首页 > 文库大全 > 精品范文库 > 8号文库

数列求和[五篇]

数列求和[五篇]



第一篇:数列求和

数列的通项与求和

导学目标: 1.能利用等差、等比数列前n项和公式及其性质求一些特殊数列的和.2.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

自主梳理

1.求数列的通项

(1)数列前n项和Sn与通项an的关系:

S1,n=1,an= S-S,n≥2.-nn

1(2)当已知数列{an}中,满足an+1-an=f(n),且f(1)+f(2)+„+f(n)可求,则可用________求数列的通项an,常利用恒等式an=a1+(a2-a1)+(a3-a2)+„+(an-an-1).

an+1(3)当已知数列{an}中,满足f(n),且f(1)·f(2)·„·f(n)可求,则可用________求数列an

aaa的通项an,常利用恒等式an=a1„.a1a2an-1

(4)作新数列法:对由递推公式给出的数列,经过变形后化归成等差数列或等比数列来求通项.

(5)归纳、猜想、证明法.

2.求数列的前n项的和

(1)公式法

①等差数列前n项和Sn=____________=________________,推导方法:____________; ②等比数列前n项和Sn=

,q=1, =,q≠1.

推导方法:乘公比,错位相减法.

(2)分组求和:把一个数列分成几个可以直接求和的数列.

(3)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.

常见的拆项公式有:

111①; nn+1nn+

11111②=2n-12n+1; 2n-12n+121③n+1n.n+n+1

(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.

(5)倒序相加:例如,等差数列前n项和公式的推导.

自我检测

1.(原创题)已知数列{an}的前n项的乘积为Tn=3n2(n∈N*),则数列{an}的前n项的和为________.

2.设{an}是公比为q的等比数列,Sn是其前n项和,若{Sn}是等差数列,则q=________.3.已知等比数列{an}的公比为4,且a1+a2=20,故bn=log2an,则b2+b4+b6+„+b2n=________.n+14.(2010·天津高三十校联考)已知数列{an}的通项公式an=log2(n∈N*),设{an}的n+

2前n项的和为Sn,则使Sn<-5成立的自然数n的最小值为________.

5.(2010·北京海淀期末练习)设关于x的不等式x2-x<2nx(n∈N*)的解集中整数的个数

为an,数列{an}的前n项和为Sn,则S100的值为________.

1116.数列1,4710,„前10项的和为________.

248

探究点一 求通项公式

例1 设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2.(1)设bn=an+1-2an,证明数列{bn}是等比数列;

(2)求数列{an}的通项公式.

探究点二 裂项相消法求和

例2 已知数列{an},Sn是其前n项和,且an=7Sn-1+2(n≥2),a1=2.(1)求数列{an}的通项公式;

1m(2)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立20log2an·log2an+1的最小正整数m.111变式迁移2 求数列1,„,n项和. 1+21+2+31+2+3+„+n

探究点三 错位相减法求和

例3 已知数列{an}是首项、公比都为q(q>0且q≠1)的等比数列,bn=anlog4an(n∈N*).

(1)当q=5时,求数列{bn}的前n项和Sn;

14(2)当q=时,若bn

5123n变式迁移3 求和Sn=+++„+aaaa

1.求数列的通项:(1)公式法:例如等差数列、等比数列的通项;

(2)观察法:例如由数列的前几项来求通项;

(3)可化归为使用累加法、累积法;

(4)可化归为等差数列或等比数列,然后利用公式法;

(5)求出数列的前几项,然后归纳、猜想、证明.

2.数列求和的方法:

一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为

与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.

3.求和时应注意的问题:

(1)直接用公式求和时,注意公式的应用范围和公式的推导过程.

(2)注意观察数列的特点和规律,在分析数列通项的基础上或分解为基本数列求和,或转化为基本数列求和.

(满分:90分)

一、填空题(每小题6分,共48分)

1.(2010·广东)已知数列{an}为等比数列,Sn是它的前n项和,若a2·a3=2a1且a4与2a75的等差中项为,则S5=________.4S7n+2a2.有两个等差数列{an},{bn},其前n项和分别为Sn,Tn,若则________.Tnn+3b

5an-1-anan-an+13.如果数列{an}满足a1=2,a2=1=(n≥2),则此数列的第10项anan-1anan+

1为________.

14.数列{an}的前n项和为Sn,若an=S5=________.nn+1

-5.(2011·南京模拟)数列1,1+2,1+2+4,„,1+2+22+„+2n1,„的前n项和Sn>1

020,那么n的最小值是________.

6.(2010·东北师大附中高三月考)数列{an}的前n项和为Sn且a1=1,an+1=3Sn(n=1,2,3,„),则log4S10=__________.17.(原创题)已知数列{an}满足a1=1,a2=-2,an+2=-,则该数列前26项的和为an

________.

8.对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an}的“差数列”的通项为2n,则数列{an}的前n项和Sn=____________.二、解答题(共42分)

9.(12分)已知函数f(x)=x2-2(n+1)x+n2+5n-7(n∈N*).

(1)若函数f(x)的图象的顶点的横坐标构成数列{an},试证明数列{an}是等差数列;

(2)设函数f(x)的图象的顶点到x轴的距离构成数列{bn},试求数列{bn}的前n项和Sn.110.(14分)设等差数列{an}的前n项和为Sn,且Sn=n+an-c(c是常数,n∈N*),a22

=6.(1)求c的值及数列{an}的通项公式;

1111(2)证明.a1a2a2a3anan+18

第二篇:数列求和问题

数列求和问题·教案

教学目标

1.初步掌握一些特殊数列求其前n项和的常用方法.

2.通过把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和问题,培养学生观察、分析问题的能力,以及转化的数学思想.

教学重点与难点

重点:把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和. 难点:寻找适当的变换方法,达到化归的目的. 教学过程设计

(一)复习引入

在这之前我们知道一般等差数列和等比数列的求和,但是有时候题目中给我们的数列并不是一定就是等比数列和等差数列,有可能就是等差数列和等比数列相结合的形式出现在我们面前,对于这样形式的数列我们该怎么解决,又该用什么方法?

二、复习预习

通过学习我们掌握了是不是等差等比数列的判断,同时我们也掌握也一般等差或者等比数列的一些性质和定义,那么对于题中给我们的数列既不是等差也不是等比的数列怎么求和呢,带着这样的问题来学习今天的内容

三、知识讲解 考点

1、公式法

如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n项和的公式来求.1、等差数列求和公式:Snn(a1an)n(n1)na1d 22(q1)na1

2、等比数列求和公式:Sna1(1qn)a1anq

(q1)1q1qn113、Snkn(n1)

4、Snk2n(n1)(2n1)

26k1k1n15、Snk3[n(n1)]2

2k1n

考点

2、分组求和法

有一类数列,它既不是等差数列,也不是等比数列.若将这类数列适当拆开,可分为几个等差、等比数列或常见的数列,然后分别求和,再将其合并即可.例求和:Sn2351435263532n35n 解:Sn2351435263532n35n

2462n35152535n

4,6,,2n练习:求数列2,14181161,的前n项和Sn. 2n111{2n},而数列是一个等差数列,数列n1是一个等比

2n12分析:此数列的通项公式是an2n数列,故采用分组求和法求解.

111111解:Sn(2462n)234n1n(n1)n1.

222222小结:在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们就用此方法求和.考点

3、、倒序相加

类似于等差数列的前n项和的公式的推导方法。如果一个数列{an},与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。

这一种求和的方法称为倒序相加法.这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1an).例求sin21sin22sin23sin288sin289的值

解:设Ssin21sin22sin23sin288sin289„„„„.①

将①式右边反序得

Ssin289sin288sin23sin22sin21„„„„..②(反序)

又因为 sinxcos(90x),sin2xcos2x1

①+②得(反序相加)

2S(sin21cos21)(sin22cos22)(sin289cos289)=89 ∴ S=44.5

2x练习:已知函数fxx 22(1)证明:fxf1x1;

1(2)求f102f108f109f的值.10解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,1f1092ff10108f108f102f105f105f1 101令Sf109则Sf102f108f109f 101f 10两式相加得:

2S9

1f1099f9 所以S.210小结:解题时,认真分析对某些前后具有对称性的数列,可以运用倒序相加法求和.考点

4、裂相相消法

把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。适用于类似

(其中{an}是各项不为零的等差数列,c为常数)的数列、部分无理数列等。用裂项相消法求和,需要掌握一些常见的裂项方法:

1,求它的前n项和Sn

n(n1)例、数列an的通项公式为an解:Sna1a2a3an1an

11111 122334n1nnn1111111111 =1

22334n1nnn11n n1n1小结:裂项相消法求和的关键是数列的通项可以分解成两项的差,且这两项是同一数列的相邻两项,即这两项的结构应一致,并且消项时前后所剩的项数相同.1针对训练

5、求数列 1111,,,的前n项和Sn.122332nn1练习:求数列112,1231,,1nn1,的前n项和.解:设annn11n1n(裂项)

1nn1则 Sn12312(裂项求和)

=(21)(32)(n1n)

=n11

作业:基本练习

2221、等比数列{an}的前n项和Sn=2n-1,则a12a2=________________.a3an2、设Sn1357(1)n(2n1),则Sn=_______________________.3、111.1447(3n2)(3n1)

4、1111=__________ ...243546(n1)(n3)

5、数列1,(12),(1222),,(12222n1),的通项公式an,前n项和Sn 综合练习1、1222324252629921002=____________;

2、在数列{an}中,an1,.则前n项和Sn;

n(n1)(n2)n2an(n1)(n2),n3、已知数列{an}满足:a16,an1(1)求a2,a3;(2)若dn an,求数列{dn}的通项公式;

n(n1)

考点5错位相减

类似于等比数列的前n项和的公式的推导方法。若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法.若anbncn,其中bn是等差数列,cn是公比为q等比数列,令

Snb1c1b2c2bn1cn1bncn

则qSnb1c2b2c3bn1cnbncn1 两式相减并整理即得

例4 求和:Sn13x5x27x3(2n1)xn1„„„„„„„„„①

解:由题可知,{(2n1)xn1}的通项是等差数列{2n-1}的通项与等比数列{xn1}的通项之积

设xSn1x3x25x37x4(2n1)xn„„„„„„„„„.②(设制错位)

①-②得(1x)Sn12x2x22x32x42xn1(2n1)xn(错位相减)

1xn1(2n1)xn 再利用等比数列的求和公式得:(1x)Sn12x1x(2n1)xn1(2n1)xn(1x)∴ Sn 2(1x)小结:错位相减法的步骤是:①在等式两边同时乘以等比数列{bn}的公比;②将两个等式相减;③利用等比数列的前n项和公式求和.2462n练习:

1、求数列,2,3,,n,前n项的和.22222n1解:由题可知,{n}的通项是等差数列{2n}的通项与等比数列{n}的通项之积

222462n设Sn23n„„„„„„„„„„„„„①

222212462nSn234n1„„„„„„„„„„„„②(设制错22222位)

1222222n①-②得(1)Sn234nn1(错位相减)

222222212n2n1n1

22n2 ∴ Sn4n1

2、已知 ann2n1,求数列{an}的前n项和Sn.解:Sn120221(n1)2n2n2n1 ①

2Sn121222(n1)2n1n2n ②

②—①得

Snn2n120212n1n2n2n1

1352n13、6、,2,3,,n,;的前n项和为_________ 222264、数列{an}中, a11,anan1n1,nN*,则前n项和S2n=;

55、已知数列annn!,则前n项和Sn=;

小结:错位相减法的求解步骤:①在等式两边同时乘以等比数列cn的公比q;②将两个等式相减;③利用等比数列的前n项和的公式求和.

第三篇:数列求和

《数列求和》教学设计

【课例解析】

1、教材的地位和作用

本节课是人教A版《数学(必修5)》第2章数列学完基础知识后的一节针对数列求和方法的解题课。通过本节课的教学让学生感受倒序相加、裂项相消、错位相减等求和法在数列求和中的魅力,并把培养学生的建构意识和合作、探究意识作为教学目标。

2、学情分析

在此之前,学生学习了数列的一般概念,又对等差、等比数列从定义、通项、性质、求和等方面进行了深入的研究。在研究过程中,数列求和问题重点学习了通过转化为等差、等比数列求和的方法,在推导等差、等比数列求和公式时分别用到了倒序相加法、错位相减法,本节课在此基础上进一步对上述数列求和方法做深入的研究、应用。本节课的内容和方法正处于学生的认知水平和知识结构的最近发展区,学生能较好地完成本节课的教学任务。

【方法阐释】

本节课的教学采用 学力课堂模式,分为自学、互学、展学、导学、练学五个教学环节,五个环节并不是简单的顺次递进,而是有机的相互融合。

本节课从学生回顾等差数列、等比数列求和公式推导过程中用到的倒序相加、错位相减求和法引入,从自主探究题组及问题探究入手展开教学,引导学生自主发现几种常见求和法,并很快进入深层次思维状态。接下来的课堂探究题组、课堂练学题组又更进一步加强几种求和法的应用。

【目标定位】

1、知识与技能目标

掌握几种解决数列求和问题的基本思路、方法和适用范围。进一步熟悉数列求和的不同呈现形式及解决策略。

2、过程与方法目标

经历数列几种求和法的探究过程、深化过程和应用过程。培养学生发现问题、分析问题和解决问题的能力。体会知识的发生、发展过程,培养学生的学习能力。

3、情感与价值观目标

通过数列几种求和法的归纳应用,使学生认识到在学习过程中的一切发现、发明,一切好的想法和念头都可以发扬光大。激发学生的学习热情和创新意识,形成锲而不舍的钻研精神和合作交流的科学态度。感悟数学的简洁美﹑对称美。

【教学重、难点】

本节课的教学重点为倒序相加、裂项相消、错位相减求和的方法和形式。能将一些特殊数列的求和问题转化上述相应模型的求和问题。

本节课的教学难点为建构几种求和方法模型的思维过程,不同的数列采用不同的方法,运用转化与化归的思想分析问题和解决问题。

五、归纳总结、整合升华(课堂小结,建构知识体系)

教师:本节课大家都学习、应用到了哪些数列求和方法?

预设学生情况:并项、分组、倒序相加、裂项相消、错位相减求和法

教师:通过本课的学习,在解决数列求和问题时有什么心得体会?

预设学生情况:1.求数列的和注意方法的选取:关键是看数列的通项公式;2.求和过程中注意分类讨论思想的运用;3.建构意识、化归思想的运用;

六、课后练学(课外完成课后练学案和课外探究案)

设计意图:对所学内容进行巩固、强化。

【教有所思】

从课堂模式上讲,本节课采用学力课堂模式,力求坚持先学后教、以学定教,努力实现课堂由教堂到学堂的转变。课堂教学实质上就是依据教材内容和学生实际,师生重组旧知识,建构新知识的过程,课前自学环节有助于教师抓准学生认知水平和知识结构的最近发展区,不断发现问题﹑研究问题﹑解决问题,达到将学生的思路所隐藏的数学思想和方法挖掘出来,深化并完善它。学生互学、展学方式有利于培养学生的合作精神,数学表达能力,让学生获得对数学知识理解的同时也获得丰富的情感体验。教师的导学通过问题精导、设疑,让学生经历几种求和方法的建构过程,使学生的思维训练充分落实。练学环节设计与本课例具有强关联性的题组进行巩固、强化,让学生实现双基过手扎实。

从学生获得的数学素养上讲,本节内容设计突出了某些重要的数学思想方法,如:类比思想,归纳思想,特殊到一般的思想方法。充分注意了学生的观察,发现,归纳,总结等学习过程的体验,强化了归纳思想的具体应用。突出体现了特殊到一般的思想,突出了通过观察特殊数列的各项关系或者通项特征,将基本运算、性质的研究推广到一般数列相应问题研究的思想,体现了数学知识的内在关联,培养学生用已知去研究未知的化归能力。

第四篇:数列求和教案

数列求和

数列求和常见的几种方法:(1)公式法:①等差(比)数列的前n项和公式;

1n(n1)21222n2nn(

123......6② 自然数的乘方和公式:123......n(2)拆项重组:适用于数列

1n)(2 1)an的通项公式anbncn,其中bn、cn为等差数列或者等比数列或者自然数的乘方;

(3)错位相减:适用于数列an的通项公式anbncn,其中bn为等差数列,cn为等比数列;

(4)裂项相消:适用于数列a的通项公式:aknnn(n1),a1nn(nk)(其中k为常数)型;

(5)倒序相加:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的.(6)

分段求和:数列an的通项公式为分段形式

二、例题讲解

1、(拆项重组)求和:311254718......[(2n1)12n]

练习1:求和Sn122334......n(n1)

2、(裂项相消)求数列11113,35,57,179,...,1(2n1)(2n1)的前n项和

练习2:求S11n11212311234...1123...n

3、(错位相减)求和:1473n222223...2n

练习3:求Sn12x3x24x3...nxn1(x0)

4、(倒序相加)设f(x)4x4x2,利用课本中推导等差数列前n项和的方法,求:f(11001)f(21001)f(31001)...f(10001001)的值

a3n2(n4)例

5、已知数列n的通项公式为an2n3(n5)(nN*)求数列an的前n项和Sn

检测题

1.设f(n)22427210...23n10(nN),则f(n)等于()

2n222n4(81)

B.(8n11)

C.(8n31)

D.(81)777712.数列{an}的前n项和为Sn,若an,则S5等于()

n(n1)511A.1

B.

C.

D.

66303.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S37,且a13,3a2,a34构成等差数列. A.(1)求数列{an}的通项公式.(2)令banln3n1,n1,2...,求数列{bn}的前n项和Tn。

4.设数列a2nn满足a13a23a3…3n1a

3,aN*n.(Ⅰ)求数列an的通项;

(Ⅱ)设bnna,求数列bn的前n项和Sn n

5.求数列22,462n22,23,,2n,前n项的和.6:求数列112,123,,1nn1,的前n项和.7:数列{an}的前n项和Sn2an1,数列{bn}满b13,bn1anbn(nN).(Ⅰ)证明数列{an}为等比数列;(Ⅱ)求数列{bn}的前n项和Tn。

8:

求数列21,41,6114816,2n2n1,...的前n项和Sn.

9、已知数列an的前n项和Sn123456...1n1n,求S100.10:在各项均为正数的等比数列中,若a5a69,求log3a1log3a2log3a10的值.11:求数列的前n项和:11,1a4,11a27,,an13n2,…

12:求S12223242...(1)n1n2(nN)

13:已知函数fx2x2x2(1)证明:fxf1x1;

(2)求f1f10210f810f910的值。.

第五篇:数列求和教案

课题:数列求和

教学目标

(一)知识与技能目标

数列求和方法.

(二)过程与能力目标

数列求和方法及其获取思路.

教学重点:数列求和方法及其获取思路. 教学难点:数列求和方法及其获取思路.

教学过程

1.倒序相加法:等差数列前n项和公式的推导方法:(1)Sna1a2an2Snn(a1an)

Snanan1a112223210222 例1.求和:2110222923282101分析:数列的第k项与倒数第k项和为1,故宜采用倒序相加法.

小结: 对某些前后具有对称性的数列,可运用倒序相加法求其前n项和.2.错位相减法:等比数列前n项和公式的推导方法:

(2)Sna1a2a3an(1q)Sna1an1 qSaaaa23nn1n23n例2.求和:x3x5x(2n1)x(x0)

3.分组法求和

1的前n项和; 161例4.设正项等比数列an的首项a1,前n项和为Sn,且210S30(2101)S20S100

2例3求数列1,2,3,4(Ⅰ)求an的通项;(Ⅱ)求nSn的前n项和Tn。例5.求数列 1, 1a, 1aa,,1aaa121418,的前n项和Sn.n(n1)解:若a1,则an111n, 于是Sn12n;2 n1a1 若a1,则an1aan1 (1an)1a1a1a1a21an11a(1an)2n于是Sn [n(aaa)][n]

1a1a1a1a1a1a111 1212312n22n14.裂项法求和 例6.求和:12112(),n(n1)nn11111112n Sna1a2an2[(1)()()]2(1)223nn1n1n1解:设数列的通项为an,则an例7.求数列112,1231,,1nn1,的前n项和.解:设annn11n1n

(裂项)

1nn1则 Sn12312

(裂项求和)

=(21)(32)(n1n)

=n11

三、课堂小结:

1.常用数列求和方法有:

(1)公式法: 直接运用等差数列、等比数列求和公式;(2)化归法: 将已知数列的求和问题化为等差数列、等比数列求和问题;(3)倒序相加法: 对前后项有对称性的数列求和;

(4)错位相减法: 对等比数列与等差数列组合数列求和;(5)并项求和法: 将相邻n项合并为一项求和;(6)分部求和法:将一个数列分成n部分求和;

(7)裂项相消法:将数列的通项分解成两项之差,从而在求和时产生相消为零的项的求和方法.四、课外作业: 1.《学案》P62面《单元检测题》 2.思考题

11146前n项的和.481612n2(2).在数列{an}中,an,又bn,求数列{bn}的前n项的和.n1n1n1anan12(1).求数列:(3).在各项均为正数的等比数列中,若a5a69,求log3a1log3a2log3a10的值.解:设Snlog3a1log3a2log3a10

由等比数列的性质 mnpqamanapaq

(找特殊性质项)和对数的运算性质 logaMlogaNlogaMN

Sn(log3a1log3a10)(log3a2log3a9)(log3a5log3a6)

(合并求和)

=(log3a1a10)(log3a2a9)(log3a5a6)

=log39log39log39

=10

相关内容

热门阅读

最新更新

随机推荐