首页 > 文库大全 > 精品范文库 > 9号文库

西门子数字化企业平台方案与智能制造[合集5篇]

西门子数字化企业平台方案与智能制造[合集5篇]



第一篇:西门子数字化企业平台方案与智能制造

西门子数字化企业平台方案与智能制造

生产规划和生产工程

西门子致力于成为面向整个产品开发与生产过程的整合型供应商 – 覆盖从产品设计和生产规划直至生产工程、生产实施以及后续服务的整个过程。这便是智能制造与数字化企业平台。对于制造业的未来,我们展示了我们如何通过众多的产品、解决方案、服务和全面的纵向市场专业知识为客户提供支持,助其提高生产率和效率。我们为所有客户统一部署智能制造与数字化企业平台技术。我们凭借广泛的产品组合,深厚的纵向市场专业知识 – 在这一次再次得到证明,并且再度覆盖全球 – 以及对客户的极大重视,确保带来最佳的工业产品和解决方案,满足不同客户的需求。我们拥有广泛的自动化技术、工业控制及驱动技术、工业信息技术与软件以及行业服务,为世界各地的客户提供覆盖整个价值链的全面支持 – 包括从产品设计到生产规划,从过程工程一直延伸至生产实施和后续服务。

利用虚拟机工具进行生产规划

现代化机床耗资不菲,而且必须充分发挥其能力才能让企业获得最大的投资回报。如果将机器闲置不用,将是很大的损失。当机器投入运转时,要确保其各项功能发挥稳定,并尽可能提高运作效率。如果在生产中需要不断重复设置机床,或将其改装用于培训用途,将会产生机器被白白闲置的时间。然而,这种情况只要借助虚拟机工具即可避免,它像实体机床一样运转,但完全是通过工业信息技术与软件程序来模拟的。西门子就有这样一款解决方案,其名称很贴切地被称为虚拟机工具,是智能制造与数字化企业平台的重要组成部分。它可被用于设定机床设置,还可供培训和验证子程序之用,大大节省使用实体机床的时间。虚拟机工具可缩短机床的非生产性操作时间,其仿真度很高,可减少对实体机床的非生产性利用,进而显著提高生产效率和能源效率。它为制造业的未来提供了卓越的范例。

第二篇:智能制造与企业互通

智能制造、企业互通

------2014年智能制造研讨与创美工业4.0现场体验会

2014年10月31日在苏州白金汉爵大酒店举行了智能制造研讨与创美工业4.0现场体验会。来自全国的300余名制造行业客户莅临现场,热情参与了本次大会。此次大会以智能制造,协同合作这一主题进行研讨,就企业间如何实现共同互联、智能互通以及如何迈向工业4.0来展开,创美集团及用友软件专家一道共同探讨了制造企业的信息化之路。

大会开始大迁总经理回顾了创美集团与用友的合作历史,从与用友王文京董事长缔结战略协议、系统原型客户的确立、NC项目开始到用友集团的大力支持,逐步讲述了创美与用友战略好伙伴的一个个美好瞬间,也为体验会的现场拉开了精彩的序幕。会上由用友集团执行总裁章培林董事长发表致辞,提出在企业互联网化时代制造企业应利用新技术将互联网和工业深度融合,并剖析NC6如何为制造业塑造核心竞争优势。随后金工场长也发表了精彩的演讲。演讲以国际产业转移趋势作为背景,讲述了创美工艺与用友的协同合作来进行管理信息化项目的实施,逐步实现了设计敏捷化、制造智能化、业务过程实时化,客户协同化、集团管控化的智能工厂这一辉煌过程。并分享了制造业生产力发展方向和总体趋势。会上作为特邀嘉宾进行本次发言的还有用友项目经理岳伟龙、创美生产革新部主任金垠博、UAP中心技术支持部总经理彭立东、摩托罗拉制造经验专家等。用友咨询与实施业务部专家岳伟龙先生为大家讲述如何为创美实现信息化价值这一经验分享。生产革新部主任金垠博就创美工业4.0的实践案例进行分享,描述了工厂制造从自动化到智能制造这一改革创新的道路。UAP中心技术支持部彭立东总经理就UAP平台与客户联合创新作为主题,进行了本次演讲。紧接着大会现场体验阶段展示了由我们创美工艺自主研发的工业4.0的原型机。该系统在2014年用友广州展会上第一次以创新的姿态展现给大家。它打穿了从生产执行系统、生产管理系统到生产设备控制系统的隔阂,并同手机移动客户端结合起来,用户只需手机上轻轻一按,就能下发订单,控制生产。会上体验的人群更是络绎不绝将大会的气氛推上了高潮。随后金工场长同用友集团执行总裁章培林董事长参加了用友产业链合作伙伴创美授牌仪式。这是即9月用友广州展会后又一大事件。本次授牌是基于用友公司与创美工艺的专业分工和战略契合。利用双方互补优势,为更多制造类企业提供更多专业类服务。会议现场,用友、创美、新华都、畅通天元领导签署了四方协议,通过四方合作将进一步推动产品伙伴招募和深化合作,标志着创美将与伙伴的形式共同实现合作开发,达成产业链共赢目标。

31日下午还进行了创美工厂车间的现场体验,来自用友的200多名制造行业客户参观了创美工厂。参观团分为4组,分别参观了第一事业部、第三事业部、第三事业部、登车平台、生产革新和新品开发车间以及金牌模具工厂等生产车间。创美向用友参观团全面展示了全自动的冲压生产线、精密的3D模具技术和测控设备、直线式机械手臂和机器点焊机、数据采集系统等等半自动甚至全自动的智能设备,让用友的各界朋友们全面感受到创美工艺正在从传统劳动力密集型向自动智能化的转变。随后的三个小时,开展了创美与用友的交流会,会场主分为:制造、财务供应链、UAP系统等三个个分会,交流会在轻松又包含成长的环境中度过,各个会场中开展了智者与智者的对话,共同体验了一次行业间的深入研讨。

创美工艺与用友集团共同打造了一整套适应于“工业4.0时代的信息化系统。基于UAP平台,创美对28个业务小系统、涉及NC18个核心业务单据的信息进行集成。除了将内部管理数据进行整合之外,通过UAP平台,创美又将智能化管理延伸到了机械设备上。即通过UAP平台,构建了一套物联网中间件,帮助创美实现了设备之间的数据互操作、设备的全面数据分析以及可视化运营,为创美集团的全球化战略奠定了坚实的基础。

未来创美工艺将率先迈入了工业4.0时代,工业4.0的内涵已经远远超越机器的自动化,甚至数字制造本身。它让设备与设备开启对话,产品和生产设备之间相互沟通,建立虚拟世界与现实世界之间的对话窗口。我们让设备开始了愉快的“生产旅行”,即将到来的机械技术与信息化技术高度融合,让机械数据和管理数据全部整合到一个数字化企业平台中,“信息平台”作为企业智能制造的中枢,将成为智能制造体系的核心。

第三篇:西门子数字化企业平台(数字工厂)蕴藏巨大玄机

西门子数字化企业平台(数字工厂)蕴藏巨大玄机

由西门子成都工厂研发的新产品诞生于西门子PLM的产品开发解决方案NX软件。它支持产品开发中从设计到工程和制造的各个方面,并集成了多学科仿真,还能够提供全系列先进零部件制造应用的解决方案,这是其他计算机辅助设计软件所无法实现的。研发部门的工程师们可以通过NX软件进行模拟设计,还可以在设计过程中进行模拟组装,真正实现“可见即可得”。由于NX软件的应用而实现的数字化设计,可以大大缩短产品从设计到分析的迭代周期,也减少了多达90%的编程时间。产品开发的时间也就相应缩短了。

在NX软件中完成设计的产品,都会带着专属于自己的数据信息继续“生产旅程”。这些数据一方面通过CAM(计算机辅助制造系统)向生产线上传递,为完成接下来的制造过程做准备,另一方面也被同时“写”进数字化工厂的数据中心——Teamcenter软件中,供质量、采购和物流等部门共享。采购部门会依据产品的数据信息进行零部件的采购,质量部门会依据产品的数据信息进行验收,物流部门则是依据数据信息进行零部件的确认。

共享的数据库是Teamcenter的最大特点。当质量、采购、物流等不同部门调用数据时,他们使用的是共享的文档库,并且通过主干快速地连接到各责任方。即使数据发生更新,不同的部门也都能第一时间得到最新的数据,这就使得西门子成都工厂研发团队的工作量变得简单、高效了许多,避免了传统研发制造企业的研发和生产环节或不同部门之间由于数据平台不同造成的信息传输壁垒。

西门子成都工厂PLC(可编程控制器)装配工位上的一名普通员工。对比身边的大多数同事来说,他还算个新人,但这份工作对于他来说并不复杂,得益于西门子数字化企业平台的,将枯燥的制造生产变得轻松。

每天由西门子MES系统生成的电子任务单都会显示在王云龙工作台前方的电脑显示屏上,实时的数据交换间隔小于1秒,这就意味着他随时可以看到最新的版本。西门子MES系统SIMATIC IT包揽了传统制造企业生产计划调度的职能。没有了人工抄写的任务单,省去了不同产线交流的复杂环节。生产订单由MES统一下达,在与ERP系统高度的集成之下,可以实现生产计划、物料管理等数据的实时传送。此外,SIMATIC IT还集成了工厂信息管理、生产维护管理、物料追溯和管理、设备管理、品质管理、制造KPI分析等多种功能,可以保证工厂管理与生产的高度协同。

第四篇:西门子数字化企业平台为数字化生产带来轻松高效

西门子数字化企业平台为数字化生产带来轻松高效

在这座快速发展的城市中感受到科技为工业带来的变化并不难。在成都高新西区,有一座看起来“不起眼”的工厂。它外观低调朴素,内部却隐藏着巨大玄机。全厂内实现了从管理、产品研发、生产到物流配送全过程的数字化, 并且通过信息技术,与德国生产基地和美国的研发中心进行数据互联。它是一个完整的数字化企业平台——西门子工业自动化产品成都生产研发基地.王云龙毕业于成都某院校的电子信息专业,是西门子成都工厂PLC(可编程控制器)装配工位上的一名普通员工。对比身边的大多数同事来说,他还算个新人,但这份工作对于他来说并不复杂,得益于西门子数字化企业平台的,将枯燥的制造生产变得轻松。

每天由西门子MES系统生成的电子任务单都会显示在王云龙工作台前方的电脑显示屏上,实时的数据交换间隔小于1秒,这就意味着他随时可以看到最新的版本。西门子MES系统SIMATIC IT包揽了传统制造企业生产计划调度的职能。没有了人工抄写的任务单,省去了不同产线交流的复杂环节。生产订单由MES统一下达,在与ERP系统高度的集成之下,可以实现生产计划、物料管理等数据的实时传送。此外,SIMATIC IT还集成了工厂信息管理、生产维护管理、物料追溯和管理、设备管理、品质管理、制造KPI分析等多种功能,可以保证工厂管理与生产的高度协同。

在王云龙的工作台上有5个不同的零件盒,每个零件盒上都配有指示灯。当自动引导小车送来一款待装配的产品时,电脑显示屏上会出现它的信息,相应所需零件盒上的指示灯亮起,王云龙就知道该安装什么零件了。这是由于传感器扫描了产品的条码信息,并将数据实时传输到了MES系统,MES系统再通过与西门子TIA(全集成自动化系统)的互联操纵零件盒指示灯,从而代替人完成了思考的过程。这种设计可以满足自动化产品“柔性”生产的需求(即在一条生产线上同时生产多种产品),有了指示灯的帮助,即使换另外一种产品王云龙也不会怕装错零件了。

西门子全集成自动化解决方案(TIA)在很大程度上替代了人类的大脑、视觉和手臂。西门子用可编程控制器(PLC)来引导生产流程,用视觉系统来识别质量、用自动引导小车来传递产品。通过PROFINET现场总线连接并传送数据,不仅使人的工作变轻松了,更能确保生产各环节的可靠、灵活与高效。

西门子成都工厂总经理Andreas Bukenberger针对高效生产给出了具体的数字:“成都工厂产品的一次通过率(FPY)可达到99%以上。”

王云龙确认了他装配好的产品,按下工作台上的一个按钮,自动化流水线上的传感器就会扫描产品的条码信息,记录它在这个工位的数据。MES系统SIMATIC IT将以该数据作为判断基础,向控制系统下达指令,指挥小车将它送去下一个目的地。”

在到达下一个工序前,产品要通过“严格”的检验程序,以可编程控制器(PLC)产品为例,在整个生产过程中针对该类产品的质量检测节点就超过20个。视觉检测是数字化工厂特有的质量检测方法,相机会拍下产品的图像与Teamcenter数据平台中的正确图像作比对,一点小小的瑕疵都逃不过SIMATIC IT品质管理模块的“眼睛”。对比传统制造企业的人工抽检,这显然要可靠又快速得多。”

在经过多次装配并接受过多道质量检测后,成品将被送到包装工位。再经过人工包装、装箱等环节,一箱包装好的自动化产品就会通过升降梯和传送带被自动运达物流中心或立体仓库。”

第五篇:智能制造(定稿)

智能制造综述

冯剑龙 1043115257 摘要

本文评述了智能制造技术与智能制造系统,指出了智能制造确系21世纪的制造技术,分析了智能制造在发展中的问题,提出我国智能制造的近期研究重点应为其关键基础技术。

关键词智能制造智能制造技术智能制造系统智能机器 集成化智能化 智能制造系统的研究背景与发展现状

近来年,人们对制造过程的自动化程度赋予了极大的研究热情,这是因为从1870年到1980年间,制造过程的效率提高了20倍,而生产管理效率只提高了1.8~2.2倍,产品设计的效率只提高了1.2倍。这表明体力劳动通过采用自动化技术得到了极大的解放,而脑力劳动的自动化程度(其实质是决策自动化程度)则很低,制造过程中人的因素尚未得到充分的认识,人尚未真正地从复杂的生产过程中解放出来,各种问题求解的最终决策在很大程度上仍依赖于人的智慧。因而,人类群体所面临的众多问题(包括社会问题、生理问题等)在制造过程中都有所反映。面对批量小、品种多、质量高、更新快的产品市场竞争要求以及各种社会因素的综台影响.制造过程的自动化程度的提高面临众多问题,譬如;(1)专家人才的短缺和转移致使一些专门技能不能及时或长久地得到提供;(2)现代制造过程中信息量大而繁杂,传统的信息处理方式已不能满足要求,大量的信息资源需要开发与共享;(3)制造环境柔性要求更大,决策过程更加复杂,决策时问要求更短。各种迹象表明,“我们正处在制造历史上的一个危险时期” 幸运的是,计算机与计算机科学以及其它高技术的发展,通过集成制造技术、人工智能等而发展起来的一种新型制造工程—— 智能制造技术(intelligent manufacturing technology,IMT)与智能制造系统(intelIigent manufacturingsystem,IMS)使我们有可能走出这个危机,“带来真正的第二次工业革命”。这是因为,制造过程所面临的众多问题的核心是“制造智能(nlanufacturing itelIigence)”和制造技术的“智能化(intellecturallzation)。IMT是指在制造工业的各个环节以一种高度柔性与高度集成的方式,通过计算机模拟人类专家的智能活动,进行分析、判断、推理、构思和决策,旨在取代或延伸制造环境中人的部分脑力劳动;并对人类专家的制造智能进行收集、存贮、完善、共享、继承与发展。未来工业生产的基本特征应该是知识密集型.制造自动化的根本是决策自动化。目前,IMT~IMS的研究正迅速受到众多国家的政府、工业界和科学家们的广泛重视,研究方向从最初的“人工智能在制造领域中的应用”发展到今天的IMS,研究课题涉及的范围由最初仅一个企业内部的市场分析、产品设计、生产计划、制造加工、过程控制、材料处理、信息管理、设备维护等技术型环节的自动化.发展到今天的面向世界范围内的整个制造环境的集成化与自组织能力+包括制造智能处理技术、自组织加工单元、自组织机器人、智能生产管理信息系统、多级竞争式控制网络、全球通讯与操作网等。总之,智能制造是21世纪的制造技术,作为其特征的双I(integration& intelligence)将是21世纪制造业赖以行进的基本轨道。从更深刻的意义上讲,智能制造是从信息时代走向智能时代面临的第一个严重任务。存在的问题

总的说来,目前IMS的研究仍处在人工智能在制造领域中应用的阶段,研究课题涉及到市场分析、产品设计、制造过程控制、材料处理、信息管理、设备维护等众多方面,取得了丰硕的成果.开发了种类繁多的面向特定领域的专家系统、基于知识的系统和智能辅助系统,甚至智能加工工作站(IMW),形成了一系列“智能化孤岛”(islands of intelligence)。这中间包括CIMS研究中所取得的有关进展然而,随着研究与应用工作的深入,人们逐渐地认识到自动化程度的进一步提高依赖制造系统的自组织能力,研究工作还面临着一系列理论、技术和社会问题,问题的核心是“智能化”。一般说来,现代工业生产作为一个有机的整体要受技术(包括生产系统)、人(包括间接影响生产过程的社会群体)和经济(包括市场竞争和社会竞争)-方面因素的制约。从技术的角度来看,对于一个企业来说,市场预测、生产决策、产品设计、原料订购与处理、制造加工、生产管理、原料产品的储运、产品销售、研究与发展等环节彼此相互影响,构成产品生产的全过程。该过程的自动化程度取决于各环节的集成自动化(integrated automatlon)水平,而生产系统的自组织能力取决于各环节的集成智能(inte—grated intelligence)水平。目前,尚缺乏这种“集成”制造智能的技术,这也是目前“并行工程”的研究重点。由日本提出的国际合作研究计划对IMS的解释可看出,IMS的研究包括三个基本方面:智能活动、智能机器和两者的有机融合技术,其中智能活动是问题的核心。在IMS研究的众多基础技术中.制造智能处理技术(manufacturing in—telligence processing technology)是最为关键和追切需要研究的问题之一,因为它负责各环节的制造智能的集成和生成智能机器的智能活动。从人的因素方面来看,其一,企业内部负责各个环节的专家和技术人员有着各自不同的知识背景和解决问题的策略,他们应该“坐”在一起,通过相互之间充分的合作、协商与理解,“并行”地开睫制造过程中各环节的工作,把以后可能出现的“隐患”和“反复”降低到最低程度。其二,人们参与制造过程的智能行为和知识存在着多种层次水平、多种类型。因而要采用多种表示方式。其三,参与制造过程的群体,作为社会中的一子集,受社会发展变更的影响,这种影响都将对制造过程产生既有积极又有消极的作用 最后.人与人之间存在生活、语言、社会背景等方面的差别。总之,人的因素对现代生产的自动化程度有着关键作用。事实证明,人的因素是IMS中制造智能的重要来源。从经济因素来看,它包括三个方面:第一,IMS系统的主要目标之一是全面提高制造过程的生产与经济效益,它将把制造过程自动化的概念更新和拓宽到“集成化”和“智能化”的高度,从而具有更强的市场竞争能力 但如何设定和评价IMS的各项经济性指标和性能则是一个问题。第二,目前,在工业发达国家普遍存在着劳动力昂贵,所占生产成本的比例越来越高的问题。从当前的经济利益出发,大量的制造企业被转移至发展中国家,致使生产技术和劳动者因素等方面受到牵制,存在丧失他们产品市场竞争力的危险这也是智能制造国际合作研究计划提出的重要原因之一。方向与课题

根据国内现有的工作基础和国家的需要,以及IMT&IMS研究与开发工作的特点,我们认为近期的研究点应该放在IMT&IMS的关键基础技术上,它主要包括以下内容:

3.1 智能制造系统理论基础与设计技术IMS的概念正式提出至今仅二三年时间。作为制造工程中的一个全新的概念,IMS理论基础与体系尚未完全形成.它的精确内涵和设计技术亟待进一步研究,具体研究内容应包括:

3.1.1 体系结构与发展战略 需要建立IMS统一的概念体系,研究IMS的系统组成和发展方向以及跟踪国际上该领域的研究前沿

3.1.2 开发环境与设计方法学IMS的开发与设计方法将有别于现有任何制造系统的设计方法,因为IMS是面向整个制造过程的系统和各个环节的“智能化”的 因此.有必要研究IMS的设计策略和开发环境(包括开发语言、操作系统、开发工具等)必须强调IMS设计过程的标准化、模块化和通用化。

3.1.3 评价技术研究制造过程中的设计评价、生产评价、材料评价、管理评价、市场评价、经济评价、报价评价和功能评价等问题。

3.2 制造智能理论及处理技术现代工业生产作为一个有机整体不仅是指各制造环节之间存在的技术型联系,而且还表现在人类专家的制造智能的统一体特性方面。制造智能理论及处理技术就是要研究整个制造环境中的各种智能源的开发、描述、集成、共享与处理,最后生成智能机器的智能活动,具体研究内容包括: 3.2.1 制造环境的描述与建模研究描述制造环境的一致性概念体系、制造过程建模,影响制造过程的多因素分析与不确定性处理。

3.2.2 制造智能处理技术重点研究制造智能源的开发与获取、制造智能的表示、制造智能的集成与共享

3.2.3 智能活动的生成与融合研究智能活动的生成策略,智能活动的机器化技术。3.3 智能制造单元技术的集成近10年来,人工智能在制造领域中的应用研究取得较大进展,建立了一些智能制造单元技术。为了应用于实际制造过程和面向21世纪制造工业,这些单元技术除了需要进一步完善与发展外,更重要的是研究如何集成这些单元技术。

3.3.1 并行智能设计并行工程方法学这一概念是1986年由美国国防部定义,并首先应用于美国军事武器系统开发计剞DOs CALS的。.为了制造过程的设计阶段能有效地模仿由来自各环节制造专家组成的专家组(expeit team)的智能行为,集成和共享各环节与各方面的制造智能,并行地开展产品环节的设计工作,必须研究并行智能设计的支撑环境、产品描述的统一模型、设计智能交互和并行智能设计方法学。

3.3.2 生产过程的智能调度、规划、仿真与优化现代生产过程要面临多信息源、多因素、多对象的及时处理问题,生产过程的调度与规划中的智能决策问题的研究是迫在眉睫的。仿真与优化是实现设计和过程评估的有效途径。目前,更强调对设计、制造、装配、使用、维修等过程的优化与动态仿真。3.3 产品质量信息的智能处理系统研究整个制造过程的“全质量(total quality)模型和建立相应的质量数据库,研究质量状态的智能决策和质量过程的智能控制.3.3.4 制造过程与系统的智能监视、诊断、补偿与控制研究面向在强干扰、多因素条件下监视与诊断模型,研究制造过程的动态辨识与自适应技术。

3.3.5 生产与经营管理的智能决策系统研究多因素、多目标智能决策模型,研究生产过程的实时跟踪技术,研究产品市场评估与预测模型。

3.4 知识库系统与网络技术知识库系统与信息网络技术是制造过程的系统与各环节“集成智能化”的支撑,在IMT&IMS研究中占有重要地位。

3.4.1 分布式异构联想知识库系统研究知识库异构、知识库分布式策略与维修、知识库联想和分布数据库技术。

3.4.2 信息控制与网络通讯技术研究IMS中各种信息的交换接El、网络通讯技术、系统操作控制策略。

3.5 智能机器的设计智能机器是IMS中模仿人类专家智能活动的工具之一,是新一代的制造工具,因而,研究智能机器的设计方法及其相关技术将有划时代的意义。

3.5.1 机器人智能技术智能机器人将在IMS中占有重要的地位,主要体现在机器的视觉和机器^控制两个方面。有必要研究智能机器眼(视觉)、信息感知与智能传感器、智能机器手(控制)和智能机器的自适应定位与夹具设计等技术。

3.5.2 机器自学习与自维护技术研究智能机器的自适应学习模型,系统误差的自动恢复与维护技术。

3.5.3 智能制造单元机的设计与制造研究智能制造单元机的结构组成与设计方法、新型材料的应用技术。

3.6 制造中人的因素IMS的宗旨之一就是减轻人类制造专家的艰苦的脑力劳动负担,因此.与脑力劳动有密切联系的制造中人的因素理应受到充分的重视,研究内容包括:

3.6.1 人一系统柔性交互技术研究人一系统柔性、联想、容错交互模型以及交互环境。3 6.2 未来制造环境的设计研究人在未来制造环境中的地位和作用以及未来舒适、友好的制造环境的设计。

3.6.3 人才培养与教学系统研究面向IMT&IMS的^才培养计划.研制教学示范系统。

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jingpin/9/1944282.html

相关内容

热门阅读

最新更新

随机推荐