措
施
15.工艺流程框图的性质:在工艺路线和生产方法确定后,物料衡算开始之前表示生产工艺
过程的一种定性图纸。作用:定性的表示出由原料变成产品的路线和顺序,包括全部单元操作和单元反应。
16.工艺流程示意图概念:在工艺流程框图的基础上,分析各过程的主要工艺设备,在此基
础上,以图例、箭头、和必要的文字说明定性表示出由原料变成产品的路线和顺序,绘制出工艺流程示意图。阿司匹林工艺流程示意图见P38
17.初步设计阶段和施工阶段都要绘制带控制点的工艺流程图,区别是:初步设计阶段带控
制点的工艺流程图是在物料流程图的基础上,加上设备、仪表、自控、管路等设计结果设计而成,并作为正式设计成果编入初步设计文件中。而施工阶段带控制点的工艺流程图是根据初步设计的终审意见,对初步设计阶段带控制点的工艺流程图进行修改和完善,并充分考虑施工要求而完成。
18.物料衡算的重要性:是最先进行的一个项目,其结果是后续的能量衡算,设备选型与工
艺设计、车间布置设计、管道设计等各单项设计的依据,因此,物料衡算结果的正确与否直接关系到整个工艺设计的可靠程度。
19.物料衡算的依据:工艺流程示意图以及为物料衡算收集的有关资料。
20.物料衡算的作用:根据物料衡算的结果,将工艺流程示意图进一步深化,可绘制出物料
流程图。在物料衡算的基础上,可进行能量横算,设备选型与工艺设计,以确定设备的容积,台数和主要工艺尺寸,进而可进行车间布置设计和管道设计等项目。
21.物料衡算的意义:在实际应用中,根据需要,也可对已经投产的一台设备,一套装置,一个车间或整个工厂进行物料衡算,以寻找生产中的薄弱环节,为改进生产、完善管理提供可靠的依据,并可作为判断工程项目是否达到设计要求以及检查原料利用率和三废处理完善程度的一种手段。
22.浓度变化热:恒温恒压下,溶液因浓度发生待变而产生的热效应。
23.熔解热:恒温恒压下,将1mol溶质溶解于n mol 溶剂中,该过程所产生的热效应。
24.标准生成热:由标准状态下最稳定单质生成标准状态下单位物质的亮的化合物的热效应
或焓变。吸热为正,放热为负。
25.间歇操作的方式及特点:将反应所需要的原料一次加入反应器,达到规定的反应程度后
立即卸出全部物料。然后对反应器进行清理,随后进入下一个操作循环。间歇反应过程是一种典型的的非稳态过程,反应器内物料组成随时间变化,值得注意的是,对于单一反应,产物R的浓度随反应时间的增加而增大,但若反应体系中同时存在多个化学反应,这一结论就未必成立。如连串反应A-R(产物)-S,产物R的浓度先随反应时间的增加而增大,达一极大值后又随反应时间的增加而减小。间歇操作有反应过程中既无物料加入又无物料输出,装置简单,操作方便,适应性强的特点。
26.反应器计算方程式:反应动力学方程式均相反应P86到P88(rArBrcrD)止 acdb
27.理想混合器的特征:是物料达到完全混合,浓度、温度、和反应速度处处相等。
理想置换的特征:与流动方向垂直的截面上,各点的流速和流向完全相同,就像活塞平推一样。细长型的管式反应器可近似看成理想置换反应器。
28.空间时间不等于物料在反应器内的停留时间。只有对于等容过程,空间时间才与物料的停留时间相等,并为管式反应器内物料的反应时间cVR反应器的有效容积反应器的有效容积 Vh进料体积流量反应器中的物料的体积流量
k1a1a2CA k229.平行反应,如何提高产率?提高值。
(1)调节反应物浓度。.若a1a2,就提高CA,反之,降低CA。若a1a2,反应物
浓度对对R的收率没有任何影响。
(2)。改变操作温度。kAexp(E/RT)
E1E2,提高温度,增大值。反之,降低温度。若相等,则无影响。详见110
30.挡板的安装方式与液体粘度有关。对于低粘度,将挡板垂直纵向的安装在釜的内壁上,上部伸出液面,下部到达釜底;中等粘度,挡板离开釜系;高粘度,挡板离开釜壁并与壁面倾斜。
31.建筑物:凡用于人们在其中生产、生活或进行其他活动的房屋或场所。
构建物:人们不在其中生产、生活的建筑。
柱网:厂房建筑的承重柱在平面中排列索形成的网格。
厂房建筑的定位轴线包括纵向定位轴线和横向定位轴线,其中纵向定位轴线与厂房平
行,横向定位轴线与厂房的长度方向垂直。
32. 公称压力:是管子、阀门及管件在规定温度下的最大许用工作压力(表压)。
公称直径:是管子、阀门或管件的名义内直径。对阀门或法兰而言,公称直径是指与其
相配的管子的公称直径。
33.制药工业污染的特点:1.数量少、组分多、变动性大(化学原料药的生产具备反应多而
复杂、工艺路线较长等特点,因此所用原辅料的种类较多,反应形成的副产物也多,有的副产物连结构都难以搞清楚,这给污染的综合治理带来了很大的困难)2.间歇排放
3.pH不稳定4.化学需氧量高
34.绿色生产工艺指尽量采用那些污染小或者无污染的绿色生产工艺,改造那些污染严重的落后生产工艺,以消除或减少污染物的排放。
35.采用绿色生产工艺的4个内容:重新设计无污染或者少污染的生产工艺,并通过改进操
作方法、优化工艺操作参数等措施,实现制药过程的节能降耗,消除或减少环境污染的目的。
36.生化需氧量(BOD):在一定条件下,微生物氧化分解水中的有机物时所需的溶解氧的量。单位mg/L
37.化学需氧量(COD):在一定条件下,用强氧化剂氧化废水中的有机物所需的氧的量。
38.BOD和COD的区别:BOD反映了废水中可被微生物分解的有机物的总量,其值越大,表示水中的有机物越多,水体被污染的程度越高。COD能够更加精确地表示水中的有机物含量。
39.清污分流指将清水(如间接冷却用水、雨水和生活用水)与废水(如制药生产过程中排
出的各种废水)分别用各自不同的管路或渠道输送、排放或贮留,以利于清水的循环套用和废水的处理。
40.废水处理的的基本方法:物理法(指利用物理作用将废水中呈悬浮状态的污染物分离出
来,在分离过程中不改变其化学性质,包括沉降,气浮,过滤);化学法(利用化学反应原理来分离、回收废水中各种形态的污染物,包括中和,凝聚,氧化);物理化学法(指综合利用物理和化学作用出去废水中的污染物,包括吸附法,离子交换法和膜分离法);生物法(利用微生物的代谢作用,使废水中呈溶解和胶体状态的有机污染物转化为稳定无害的物质)
41.好氧生物处理基本原理:在有氧的条件下,利用好氧微生物的作用将废水中的有机物分
解为二氧化碳和水,并释放出能量的代谢过程。细看P252
42.好氧生物处理法:活性污泥法,生物膜法看P254-258
43.洁净厂房的耐火等级不能低于二级
44.制药工程设计的重要性:制药工程设计的水平高低,质量优劣,可通过技术经济分析和
编制工程概算来分析和评判。
45.技术经济分析:指借助于一系列技术经济指标,对制药工程设计的不同技术方案或措施
进行经济效果的分析、论证和评价,一寻求技术与经济之间的最佳关系,为确定技术上先进、经济上合理的最佳设计方案提供科学依据。
46.技术经济分析的根本目的是使拟建制药工程项目能以最小量的投入,生产出最大量的合格产品—药品,以实现最大的经济效益。
47.流动资金:项目建成投产后,在生产经营过程中不断循环周转的那部分资金,可分为定
额流动资金和非定额流动资金
48.估算流动资金的常用方法:一种,按月工厂成本的倍数估算,一般取1.5-3个月的工厂
成本作为流动资金的估算值,二种,按定额流动资金的3项组成计算。
49.定额流动资金=储备资金+生产资金+成品资金
50.成本的分类:按计量单位,按计算范围,按费用与产量的关系
51.总成本指生产一定种类和数量的产品所消耗的全部费用,该指标主要用于计算财务评价
中的毛利、净利、流动资金、静态指标和动态指标等。
52.静态分析法 自己看,P314
53.计算题,自己看,页数自己找。