第一篇:数列的通项公式与求和
数列的通项公式与求和
练习1 数列{an}的前n项为Sn,且a11,an1(1)求a2,a3,a4的值及数列{an}的通项公式.(2)求a2a4
a2n
Sn(n1,2,3,)3
练习2 数列{an}的前n项和记为Sn,已知a11,an1
Sn
是等比数列;n
(2)Sn14an(1)数列{
练习3 已知数列{an}的前n项为Sn,Sn
n2
Sn(n1,2,).证明:n
(an1)(nN*)3
(1)求a1,a2;
(2)求证:数列{an}是等比数列.11
已知数列{an}满足a1,an1an2,求an.练习4 2nn
2n
已知数列{a}满足,a,aan,求an.练习5 n1n1
3n1
练习6 已知数列{a}中,a5,a1a(1)n1,求a.n1n1nn
632
练习7 已知数列{a}满足:ann
an1,a11,求数列{an}的通项公式.3an11
n
{an}的前n项和S
练习8等比数列
=2
n
2222aaaa23n -1,则1
5n
(101)9练习9求和:5,55,555,5555,…,…;
练习10求和:
14471
(3n2)(3n1)
11112123练习11求和:
练习12设
123
n
{an}是等差数列,{bn}是各项都为正数的等比数列,且a1b11,anba3b521,a5b313(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列n的前n项
和
Sn.
第二篇:《数列通项公式》教学设计
《数列通项公式》教学设计
【授课内容】数列通项公式 【授课教师】陈鹏 【授课班级】高三6班
【授课时间】2009年10月20日晚自习【教学目标】
一、知识目标:
1.解决形如an+1=pan +f(n)通项公式的确定。
2.通过学习让学生掌握和理解an+1=pan +f(n)此类型的通项公式的求法。
二、能力目标:
在实践中通过观察、尝试、分析、类比的方法导出数列通项公式,培养学生类比思维能力。通过对公式的应用,提高学生分析问题和解决问题的能力。利用学案导学,促进学生自主学习的能力。
三、情感目标:
通过公式的推导使学生进一步体会从特殊到一般,再从一般到特殊的思想方法。【教学重点】
通过学习让学生能够熟练准确的确定掌an+1=pan +f(n)此类型的通项公式,并 能解决实际问题。【教学难点】
1.如何将an+1=pan +f(n)转化为我们学过的两个基础数列(等差和等比)。2.理解和掌握an+1=pan +f(n)此类型数列通项公式确定的数学思想方法。【教学方法】探索式 启发式 【教学过程】 一.引入:
1、等差、等比数列的通项公式?
2、如何解决an+1–an =f(n)型的通项公式?
3、如何解决an+1∕an =f(n)型的通项公式?
二.新授内容:
例1:设数列{an}中,a1=1, an+1=3an , 求an的通项公式。
解:略
例2:设数列{an}中,a1=1, an+1=3an+1, 求an的通项公式。分析:设an+1=3an+1为an+1+A=3(an+A)
例3:设数列{an}中,a1=1, an+1=3an+2n, 求an的通项公式。
分析:设an+1=3an+2n为an+1+A(n+1)+B=3(an+An+B)
思考:设数列{an}中,a1=1, an+1-3an=2n, 求an的通项公式。
分析:法一:设an+1=3an+2n 为an+1+A2n+1 =3(an+A2n)
法二:an+1=3an+2n的等式两边同时除以2n方可解决
三.总结:
形如an+1=pan +f(n)此类数列通项公式的求法,可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决。四.练习:
1、设数列{an}中,a1=1, an+1=2an+3, 求an的通项公式。
2、设数列{an}中,a1=1, an+1=3an+2n+1, 求an的通项公式。
3(2009全国卷Ⅱ理)设数列的前项和为sn ,已知a1=1, sn+1=4an +2(I)设bn=an+1 –2an,证明数列{bn}是等比数列(II)求数列的通项公式。
【课后反思】
递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决。等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。
因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。求递推数列通项公式的方法策略是:公式法、累加法、累乘法、待定系数法、换元法等等。只要仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。
一、学情分析和教法设计:
1、学情分析:
学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。本节课作为一节专题探究课,将会根据递推公式求出数列的项,并能运用累加、累乘、化归等方法求数列的通项公式,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。
2、教法设计:
本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。采用以问题情景为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。先引出相应的知识点,然后剖析需要解决的问题,在例题及变式中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。
在教学过程中采取如下方法:
①诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性; ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性; ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
二、教学设计:
1、教材的地位与作用:
递推公式是认识数列的一种重要形式,是给出数列的基本方式之一。对数列的递推公式的考查是近几年高考的热点内容之一,属于高考命题中常考常新的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。化归思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。因此,研究由递推公式求数列通项公式中的数学思想方法是很有必要的。
2、教学重点、难点:
教学重点:根据数列的递推关系式求通项公式。教学难点:解题过程中方法的正确选择。
3、教学目标:(1)知识与技能:
会根据递推公式求出数列中的项,并能运用累加、累乘、化归等方法求数列的通项公式。(2)过程与方法:
①培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力;
②通过阶梯性练习和分层能力培养练习,提高学生分析问题和解决问题的能力,使不同层次的学生的能力都能得到提高。(3)情感、态度与价值观:
①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神;
②通过对数列递推公式和数列求和问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好思维习惯;
③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。
三、教学过程:
(1)复习数列的递推公式、等差和等比数列的递推公式,并解决问题。(2)课堂小结(3)作业布置
已知:a1a0,an1kanb,(k0)(1)k,b在何种条件下,数列an分别成等差数列,等比数列.(2)若数列a,又非等比数列且ab n既非等差数列,k10, 如何求an的通项公式.(3)利用(2)的方法分别求出以下数列an的通项公式, ①若a11,2an13an2.②若a11,an2an13anan1.三、课后反思:
递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决。等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。
因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。求递推数列通项公式的方法策略是:公式法、累加法、累乘法、待定系数法、换元法等等。只要仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。
第三篇:《数列通项公式》教学反思
《数列通项公式》教学反思
数列是高考中必考的内容之一,而研究数列,要通项先行。本节课只是复习归纳了几种常见的求数列通项公式的方法,可以看到,求数列(特别是以递推关系式给出的数列)通项公式的确具有很强的技巧性,与我们所学的基本知识与技能、基本思想与方法有很大关系,因而在平日教与学的过程中,既要加强基本知识、基本方法、基本技能和基本思想的学习,又要注意培养和提高数学素质与能力和创新精神。这就要求无论教师还是学生都必须提高课堂的教与学的效率,注意多加总结和反思,注意联想和对比分析,做到触类旁通,将一些看起来毫不起眼的基础性命题进行横向的拓宽与纵向的深入,通过弱化或强化条件与结论,揭示出它与某类问题的联系与区别并变更为出新的命题。这样无论从内容的发散,还是解题思维的深入,都能收到固本拓新之用,从而有利于形成和发展创新的思维。从本节的教学效果看,基本的预设目标均已达成,教学效果明显。上完这节课我认真的做了教学反思,内容如下: 教学成功之处:
1、让学生真正成为学习的主人,保护学生的学习主动性,让学生自己主动上台板书,暴露问题,动脑、动手、动眼、动耳、动嘴,用自己的身体去亲自经历,用自己的心灵去亲自感悟,让学生做中学。
2、面向全体,照顾学生差异。给予学生充分展示机会,表扬学生点滴成功,分享学生成功快乐。一方面鼓励学生自己主动上台展示;
第四篇:求数列的通项公式
数列通项公式求法探究
求数列的通项公式是高中阶段经常遇到的问题,通常特殊数列:等差数列、等比数列,我们可以通过已有的公式求解,而其他一些数列往往可以转化为和它们有关的数列求解。在此仅根据自己的教学经验谈几种求数列通项的方法。
一、公式法:求已知等差数列或等比数列的通项公式
对于已知等差数列或等比数列的通项公式的求解,通常只需要由条件求出首项、公差或者公比,再代入公式即可。
例1(1)已知等差数列{
(2)已知等比数列{
二、由数列的前n和
例2(1)设数列{an}满足a=7,a+a35527=26,求an ann}中a1=1,a=-8a,a>a52,求an s求数列的通项公式 a}的前n和nsn+1,求a =n82
(2)已知数列{
求数列{a}的前n和ns=2nn2+2n,数列{bn}的前n和Tn= 2-bn,an}和{b}的通项公式。n
(3)设数列{
证明:数列{
an}的前n和为sn,已知a=1,s1n1=4an+2 an1-2an}是等比数列;求数列{an}的通项公式。
三、由数列的递推式求数列通项的通项公式
对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。由递推公式求通项又有三种:累加法、累乘法、构造法
1.累加法
例3
第五篇:数列求和公式证明
1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边
数学归纳法可以证
也可以如下做 比较有技巧性
n^2=n(n+1)-n
1^2+2^2+3^2+......+n^
2=1*2-1+2*3-2+....+n(n+1)-n
=1*2+2*3+...+n(n+1)-(1+2+...+n)
由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/
3所以1*2+2*3+...+n(n+1)
=[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3
[前后消项]
=[n(n+1)(n+2)]/3
所以1^2+2^2+3^2+......+n^2
=[n(n+1)(n+2)]/3-[n(n+1)]/2
=n(n+1)[(n+2)/3-1/2]
=n(n+1)[(2n+1)/6]
=n(n+1)(2n+1)/6
2)1×2+2×3+3×4+...+n×(n+1)=?
设n为奇数,1*2+2*3+3*4+...+n(n+1)=
=(1*2+2*3)+(3*4+4*5)+...+n(n+1)
=2(2^2+4^2+6^2+...(n-1)^2)+n(n+1)
=8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1)
=8*[(n-1)/2][(n+1)/2]n/6+n(n+1)
=n(n+1)(n+2)/3
设n为偶数,请你自己证明一下!
所以,1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3
设an=n×(n+1)=n^2+n
Sn=1×2+2×3+3×4+...+n×(n+1)
=(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n)=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
数列求和的几种方法
1.公式法:
等差数列求和公式:
Sn=n(a1+an)/2=na1+n(n-1)d/2
等比数列求和公式:
Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)
2.错位相减法
适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式{ an }、{ bn }分别是等差数列和等比数列.Sn=a1b1+a2b2+a3b3+...+anbn
例如:an=a1+(n-1)dbn=a1·q^(n-1)Cn=anbn
Tn=a1b1+a2b2+a3b3+a4b4....+anbn
qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)
Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)
Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)
=a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q)Tn=上述式子/(1-q)
3.倒序相加法
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
Sn =a1+ a2+ a3+......+anSn =an+ a(n-1)+a(n-3)......+a1上下相加 得到2Sn 即 Sn=(a1+an)n/
24.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例如:an=2^n+n-1
5.裂项法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。常用公式:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)n·n!=(n+1)!-n!
[例] 求数列an=1/n(n+1)的前n项和.解:an=1/n(n+1)=1/n-1/(n+1)(裂项)
则Sn =1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)= 1-1/(n+1)= n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。注意: 余下的项具有如下的特点1余下的项前后的位置前后是对称的。2余下的项前后的正负性是相反的。
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:求证:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3)=
[n(n+1)(n+2)(n+3)(n+4)]/5证明: 当n=1时,有:1×2×3×4 + 2×3×4×5 = 2×3×4×5×(1/5 +1)= 2×3×4×5×6/5假设命题在n=k时成立,于是:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3)=
[k(k+1)(k+2)(k+3)(k+4)]/5则当n=k+1时有:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… +(k+1)(k+2)(k+3)(k+4)= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)(k+4)=
[k(k+1)(k+2)(k+3)(k+4)]/5 +(k+1)(k+2)(k+3)(k+4)=
(k+1)(k+2)(k+3)(k+4)*(k/5 +1)= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5即n=k+1时原等式仍然成立,归纳得证
7.通项化归
先将通项公式进行化简,再进行求和。如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
8.并项求和:
例:1-2+3-4+5-6+……+(2n-1)-2n(并项)
求出奇数项和偶数项的和,再相减。