数学竞赛



第一篇:数学竞赛

竞赛数学学科感言

数学竞赛与体育竞赛相类似,它是青少年的一种智力竞赛,所以苏联人首创了“数学奥林匹克”这个名词。在类似的以基础科学为竞赛内容的智力竞赛中,数学竞赛历史最悠久,参赛国最多,影响也最大。比较正规的数学竞赛是1894年在匈牙利开始的,除因两次世界大战及1956年事件而停止了7届外,迄今已举行过90多届。苏联的数学竞赛开始于1934年,美国的数学竞赛则是1938年开始的。这两个国家除第二次世界大战期间各停止了3年外,均己举行过50多届,其他有长久数学竞赛历史的国家是罗马尼亚(始于1902年)、保加利亚(始于1949年)和中国(始于1956年)。

1956年,东欧国家和苏联正式确定了国际数学奥林匹克的计划,并于1959年在罗马尼亚布拉索夫举行了第一届国际数学奥林匹克(InternationaI

Mathematics Olympiad,简称1MO)。以后每年举行一次。除1980年因东道国蒙古经济困难停办外,至今共举行过40届。参赛国家也愈来愈多。第一届仅7个国家参加,至1980年已有23个;到1990年,则有54个。

必须说明在上述历史之前已有一些数学竞赛活动,例如苏联人说,在1886年帝俄时代就举行过数学竞赛。又如1926年在中国上海市举办过包括学生、银行和钱庄职员在内的珠算比赛,中华职业学校一年级学生,16岁的华罗庚凭智慧夺得了冠军。这些都是关于数学竞赛的佳话,不列入正史。

二、数学竞赛的发展

数学竞赛活动是由个别城市,向整个国家,再向全世界逐步发展起来的。例如苏联的数学竞赛就是先从列宁格勒和莫斯科开始,至1962年拓展至全国的,美国则是到1957年才有全国性的数学竞赛的。

数学竞赛活动也是由浅入深逐步发展的。几乎每个国家的数学竞赛活动都是先由一些著名数学家出面提倡组织,试题与中学课本中的习题很接近,然后逐渐深入,并有一些数学家花比较多的精力从事选题及竞赛组织工作,这时的试题逐渐脱离中学课本范围,当然仍要求用初等数学语言陈述试题并可以用初等数学方法求解。例如苏联数学竞赛之初,著名数学家柯尔莫哥洛夫、亚历山大洛夫、狄隆涅等都参与过这一工作。在美国,则有著名数学家伯克霍夫父子、波利亚、卡普兰斯基等参与过这项工作。

国际数学奥林匹克开始举办后,参赛各国的备赛工作往往主要是对选手进行一次强化培训,以拓广他们的知识,提高他们的解题能力。这种培训课程是很难的,比中学数学深了很多。这时就需要少数数学家专门从事这项活动。数学竞赛搞得好的国家,竞赛活动往往采取层层竞赛、层层选拔这种金字塔式的方式进行。例如。苏联分五级竞赛,即校级、市级、省级、加盟共和国级和全苏竞赛,每一级的竞赛人数约为前一级的1/10,还设立了8个专门的数学学校(或数学奥林匹克学校),以培养数学素质好的学生。

数学竞赛虽然历史悠久,但最近10年有很大发展和变化,有关工作愈趋专门,我们要认真注意其发展,认识其规律。

三、数学竞赛的作用

1.选拔出有数学才能的青少年。由于数学竞赛是在层层竞赛,水平逐步加深的考核基础上选拔出优胜者,优胜者既要有踏实广泛的数学基础,又要有灵活机智的头脑和富于创造性的才能,所以他们往往是既刻苦努力又很聪明的青少年。这些人将来成才的概率是很大的。数学竞赛活动受到愈来愈多国家的注意,在世界上发展得那么快的重要原因之一就在于此。在匈牙利,著名数学家费叶、黎茨、舍贵、寇尼希、哈尔、拉多等部曾是数学竞赛的优胜者。在波兰,著名数论专家辛哲尔是一位数学竞赛优胜者。在美国,数学竞赛优胜者中后来成为菲尔兹数学奖获得者的有米尔诺、曼福德、奎伦三人,也有不少优胜青成为著名的物理学家或工程师,如著名力学家冯?卡门。

2.激发了青少年学习数学的兴趣。数学在一切自然科学、社会科学和现代化管理等方面都愈来愈显得重要和必不可少。由于电子计算机的发展,各门科学更趋于深入和成熟,由定性研究进入定量研究。因此青少年学好数学对于他们将来学好一切科学,几乎都是必要的。数学竞赛将健康的竞争机制引进青少年的数学学习中,将激发他们的上进心,激发他们的创造性思维。由于数学竞赛是分级地金字培式地进行的,所以国家级竞赛之前的竞赛,试题基本上不跳离中学数学课本范围,适合广大青少年参加.但也要承认人的天赋和数学素质是有差别的,甚至会有很大的差别。国家级竞赛及其以后的竞赛和培训,只能在少数人中拔高进行,少数有很好数学素质的青少年是吃得消的。例如,澳大利亚少年托里?陶在他10岁、11岁和12岁时分别在第27、28和29届国际数学奥林匹克上获得铜牌、银牌和金牌。在数学竞赛的拔高阶段当然需要一些大学老师和数学专业研究人员参与。

3.推动了数学的教学改革工作。数学竞赛进入高层次后,试题内容往往是高等数学的初等化。这不仅给中学数学添人了新鲜内容,而且有可能在逐步积累的过程中,促使中学数学教学在一个新的基础上进行反思,由量变转入质变。中学教师也可在参与数学竞赛活动的过程中,学得新知识,提高水平,开阔眼界,事实上,己有一些数学教学工作者在这项活动中逐渐尝到了甜头。因此数学竞赛也可能是中学数学课程改革的“催化剂”之一,似乎比自上而下的“灌输式”的办法为好。60年代初,西方所谓中学数学教学现代化运动即是企图用某些现代数学代替陈旧的中学数学内容,但采取了由上往下灌输的方法,结果既脱离教师水平,也脱离学生循序学习所需要的直观思维过程。现在基本上被风一吹,宣告失败了。相反地,数学竞赛也许是一条途径。在中国,中学生的高考压力很重,中学教师为此而奔波,确有路子愈走愈窄之感。数学竞赛或许能使中学数学的教学改革走向康庄大道。

四、竞赛数学--奥林匹克数学

随着数学竞赛的发展,已逐渐形成一门特殊的数学学科-竞赛数学,也可称为奥林匹克数学。将高等数学下放到初等数学中去,用初等数学的语言来表述高等数学的问题,并用初等数学方法来解决这些问题,这就是竞赛数学的任务。这里的问题甚至解法的背景往往来源于某些高等数学。数学就其方法而言,大体上可以分成分析与代数,即连续数学与离散数学。由于目前微积分不属于国际数学奥林匹克的范围,所以下放离散数学就是竞赛数学的主体。很多国际数学奥林匹克的试题来自数沦、组合分析、近世代数、组合几何、函数方程等。当然也包含中学课程中的平面几何。

竞赛数学又不同于上述这些数学领域。通常数学往往追求证明一些概括广泛的定理,而竞赛数学恰恰寻求一些特殊的问题,通常数学追求建立一般的理论和方法,而竞赛数学则追求用特殊方法来解决特殊问题;而且一旦某个问题面世,即成为陈题,又需继续创造新的问题。竞赛数学属于“硬”数学范畴,它通常也与纯粹数学一样,以其内在美,包括问题的简练和解法的巧妙,作为衡量其价值的重要标准。

竞赛数学不能脱离现有数学分支而独立发展,否则就成了无源之水,所以它往往由某些领域的专家兼搞,如参加国际数学奥林匹克的中国代表团的出色教练单樽,就是一位数论专家。

国际数学奥林匹克的精神是鼓励用巧妙的初等数学方法来解题,但并不排斥高等数学方法和定理的使用。例如在第31届国际数学奥林匹克中,有学生在解

题时用到了贝特朗假设,也称车比雪夫定理,即当n大于1时,在n和2n之间必定有一个素数,还有人在解题时用到了谢尔宾斯塞定理,即一个平方数表成s个平方数之和的通解形式。这些定理须在华罗庚所著的《数论导引》(大学数学系研究生教本)或更专门的书中才能找到。这样不仅已是“杀鸡用牛刀”,而且按某外国教练的说法,“他们在用原子弹炸蚊子,但蚊子被炸死了!”这样做是允许的,但不是国际数学奥林匹克所鼓励的。

国际数学奥林匹克的一个难试题,经简化后的证明要写三四页,这不仅大大超过中学课本的深度,也不低于大学数学系一般课程的深度,当然不包括大学课程的广度。实际上,大学数学系课程中,一条定理的证明长达3页者并不多。一个好试题的解答,大体上相当于一篇有趣的短论文。因此用这些问题来考核青少年的数学素质是相当科学的。它们的解决需要参赛者有相当宽广的数学基础知识,再加上机智和创造性。这与单纯的智力小测验完全不同。国际上的数学竞赛范围,大体上从小学四年级到大学二年级。小学生因基础知识太少,这期间的所谓数学竞赛,其实是智力小测验型。对大学生应强调系统学习,要求对数学有一个整体了解。因此数学竞赛的重点应是中学,特别是高中。

现在已经积累了丰富的数学竞赛题库,可供中学师生和数学爱好者练习。国际上也已经有了竞赛数学的专门杂志。

五、数学竞赛在中国

我国的数学竞赛始于1956年,当时举办了北京、上海、武汉、天津四城市的高中数学竞赛。华罗庚、苏步清、江泽涵等最有威望的数学家都积极出面领导并参与这项工作。但由于“左”的冲击,至1965年,只零零星星地举行过6届,“文化大革命”开始后,数学竞赛更被看成是“封、资、修”的一套而被迫全部取消。直到“四人帮”被打倒,我国的数学竞赛活动于1978年又重新开始,并从此走上了迅速发展的康庄大道。1980年前的数学竞赛属于初级阶段,即试题不脱离中学课本。1980年以后,逐渐进入高级阶段。我国于1985年第一次参加国际数学奥林匹克,1986年开始名列前茅,1989和1990年连续两年获得团体总分第一。

我国成功地举办了第31届国际数学奥林匹克,这标志着我国的数学竞赛水平已达到国际领先水平。第一,中国获得团体总分第一,说明我国金字塔式的各级竞赛和选拔体系及奥林匹克数学学校和集中培训系统是完善的,第二,我国数学家对35个国家提供的100多个试题,进行了简化与改进,从中推荐出28个问题供各国领队挑选,结果被选中5题(共需6题),这说明我国竞赛数学的水平是相当高的。第三,各国学生的试卷先由各国领队批改,然后由东道主国家组织协调认可。我们组织了近50位数学家任协调员,评分准确、公平,提前半天完成了协调任务,说明我国的数学有相当的实力。第四,这是首次在亚洲举行国际数学奥林匹克,中国的出色成绩鼓舞了发展中国家,特别是亚洲国家。除此而外,这次竞赛的组织工作也是相当不错的。

在中国,从老一辈数学家,中青年数学家,直至中小学老师,成千上万人的共同努力,才在数学竞赛方面获得了今天的成就。这里特别要提到华罗庚,他除倡导中国的数学竞赛外,还撰写了《从杨辉三角谈起》《从祖冲之的圆周率谈起》《从孙子的“神奇妙算”谈起》《数学归纳法》和《谈谈与蜂房结构有关的数学问题》5本小册子,这些是他的竞赛数学作品。我国在1978年重新恢复数学竞赛后,他还亲自主持出试题,并为试题解答撰写评论。中国其他优秀竞赛数学作品有段学复的《对称》闵嗣鹤的《格点和面积》姜伯驹的《一笔画和邮递路线问题》等。这里还应提到王寿仁,他从跟华罗庚一起工作起,一直到今天,始终领导并参与了数学竞赛活动。他带领中国代表队3次出国参加国际数学奥林匹克,并领导了第31届国际数学奥林匹克的工作。1980年以后,我国基本上由中青年数学家接替了老一辈数学家从事的数学竞赛工作,他们积极努力,将中国的数学竞赛水平推向一个新的高度。裘宗沪就是一位突出代表。他从培训学生到组织领导数学竞赛活动,从3次带领中国代表队参加国际数学奥林匹克到举办第31届国际数学奥林匹克,均作出了杰出贡献。

六、关于我国数学竞赛的几个问题

1.要认真总结经验。既要总结成功的经验,也要总结反面的教训。特别是1956年至1977年的22年中只小规模地举行了6次数学竞赛,完全停止了16年,比匈牙利因两次世界大战而停止数学竞赛的时间长一倍多,这也从一个侧面反映了“左”的危害。要允许甚至鼓励对数学竞赛发表各种不同看法,以避免大轰大嗡、大起大落及“一刀切”。当有了缺点时,要冷静分析,划清数学竞赛内含的不合理性与工作中的缺点的界线。

2.完善领导体制。可否设想,国家教委和中国科协通过中国数学会数学奥林匹克委员会(或其他形式的一元化领导),统一领导与协调全国各级数学竞赛活动和国际数学奥林匹克的参赛和组织培训工作。成立数学奥林匹克基金会,协助某些数学竞赛活动,奖励数学竞赛优胜者和作出贡献的领导、教练、中小学教师等。

3.向社会作宣传。宣传数学竞赛的意义和功能,以消除误解,例如“数学竞赛是中小学生搞的智力小测验”,“这是选拔天才,冲击了正常教学”,“教师,特别是大学教师,搞数学竞赛是不务正业”等。要用事实说明数学竞赛活动的成绩。例如仅仅“文革”前的几次低层次数学竞赛中,已有一些竞赛优胜者成才了。如上海的汪嘉冈、陈志华,北京的唐守文、石赫,他们现在已经是国内的著名中年数学家,有的已获博士导师资格。他们在“文革”中都被耽误了10年,否则完全会有更大成就。

4.处理好普及与提高的关系。数学竞赛需要分学校、市、省、全国、冬令营、集训班金字塔式地进行。前3个层次是普及型的,试题应不脱离中学数学课本范围,面向广大学生和教师。国家级竞赛及以后的活动是提高型的,参赛者的面要迅速缩小。至于冬令营和集训队,全国只能有几十个学生参加。数学奥林匹克学校要注意质量,宜办得少而精。对于参加数学学校的学生要严格挑选,不要妨碍他们德、智、体的全面发展。除冬令营和集训班需要少数数学家集集中时间出试题和进行培训工作外,宜鼓励广大数学家和中小学教师利用业余时间从事数学竞赛活动,不要妨碍大家的正常工作。总之,数学竞赛的普及部分与提高部分不要对立,而要有机地结合起来。

5.对数学竞赛优胜者要继续进行教育和培养。一方面要充分肯定优胜者的成绩并加以鼓励,另一方面也要告诉竞赛优胜者,必须戒骄戒躁,谦虚谨慎,要成为一个好数学家或其他方面的专家,还须经过长期不懈的锄。不要将竞赛获胜看成唯一的目的,要看成鼓励前进的鞭策。还要为数学竞赛优胜者创造较好的深入学习的机会,使他们能迅速成长。例如可以考虑允许某些理工科大学在高中全国数学竞赛优胜者中,自行选拔一部分学生免试入学。

6.对数学竞赛活动作出贡献的人员,包括组织领导者、教练与中小学教师的工作成绩要充分肯定并给予奖励。在他们的工作考核中,作为提职晋级的依据之一.

第二篇:数学竞赛

合类学科竞赛:全国大学生数学竞赛“挑战杯”大学生课外学术科技作品竞赛全国大学生英语竞赛全国大学校院学生创意实作竞赛 “CCTV杯”全国英语演讲大赛 课余生活竞赛:全大学生DV影像艺术竞赛全国大学生街舞 挑战赛全国大学生智能汽车邀请赛大学生多媒体作品设计大赛中国大学生数码媒体艺术大赛中国大学生在线暑假影像大赛全国大学生歌唱比赛理科专业竞赛:全国大学生数学建模竞赛全国大学生力学竞赛大学生程序设计大赛全国大学生结构设计大赛大学生机电产品创新设计竞赛全国大学生电子设计竞赛全国大学生过程控制仿真挑战赛全国大学生电工数学建模竞赛全国大学生机器人大赛ACM国际编程大赛SCILAB自由软件编程竞赛 文科专业竞赛:全国大学生电子商务竞赛中国大学生公共关系策划大赛全国大学生营销大赛全国大学生ERP沙盘比赛全国大学生电子创新大赛全国大学生广告策划比赛国际商事仲裁模拟法庭辩论赛 赛才网搜集整理了适合大学生参加的几百个赛事:202_年招商地产绿色建筑设计大赛(参赛截止:202_年4月底)202_年第二届中国大学生“明日网商”挑战赛(参赛截止:202_-5-20)202_年全国首届校园廉洁文化公益海报设计大赛(参赛截止:202_-5-15)202_年第九届中国艺术节征集吉祥物设计大赛(参赛截止:202_-4-30)202_年第七届 DAF“反对皮草”国际大学生设计大赛(参赛截止:202_-5-10)„„

第三篇:数学竞赛

Ⅰ.基本不等式

若a,b∈R,那么:a²+b²≥2ab其中等号当且仅当a=b时成立

推理:算算数平均数不小于几何平均数

a,b∈R+(a+b)/2≥(ab)½其中等号当且仅当a=b时成立

a,b,c∈R+(a+b+c)/3≥(abc)1/3其中等号当且仅当a=b=c时成立a,b,c,d∈R+(a+b+c+d)/4≥(abcd)¼其中等号当且仅当a=b=c=d时成立如果a,b,c∈R,那么a²+b²+c² ≥ab+bc+ac其中等号当且仅当a=b=c时成立

注意:⒈一般来说,对于整式或分式的大小比较常用作差的方法,然后通过对差因式分解或配方来确定差的符号

⒉若a,b,c是正实数,且(1+a)(1+b)(1+c)=8.则abc≤1

Ⅱ.最大值和最小值

1.巧分例:x,y,z为非负实数,满足2x+3y+5z=6,求x²yz的最大值

解:因为x,y,z>0.2x+3y+5z=6.所以x²yz=1/15(xx3y5z)≤27/80(基本不等式)

Ⅲ.证明不等式的常用方法:

⒈含有绝对值得不等式

⑴当a>0时,|x|<a↔-a<x<a

|x|>a↔x<-a或x>a

⑵绝对值不等式的性质

定理|a|-|b|≤|a±b|≤|a|+|b|

推论|a+b+c|≤|a|+|b|+|c|(推论可以推广到任意n个元的情形)

⒉证明不等式的常用方法

比较法,综合法,分析法,放缩法,反证法,数学归纳法

⒊a,b,c均为正数,则

a³+b³+c³-ab(a+b)-bc(b+c)-ac(a+c)+3abc=(a+b-c)(a-b)²+c(a-c)(b-c)≧0

Ⅳ.证明不等式常用技巧

⒈变量代换:线性代换,三角代换,分式代换,增量代换等

⒉不妨设

⒊构造法

Ⅴ.不等式的解法

⒈一元一次不等式的解法

第四篇:数学竞赛计划书

数学竞赛策划书

一、活动目的:

1、让广大数学爱好者有一个展示自己才能的机会

2、激发学生对数学的积极性

3、为下次全国数学建模比赛选拔人才

二、主办单位:院数学建模协会

协助单位:院学习部

三、活动对象:全校学生

四、活动时间:即日起开始报名至202_年11月25日

五、竞赛日期:202_年11月27日晚上6:00~8:30

六、活动地点:4#扇形,6#扇形

七、活动流程

(一)、前期工作

1、宣传

2、报名

(二)、中期工作

1、统计报名人数

2、组织参加考试

(三)、后期工作

1、评出具体奖项

2、结果公布(会联系获奖者)

八、活动规则及要求

1、参赛者自带考试用品入场(笔、铅笔、草稿纸等)

2、要求参赛者赛出自己的真实水平,不得出现剽窃他人试卷、传递纸条、互打暗号及小抄等舞弊行为,一经发现将立即取消参赛资格并扣德育分。

九、奖项设置

1、本次竞赛分设特等奖、一等奖、二等奖、三等奖若干名。活动

结束后将对获奖作者颁发荣誉证书及给予一定的德育分和物质奖励。

第五篇:数学竞赛总结

202_-202_学年第一学期数学竞赛总结

202_年12月2日下午数学教研组举行了数学竞赛活动,参赛学生有50名。一年级,一等奖1人,二等奖1人,三等奖3人;二年级,一等奖1人,二等奖1,三等奖1人;三年级,一等奖1人,二等奖1,三等奖2人;四年级,一等奖1人,二等奖1,三等奖2人;五年级,一等奖1人,二等奖2,三等奖3人。六年级,一等奖1人,二等奖2,三等奖3人。全校总计,一等奖6人,二等奖8人,三等奖14人。共计,28人获奖。

此次举行的学科竞赛,所有任课教师能够认真对待,真正地把此次竞赛当回事。全体任课教师能够积极地动员学生参与。每位教师都能够精心准备,认真地思考竞赛题型,积极地进言献策,可以说此次竞赛试题出得相当有水平,知识点也挖掘得比较深、比较透。真正体现了竞赛题与平时习题的区别。

所有任课教师都能事事认真操作,此次考试按照教导处、教研组统一安排和布置,大家都能够认真选题、编题、出卷、监考、批卷、合分,这一系列的工作都有条不紊地进行,这一切与全体任课教师的敬业精神,务实态度是分不开的。

其次,此次竞赛的意义比较大。

第一,通过竞赛提高了学生的竞争意识。此次竞赛也体现了一种竞争,也就是知识的竞争,学生们通过竞赛加强了竞争意识,这必将成为今后适应社会竞争的有益尝试。

第二,通过此次竞赛提高了同学们的参与意识,没有参与就没有机会,参与意识对于每个同学都是很重要的,通过参与他们才能无形中融入到集体当中,才能真正体现自我的价值,只是通过参与才能体现自我,重视自我,尊重自我,才能使学生产生“不在于结果,贵在过程”的比较高的思想境界。

第三,此次竞赛极大地激发了学生的学习兴趣和积极性,通过竞赛,使学生们都懂得了“山外青山楼外楼,强中更有强中手”的道理,使他们产生了“欲穷千里目,更上一层楼”的梦想,对于“尖子生”提出了更高的挑战和要求。

总之,此次竞赛取得了圆满成功,它的意义、作用、影响既有表面的效果,又有潜在的力量;既有对同学们学习的促进作用,同时又有对他们未来的一定影响;既活跃了我校的学习气氛,又丰富了同学们的学习生活。另外,此次竞赛所表现的团队精神必将成为今后的教育教学生活的榜样。

数学教研组202_--12--3

相关内容

热门阅读

最新更新

随机推荐