第一篇:数列极限教学设计
数列极限教学设计
复习目的:1.理解数列极限的概念,会用“”定义证明简单数列的极限。
2.掌握三个最基本的极限和数列极限的运算法则的运用。
3.理解无穷数列各项和的概念。
4.培养学生的推理论证能力、运算能力,提高学生分析问题,解决问
题的能力。
教学过程:
问题1:根据你的理解,数列极限的定义是如何描述的?
数列极限的定义:对于数列{an},如果存在一个常数A,无论事先指定多么小的正数,都能在数列中找到一项aN,使得这一项后的所有项与A的差的绝对值小于,(即当n>N时,记<恒成立),则常数A叫数列{an}的极限。——“”定义。问题2:“作用? 正数”定义中,的任意性起什么作用?,N的存在性又起什么的任意性和N的存在性是定义的两个基本特征。
时,an趋近于A的无限性,即趋近程度的无(1)的任意性刻划了当
限性(要有多近有多近)。
(2)N的存在性证明了这一无限趋近的可能性。
问题3:“
问题4:“”定义中的N的值是不是唯一? ”定义中,<的几何意义是什么?
因为< 即A-n,所以无论区间(A-,A+)多么小,当n>N时,an对应的点都在区间(A-
问题5:利用“,A+)内。”定义来证明数列极限的关键是什么? <恒成关键是对任意的要找到满足条件的N。(条件是当n>N时,立)。
问题6
:无穷常数数列有无极限?数列呢?数列
(<1)呢?
三个最基本的极限:(1)C=C,(2)=0,(3)=0(<1)。
问题7
:若=A,=B,则()=?,()=
?,=
?,=?。数列极限的运算法则:()=A+B,()=A-B,=AB,=(B0)。
即如果两个数列都有极限,那么这两个数列对应项的和,差,积,商组成新数列的极限分别等于它们极限的和,差,积,商。(各项作为除数的数列的极限不能为零)
问题8:(,)
=
++
+=0对吗? 运算法则中的只能推广到有限个的情形。
问题9:无穷数列各项和s是任何定义的? s=,其中为无穷数列的前n项和,特别地,对无穷等比数列(<1),s=。注意它的含义和成立条件。例1
.用极限定义证明:
例2.求下列各式的值
(2)[()=,]
(2)()
例3
.已知例4
.计算:
(++)=0,求实数a,b的值。+,例5.已知数列是首项为1,公差为d的等差数列,它的前n项和为
<1)的等比数列,它的前n项和为,是首项为1,公比为q(记=+++,若(-)=1,求d , q。
小结:本节课复习了数列极限的概念,运算法则,三个最基本的极限,无穷数列各项和的概念,以及它们的运用,主要是利用数列极限概念证明简单数列的极限,利用运算法则求数列的极限,(包括已知极限求参数),求无穷数列各项和。
第二篇:数列的极限_教学设计
数列的极限 教学设计
西南位育中学 肖添忆
一、教材分析
《数列的极限》为沪教版第七章第七节第一课时内容,是一节概念课。极限概念是数学中最重要和最基本的概念之一,因为极限理论是微积分学中的基础理论,它的产生建立了有限与无限、常量数学与变量数学之间的桥梁,从而弥补和完善了微积分在理论上的欠缺。本节后续内容如:数列极限的运算法则、无穷等比数列各项和的求解也要用到数列极限的运算与性质来推导,所以极限概念的掌握至关重要。
课本在内容展开时,以观察n时无穷等比数列an列anqn,(|q|1)与an1的发展趋势为出发点,结合数n21的发展趋势,从特殊到一般地给出数列极限的描述性定义。在n由定义给出两个常用极限。但引入部分的表述如“无限趋近于0,但它永远不会成为0”、“不管n取值有多大,点(n,an)始终在横轴的上方”可能会造成学生对“无限趋近”的理解偏差。
二、学情分析
通过第七章前半部分的学习,学生已经掌握了数列的有关概念,以及研究一些特殊数列的方法。但对于学生来说,数列极限是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡的阶段。
由于已有的学习经验与不当的推理类比,学生在理解“极限”、“无限趋近”时可能产生偏差,比如认为极限代表着一种无法逾越的程度,或是近似值。这与数学中“极限”的含义相差甚远。在学习数列极限之前,又曾多次利用“无限趋近”描述反比例函数、指数函数、对数函数的图像特征,这又与数列中“无限趋近”的含义有所差异,学生往往会因为常数列能达到某一个常数而否定常数列存在极限的事实。
三、教学目标与重难点 教学目标:
1、通过数列极限发展史的介绍,感受数学知识的形成与发展,更好地把握极限概念的来龙去脉;
2、经历极限定义在漫长时期内发展的过程,体会数学家们从概念发现到完善所作出的努力,从数列的变化趋势,正确理解数列极限的概念和描述性定义;
3、会根据数列极限的意义,由数列的通项公式来考察数列的极限;掌握三个常用极限。教学重点:理解数列极限的概念
教学难点:正确理解数列极限的描述性定义
四、教学策略分析
在问题引入时着重突出“万世不竭”与“讲台可以走到”在认知上的矛盾,激发学生的学习兴趣与求知欲,并由此引出本节课的学习内容。在极限概念形成时,结合极限概念的发展史展开教学,让学生意识到数学理论不是一成不变的,而是不断发展变化的。数学的历史发展过程与学生的认知过程有着一定的相似性,学生在某些概念上的进展有时与数学史上的概念进展平行。比如部分学生的想法与许多古希腊的数学家一样,认为无限扩大的正多边形不会与圆周重合,它的周长始终小于其外接圆的周长。教师通过梳理极限发展史上的代表性观点,介绍概念的发展历程以及前人对此的一系列观点,能帮助学生发现自己可能也存在着类似于前人的一些错误想法。对数学发现的过程以认知角度加以分析,有助于学生学习数学家的思维方式,了解数学概念的发展,进而建构推理过程,使学生发生概念转变。在课堂练习诊断部分,不但要求回答问题,还需对选择原因进行辨析,进而强化概念的正确理解。
五、教学过程提纲与设计意图 1.问题引入
让一名学生从距离讲台一米处朝讲台走动,每次都移动距讲台距离的一半,在黑板上写出表示学生到讲台距离的数列。这名学生是否能走到讲台呢?类比“一尺之捶,日取其半,万世不竭”,庄子认为这样的过程是永远不会完结的,然而“讲台永远走不到”这一结果显然与事实不同,要回答这一矛盾,让我们看看历史上的数学家们是如何思考的。【设计意图】
改编自芝诺悖论的引入问题,与庄子的“一尺之捶”产生了认知冲突,激发学生的学习兴趣与求知欲,并引出本节课的学习内容
2.极限概念的发展与完善
极限概念的发展经历了三个阶段:从早期以“割圆术”“穷竭法”为代表的朴素极限思想,到极限概念被提出后因“无穷小量是否为0”的争论而引发的质疑,再经由柯西、魏尔斯特拉斯等人的工作以及实数理论的形成,严格的极限理论至此才真正建立。【设计意图】
教师引导学生梳理极限发展史上的代表性观点,了解数学家们提出观点的时代背景,对照反思自己的想法,发现自己可能也存在着类似于前人的一些错误想法。教师在比较概念发展史上被否定的观点与现今数学界认可的观点时,会使学生产生认知冲突。从而可能使学生发生概念转变,抛弃不正确的、不完整的、受限的想法,接受新的概念。在数学教学中,结合数学史展开教学可以让学生意识到数学理论不是一成不变的,而是不断发展变化的,从而提升学生概念转变的动机。
3.数列极限的概念
极限思想的产生最早可追溯于中国古代。极限理论的完善出于社会实践的需要,不是哪一名数学家苦思冥想得出,而是几代人奋斗的结果。极限的严格定义经历了相当漫长的时期才得以完善,它是人类智慧高度文明的体现,反映了数学发展的辩证规律。今天的主题,极限的定义,援引的便是柯西对于极限的阐述。
定义:在n无限增大的变化过程中,如果无穷数列{an}中的an无限趋近于一个常数A,那么A叫做数列{an}的极限,或叫做数列{an}收敛于A,记作limanA,读作“n趋向于
n无穷大时,an的极限等于A”。
在数列极限的定义中,可用|an-A|无限趋近于0来描述an无限趋近于A。
如前阐述,柯西版本的极限定义虽然不是最完美的,但作为摆脱几何直观的首次尝试,也是历史上一个较为成功的版本,在历史上的地位颇高。有时,我们也称其为数列极限的描述性定义。
【设计意图】
通过比较历史上不同观点下的极限定义,教师呈现数列极限的描述性定义,分析该定义的历史意义,让学生进一步明确数列极限的含义。4.课堂练习诊断
由数列极限的定义得到三个常用数列的极限:(1)limCC(C为常数);
n(2)lim10(nN*); nnnn(3)当|q|<1时,limq0.练习<1>判断下列数列是否存在极限,若存在求出其极限,若不存在请说明理由
20162016(1)an;
nsinn; n(3)1,1,1,1,,1(2)an(4)an4(1n1000)
4(n1001)11-,n为奇数(5)ann
1,n为偶数注:
(1)、(2)考察三个常用极限
(3)考查学生是否能清楚认识到数列极限概念是基于无穷项数列的背景下探讨的。当项数无限增大时,数列的项若无限趋近于一个常数,则认为数列的极限存在。因此,数列极限可以看作是数列的一种趋于稳定的发展趋势。有穷数列的项数是有限的,因而并不存在极限这个概念。
(4)引用柯西的观点,解释此处无限趋近的含义,是指随着数列项数的增加,数列的项与某一常数要多接近就有多接近,由此得出结论:数列极限与前有限项无关且无穷常数数列存在极限的。
(5)扩充对三种趋近方式的理解:小于A趋近、大于A趋近和摆动趋近。本题中的数列没有呈现出以上三种方式的任意一种。避免学生将趋近误解为项数与常数间的差距不断缩小。练习<2>若A=0.9+0.09+0.009+0.0009+...,则以下对A的描述正确的是_____.A、A是小于1的最大正数
B、A的精确值为1 C、A的近似值为1
选择此选项的原因是_________ ①由于A的小数位都是 9,找不到比A大但比1小的数;
②A是由无限多个正数的和组成,它们可以一直不断得加下去,但总小于 2;
③A表示的数是数列0.9,0.99,0.999,0.9999,...的极限;
④1与A的差等于 0.00…01。
注:此题是为考查学生对于无穷小量和极限概念的理解。由极限概念的发展史可以看出,数学家们曾长时期陷入对无穷小概念理解的误区中,极大地阻碍了对极限概念的理解。学生学习极限概念时可能也会遇到类似的误区。
练习<3>顺次连接△ABC各边中点A1、B1、C1,得到△A1B1C1。取△A1B1C1各边中点 A2、B2、C2并顺次连接又得到一个新三角形△A2B2C2。再按上述方法一直进行下去,那么最终得到的图形是_________.A、一个点
B、一个三角形
C、不确定
选择此选项的原因是_________.①
无限次操作后所得三角形的面积无限趋近于 0 但不可能等于 0。②
当操作一定次数后,三角形的三点会重合。
③
该项操作可以无限多次进行下去,因而总能作出类似的三角形。
④
无限次操作后所得三角形的三个顶点会趋向于一点。
注:此题从无限观的角度考察学生对极限概念的的理解。学生容易忽视极限概念中的实无限,他们在视觉上采用无穷叠加的形式,但是会受最后一项的惯性思维,导致采用潜无限的思辨方式。所谓实无限是指把无限的整体本身作为一个现成的单位,是可以自我完成的过程或无穷整体。相对地,潜无限是指把无限看作永远在延伸着的,一种变化着成长着不断产生出来的东西。它永远处在构造中,永远完成不了,是潜在的,而不是实在的。持有潜无限观点的学生在理解极限概念时,会将极限理解为是一个渐进过程,或是一个不可达到的极值。
通过习题,分析总结以下三个注意点:
(1)数列{an}有极限必须是一个无穷数列,但无穷数列不一定有极限存在;
1}可以说随着n的无限增大,n1数列的项与-1会越来越接近,但这种接近不是无限趋近,所以不能说lim1;
nn(2)“无限趋近”不能用“越来越接近”代替,例如数列{(3)数列{an}趋向极限A的过程可有多种呈现形式。
【设计意图】
通过例题与选项原因的分析,消除关于数列极限理解的三类误区:
第一类是将数列极限等同于如下的三种概念:渐近线、最大限度或是近似值。第二类是学生对于数列趋向于极限方式的错误认知。第三类是对于无限的错误认知。
5.课堂小结
极限的描述性定义与注意点 三个常用的极限
6.作业布置
1>任课老师布置的其他作业
2>学习魏尔斯特拉斯的数列极限定义,并用该定义证明习题<1>的第一第二小问 【设计意图】
通过与数列极限相关的延伸问题,完善极限概念的体系,为学生创设课后自主探究平台,感受静态定义中凝结的数学家的智慧。
第三篇:数列极限
《数学分析》教案--第二章 数列极限
xbl
第二章 数列极限
教学目的:
1.使学生建立起数列极限的准确概念,熟练收敛数列的性质;
2.使学生正确理解数列收敛性的判别法以及求收敛数列极限的常用方法,会用数列极限的定义 证明数列极限等有关命题。要求学生:逐步建立起数列极限的 数列发散、单调、有界和无穷小数列等有关概念.会应用数列极限的 并能运用
概念.深刻理解定义证明有关命题,语言正确表述数列不以某定数为极限等相应陈述;理解并能证明收敛数列、极限唯一性、单调性、保号性及不等式性质;掌握并会证明收敛数列的四则运算定理、迫敛性定理及单调有界定理,会用这些定理求某些收敛数列的极限;初步理解柯西准则在极限理论中的重要意义,并逐步学会应用柯西准则判定某些数列的敛散性;
教学重点、难点:本章重点是数列极限的概念;难点则是数列极限的 用.教学时数:16学时
定义及其应
§ 1 数列极限的定义
教学目的:使学生建立起数列极限的准确概念;会用数列极限的定义证明数列极限等有关命题。
教学重点、难点:数列极限的概念,数列极限的N定义及其应用。教学时数:4学时
一、引入新课:以齐诺悖论和有关数列引入——
二、讲授新课:
(一)数列:
1.数列定义——整标函数.数列给出方法: 通项,递推公式.数列的几何意义.-《数学分析》教案--第二章 数列极限
xbl
2.特殊数列: 常数列,有界数列,单调数列和往后单调数列.(二)数列极限: 以 为例.定义(的 “
”定义)定义(数列 收敛的“
”定义)注:1.关于 :的正值性, 任意性与确定性,以小为贵;2.关于:非唯一性,对只要求存在,不在乎大小.3.的几何意义.(三)用定义验证数列极限: 讲清思路与方法.例1
例2
例3
例4
证
注意到对任何正整数
时有
就有
第四篇:数列极限
若当n无限增大时数列能无限的接近某一个常数a,则称此数列为收敛数列,常数a称为它的极限,不具有这种特性的数列不是收敛数列
收敛数列的特性是随着n的无限增大,数列无限接近一个常数a,这就是说,当n充分大时,数列的通项与常数a之差的绝对值可以任意小
第五篇:数列极限
§2.1 数列极限概念
第二章数列极限
§1 数列极限概念
Ⅰ.教学目的与要求
1.理解数列极限概念并利用定义证明数列是否收敛.2.掌握无穷小数列概念并利用其证明数列是否收敛于指定的常数.Ⅱ.教学重点与难点:
重点: 数列极限概念.难点: 数列极限概念、利用数列极限定义证明数列是否收敛于指定的常数.Ⅲ.讲授内容
若函数f的定义域为全体正整数集合N+,则称
f:NR或f(n), nN
为数列.因正整数集N+的元素可按由小到大的顺序排列,故数列f(n)也可写作
a1,a2,,an,,或简单地记为{an},其中an,称为该数列的通项.
关于数列极限,先举一个我国古代有关数列的例子.
例1古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去.
把每天截下部分的长度列出如下(单位为尺): 第一天截下111,第二天截下2,„„,第n天截下n,„„这样就得到一个数列 22
21111,2,,n,.或n.2222
不难看出,数列{11}的通项随着n的无限增大而无限地接近于0.一般地说,对于数2n2n
列{an},若当n无限增大时an能无限地接近某一个常数a,则称此数列为收敛数列,常数a称为它的极限.不具有这种特性的数列就不是收敛数列.
收敛数列的特性是“随着n的无限增大,an无限地接近某一常数a”.这就是说,当n充分大时,数列的通项an与常数a之差的绝对值可以任意小.下面我们给出收敛数列及其极限的精确定义.
定义1设{an}为数列,a为定数.若对任给的正数,总存在正整数N,使得当,n>N
时有|ana|则称数列
n
{an收敛于a,定数a称为数列{an}的极限,并记作
limana,或ana(n).读作“当n趋于无穷大时,an的极限等于a或an趋于a”.
若数列{an}没有极限,则称{an}不收敛,或称{an}为发散数列.
定义1常称为数列极限的—N定义.下面举例说明如何根据N定义来验证数列极限.
例2证明lim证由于
|
0,这里为正数
nn
110|, nn
1故对任给的>0,只要取N=1
这就证明了lim
1,则当nN时,便有
111|0|.即nNn
0.nn
例3证明
3n2
3.lim2
nn
3分析由于
3n299
|2(n3).(1)|2
n3n3n
因此,对任给的>o,只要
9,便有 n
3n2
3|,(2)|2
n3
即当n
时,(2)式成立.又由于(1)式是在n≥3的条件下成立的,故应取
Nmax{3,9
证任给0,取Nmax{3,据分析,当nN时有(2)式成立.于是本题得证.9
注本例在求N的过程中,(1)式中运用了适当放大的方法,这样求N就比较方便.但应注意这种放大必须“适当”,以根据给定的E能确定出N.又(3)式给出的N不一定是正整
数.一般地,在定义1中N不一定限于正整数,而只要它是正数即可.例4证明limq=0,这里|q|<1.
n
n
证若q=0,则结果是显然的.现设0<|q|<1.记h我们有
|q0||q|
n
n
1,则h>0. |q|, n
(1h)
并由(1h)n1+nh得到
.(4)
1nhnh1,则当nN时,由(4)式得|qn0|.这对任给的0,只要取Nh
|q|
n
就证明了limq0.n
n
注本例还可利用对数函数ylgx的严格增性来证明(见第一章§4例6的注及(2)式),简述如下:
对任给的>0(不妨设<1),为使|qn0||q|n,只要nlg|q|lg即n
lg
(这里也假定0|q|1).lg|q|
于是,只要取N
lg
即可。lg|q|
例5证明lima1=1,其中a>0.
n
证(ⅰ)当a1时,结论显然成立.(ⅱ)当a1时,记a1,则0.由
a(1)1n1n(a1)
1n
1n
n
1n
得a1
a1
(5)n.1n
任给0,由(5)式可见,当n
a1
N时,就有a1,即|a1|.所以
1n
lima1.n
(ⅲ)当0a1时,,1n
1
a
-1则0.由
11
(1)n1n1n1aa
a111a1
得1a(6)1
na1.1n1a1n1a
任给0,由(6)式可见,当n1所以lima1.n
a11
N时,就有1a,即|a1|.1n1n
关于数列极限的—N定义,应着重注意下面几点:
1.的任意性定义1中正数的作用在于衡量数列通项an与定数a的接近程度,愈小,表示接近得愈好;而正数可以任意地小,说明an与a可以接近到任何程度.然而,尽管有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N,又既时任意小的正数,那么
,3或2等等同样也是任意小的正数,因此定义1中不等式
|ana|中的可用,3或2等来代替.同时,正由于是任意小正数,我们可限定
小于一个确定的正数(如在例4的注给出的证明方法中限定<1).另外,定义1中的|ana|<也可改写成|ana|.2.N的相应性一般说,N随的变小而变大,由此常把N写作N(),来强调N是依赖于的;但这并不意味着N是由所唯一确定的,因为对给定的,比如当N=100时,能使得当•n>N时有|ana|,则N=101或更大时此不等式自然也成立.这里重要的是N的存在性,而不在于它的值的大小.另外,定义1中的,n>N也可改写成nN.3.从几何意义上看,“当n>N时有|aa|”意味着:所有下标大于N的项an都落在邻域U(a;)内;而在U(a;)之外,数列{an}中的项至多只有N个(有限个).反之,任给>0,若在U(a;)之外数列{an}中
N,n
则当n>N时有anU(a,),即当n>N时有|ana|<.由此,我们可写出数列极限的一种等价定义如下:
定义1任给>0,若在U(a,)之外数列an中的项至多只有有限个,则称数列an
'
收敛于极限a.
由定义1,可知,若存在某00,使得数列{an}中有无穷多个项落在U(a,0)之外,则{an}一定不以a为极限.
例6证明{n2}和{(1)n}都是发散数列.
证对任何aR,取01,则数列{n}中所有满足na1的项(有无穷多个)显然
都落在U(a;0)之外,故知{n2}不以任何数a为极限,即{n2}为发散数列.至于数列{(1)n},当a1时取01,则在U(a;0)之外有{(1)n}中的所有奇数项;当a1时取0
|a1|,则在U(a;0)之外有{(1)n}中的所有偶数项.所以2
{(1)n}不以任何数a为极限,即{(1)n}为发散数列.例7设limxnlimyna,做数列{zn}如下:
n
n
{zn}:x1,y1,x2,y2,,xn,yn,.证明limzna.n
证,因limxnlimyna,故对任给的0,数列{xn}和{yn}中落在U(a;)之外
n
n的项都至少只有有限个.所以数列{zn}中落在U(a;)之外的项也至多只有有限个.故由定义1',证得limzna.
n
例8设{an}为给定的数列,{bn}为对{an}增加、减少或改变有限项之后得到的数列.证明:数列{bn}与{an}同时为收敛或发散,且在收敛时两者的极限相等.
'
证设{an}为收敛数列,且limana.按定义1,对任给的>0,数列{an}中落在n
U(a;)之外的项至多只有有限个.而数列{bn}是对{an}增加、减少或改变有限项之后得到的,故从某一项开始,所以{bn}中落在U(a;)之{bn}中的每一项都是{an}中确定的一项,外的项也至多只有有限个.这就证得limbna.
n
现设{an}发散.倘若{bn}收敛,则因{an}可看成是对{bn}增加、减少或改变有限项之
后得到的数列,故由刚才所证,{an}收敛,矛盾.所以当{an}发散时,{bn}也发散.在所有收敛数列中,有一类重要的数列,称为无穷小数列,其定义如下:定义2若liman0,则称{an}为无穷小数列.
n
由无穷小数列的定义,不难证明如下命题:
定理2.1数列{an}收敛于a的充要条件是:{ana}为无穷小数列.
Ⅳ 小结与提问:本节要求学生理解数列极限概念,利用定义证明数列是否收敛、是否收敛于指定的常数.要求学生课堂上给出limana和liman不存在的“—N”定义.n
n
Ⅴ 课外作业: P27 2、3、4、6、7、8.