首页 > 文库大全 > 精品范文库 > 7号文库

如何进行初中几何证明题的教学

如何进行初中几何证明题的教学



第一篇:如何进行初中几何证明题的教学

如何进行初中几何证明题的教学

俗话说:“几何学、叉叉角角,老师难教、学生难学”我从多年的教学中得到:初中几何证明题即是学习的重点,又是难点。很多同学对几何证明题,不知从何做起,甚至部分同学知道了答案,但不知道怎么得出,叙述不清楚,说不出理由。对逻辑推理的过程几乎不会写,这样使大部分的学生失去了学习的信心。虽然新的课程理念要求,推理的过程不能过繁,一切从简。但要求做到摆事实、讲道理的论证方法,方能完整。怎样才能把几何证明题的求解过程叙述清楚呢?笔者根据多年的教学经验在教学中是这样做的:

树立学生的自信心

初中生具有可塑性,他们的心理是易改变的,教师要抓住他们的心理特征,对他们进行思想品德教育,树立学习的自信心。在教学中认真分析几何知识的重要性,并例举实际生活中的问题,用几何的知识来解决,引导学生掌握学习初中几何的学习方法,从而激发学生的学习兴趣,消除学生学习几何的障碍,树立学生学习的自信心。

格要求学生掌握必要的公理、定理、性质、判定、推论

公理、定理、性质、判定、推论是过程中讲道理的依据学生要有充足的理论依据,才能准确无误地进行推理论证。因此,必须要求学生掌握必要的公理、定理、性质、判定、推论,但在教学的过程中要让学生理解记忆,不要死记硬背,否则记住也不会应用。

大胆让学生说过程、说结论

很多同学在求解几何题是,只知道答案,不只从何得出,这时教师要启发学生,你的结果是怎样得来的?让学生探讨、合作交流,从结论到已知进行叙述,让学生大胆地说过程、说结果,教师做相应的补充、说明,理清整个思路,但不忙写出推理的过程,再让“中、差”生进行说过程,让80/00以上的学生都会叙述,让学生根据自己叙述的过程书写推理的过程,向学生说明这就是求解的过程,这时,学生的积极性高涨,也知道这求解的过程原来就是这样简单,从而激发学生学习的兴趣。

开阔学生视野、扩散学生思维

几何证明题都具备几种不同的求解证明方教师在教学时,要充分发挥学生的潜能,发散他们的思维,让他们大胆创新,寻找不同的路径进行求解证明,掌握一题多解的方法,让学生把几何学活、用活。

巩固提高、引申应用

“温故而之新”要把所学的知识进行复习巩固提高,课后布置相应的练习,让学生及时巩固,再现所学知识,并利用类比的方法进行新知识的求解证明,进一步掌握求解证明的方法技巧,从而提高学生的能力。

总之,初中几何求解证明题是整个初中的重点,又是难点,教学的方法形式多样,教师要采用有效的方法,才能提高学生解题的能力。

第二篇:浅谈初中几何证明题教学

浅谈初中几何证明题教学

学习几何对培养学生逻辑思维及逻辑推理能力有着特殊的作用。对于众多的几何证明题,帮助学生寻找证题方法和探求规律,对培养学生的证题推理能力,往往能够收到较好的效果,这对学生证明中克服无从下手,胡思乱想,提高解题的正确性和速度,达到熟练技巧是有积极作用的。在几何证明题教学中,我是从以下几方面进行的:

一、培养学生学会划分几何命题中的“题设”和“结论”。

1、每一个命题都是由题设和结论两部分组成的,要求学生从命题的结构特征进行划分,掌握重要的相关联词句。例:“如果„„,那么„„。”“若„„,则„„”等等。用“如果”或“若”开始的部分就是题设。用“那么”或“则”开始的部分就是结论。有的命题的题设和结论是比较明显的。例:如果一个三角形有两个角相等(题设),那么这两个角所对的边相等(结论)。但有的命题,它的题设和结论不十分明显,对于这样的命题,可要求学生将它改写成“如果„„,那么„„”的形式。例如:“对顶角相等”可改写成:“如果两个角是对顶角(题设),那么这两个角相等(结论)”。

以上对命题的“题设”和“结论”划分只是一种形式上的记忆,不能从本质上解决学生划分命题的“题设”、“结论”的实质问题,例如:“等腰三角形两腰上的高相等”学生会认为这个命题较难划分题设和结论,认为只有题设部分,没有结论部分,或者因为找不到“如果„„,那么„„”的词句,或者不会写成“如果„„,那么„„”等的形式而无法划分命题的题设和结论。

2、正确划分命题的“题设”和“结论”,必须使学生理解每个数学命题都是一个完整无缺的句子,是对数学的一定内容和一定本质属性的判断。而每一个命题都是由题设和结论两部分组成的,是判断一件事情的语句。在一个命题中被判断的“对象”是命题的“题设”,也就是“已知”。判断出来的“结果”就是命题的“结论”,也就是“求证”。总之,正确划分命题的“题设”和“结论”,就是要分清什么是命题中被判断的“对象”,什么是命题中被判断出来的“结果”。

在教学中,要在不断的训练中加深学生对数学命题的理解。

二、培养学生将文字叙述的命题改写成数学式子,并画出图形。

1、按命题题意画出相应的几何图形,并标注字母。

2、根据命题的题意结合相应的几何图形,把命题中每一个确切的数学概念用它的定义,数学符合或数学式子表示出来。命题中的题设部分即被判断的“对象”写在“已知”一项中,结论部分即判断出来的“结果”写在“求证”一项中。

例:求证:邻补角的平分线互相垂直。

已知:如图∠AOC+∠BOC=180°

OE、OF分别是∠AOC、∠BOC的平分线。

求证:OE⊥OF

三、培养学生学会推理证明:

1、几何证明的意义和要求

对于几何命题的证明,就是需要作出一判断,这个判断不是仅靠观察和猜想,或反通过实验和测量感性的判断,而必须是经过一系列的严密的逻辑推理和论证作出的理性判断。推理论证的过程要符合客观实际,论证要有充分的根据,不能凭主观想象。证明中的每一点推理论证的根据就是命题中给出的题设和已证事项,定义、公理和定理。换言之,几何命题的证明,就是要把给出的结论,用充分的根据,严密的逻辑推理加以证明。

2、加强分析训练、培养逻辑推理能力

由于命题的类型各异,要培养学生分析与综合的逻辑推理能力,特别要重视问题的分析,执果索因、进而证明,这里培养逻辑思维能力的好途径,也是教学的重点和关键。在证明的过程中要培养学生:在证明开始时,首先对命题竹:分析、推理,并在草稿纸上把分析的过程写出来。初中几何证题常用的分析方法有:

①顺推法:即由条件至目标的定向思考方法。在探究解题途径时,我们从已知条件出发进行推理。顺次逐步推向目标,直到达到目标的思考过程。

如:试证:平行四边形的对角线互相平分。

已知:◇ABCD,O是对角线AC和BD的交点。

求证:CA=OC、OB=OD

分析:

证明:∵四边形ABCD是◇

∴ AB∥CDAB=DC

∴ ∠1=∠4∠2=∠

3在△ABO和△CDO中

∴ △ABO≌△CDO(ASA)

∴ OA=OCOB=OD

②倒推法:即由目标至条件的定向思考方法。在探究证题途径时,我们不是从已知条件着手,而是从求证的目标着手进行分析推理,并推究由什么条件可获得这样的结果,然后再把这些条件作结果,继续推究由什么条件,可以获得这样的结果,直至推究的条件与已知条件相合为止。

如:在△ABC中,EF⊥ABCD⊥ABG在AC上且∠1=∠2,求证:∠AGD=∠ACB

分析:

要证∠AGD=∠ACB就要证DG∥BC,就要证:∠1=∠3。要证∠1=∠3,就要证:∠2=∠3证明:△在ABC中

③倒推———顺推法:就是先从倒推入手,把目探究到一定程度,再回到条件着手顺推,如果两个方向汇合了,问题的条件与目标的联系就清楚了,与此同时解题途径就明确了。

3、学会分析

在几何证明的教学过程中,要注意培养学生添辅助线的能力,要注意培养学生的创新思维能力和处理问题的机智能力;要使学生认识到在几何证明题中,辅助线引导适当,可使较难的证明题转为较易证明题。但辅助线不能乱引,而且有一定目的,在一定的分析基础上进行的。因此怎样引辅助线是依据命题的分析而确定的。

例:如图两个正方形ABCD和OEFG的边长都是a,其中点O交ABCD的中心,OG、OE分别交CD、BC于H、K。

分析:四边形OKCH不是特殊的四边形,直接计算其面积比较困难,连 OC把它分别割成两部分,考虑到ABCD为正方形,把△OCK绕点O按顺时针方向旋转90°到△ODH,易证△OCK≌△ODH∴S△ODH

∴SOKCH=S△OCH[下转50页]

[上接49页]=S△ODH+S△DCH=S△OCD

四、培养学生证题时养成规范的书写习惯

用填充形式训练学生证题的书写格式和逻辑推理过程。让学生也实践也学习证题的书写格式,使书写规范,推理有根据。经过一段时间的训练后,一转入学生独立书写,这样,证题的推理过程及书写都比较规范。

如:已知AB∥EF ∠1+∠2=180°求证:CD∥EF

证:∵∠1+∠2=180°()

综上可得:对于初中几何证题,教师要反复强调这样一个模式:要什么———有什么———缺什么———补什么。按照上述模式,反复训练,学生是能够逐步熟悉几何证题的格式,掌握初中几何证题的正确方法。

第三篇:初中几何证明题

(1)如图,在三角形ABC中,BD,CE是高,FG分别为ED,BC的中点,O是外心,求证AO∥FG 问题补充:

证明:延长AO,交圆O于M,连接BM,则:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,则⊿AEC∽⊿ADB,AE/AD=AC/AB;

又∠EAD=∠CAB,则⊿EAD∽⊿CAB,得∠AED=∠ACB=∠M.∴∠AED+∠BAM=∠M+∠BAM=90°,得AO⊥DE.--------(1)

连接DG,EG.点G为BC的中点,则DG=BC/2;(直角三角形斜边的中线等于斜边的一半)同理可证:EG=BC/2.故DG=EG.又F为DE的中点,则FG⊥DE.(等腰三角形底边的中线也是底边的高)-----------------(2)所以,AO∥FG.(2)已知梯形ABCD中,对角线AC与腰BC相等,M是底边AB的中点,L是边DA延长线上一点连接LM并延长交对角线BD于N点

延长LM至E,使LM=ME。

∵AM=MB,LM=ME,∴ALBE是平行四边形,∴AL=BE,AL∥EB,∴LN/EN=DN/BN。

延长CN交AB于F,令LC与AB的交点为G。

∵AB是梯形ABCD的底边,∴BF∥CD,∴CN/FN=DN/BN。

由LN/EN=DN/BN,CN/FN=DN/BN,得:LN/EN=DN/BN,∴LC∥FE,∴∠GLM=∠FEB。

由AL∥EB,得:∠LAG=∠EBF,∠ALM=∠BEM。

由∠ALM=∠BEM,∠GLM=∠FEB,得:∠ALM-∠GLM=∠BEM-∠FEB,∴∠ALG=∠BEF,结合证得的∠LAG=∠EBF,AL=BE,得:△ALG≌△BEF,∴AG=BF。

∵AC=BC,∴∠CAG=∠CBF,结合证得的AG=BF,得:△ACG≌△BCF,∴ACL=∠BCN。

(3)如图,三角形ABC中,D,E分别在边AB,AC上且BD=CE,F,G分别为BE,CD的中点,直线FG交

AB于P,交AC于Q.求证:AP=AQ

取BC中点为H

连接HF,HG并分别延长交AB于M点,交AC于N点

由于H,F均为中点

易得:

HM‖AC,HN‖AB

HF=CE/2,HG=BD/

2得到:

∠BMH=∠A

∠CNH=∠A

又:BD=CE

于是得:

HF=HG

在△HFG中即得:

∠HFG=∠HGF

即:∠PFM=∠QGN

于是在△PFM中得:

∠APQ=180°-∠BMH-∠PFM=180°-∠A-∠QGN

在△QNG中得:

∠AQP=180°-∠CNH-∠QGN=180°-∠A-∠QGN

即证得:

∠APQ=∠AQP

在△APQ中易得到: AP=AQ

(4)ABCD为圆内接凸四边形,取△DAB,△ABC,△BCD,△CDA的内心O,O,O,O.求证:OOOO为矩形. 123

41234

已知锐角三角形ABC的外接圆O,过B,C作圆的切线交于E,连结AE,M为BC的中点。求证角BAM=角EAC。

设点O为△ABC外接圆圆心,连接OP;

则O、E、M三点共线,都在线段BC的垂直平分线上。

设AM和圆O相交于点Q,连接OQ、OB。

由切割线定理,得:MB² = Q·MA ;

由射影定理,可得:MB² = ME·MO ;

∴MQ·MA = ME·MO,即MQ∶MO = ME∶MA ;

又∵ ∠OMQ = ∠AME,∴△OMQ ∽ △AME,可得:∠MOQ = ∠MAE。

设OM和圆O相交于点D,连接AD。

∵弧BD = 弧CD,∴∠BAD = ∠CAD。

∵∠DAQ =(1/2)∠MOQ =(1/2)∠MAE,∴∠DAE = ∠MAE∠DAE = ∠CAD-∠DAQ = ∠CAM。

设AD、BE、CF是△ABC的高线,则△DEF称为△ABC的垂足三角形,证明这些高线平分垂足三角形的内角或外角 设交点为O,OE⊥EC,OD⊥DC,则CDOE四点共圆,由圆周角定理,∠ODE=∠OCE。

CF⊥FC,AD⊥DC,则ACDF四点共圆,由圆周角定理,∠ADF=∠ACF=∠OCE=∠ODE,AD平分∠EDF。

其他同理。

平行四边形内有一点P,满足角PAB=角PCB,求证:角PBA=角PDA

过P作PH//DA,使PH=AD,连结AH、BH

∴四边形AHPD是平行四边形

∴∠PHA=∠PDA,HP//=AD

∵四边形ABCD是平行四边形

∴AD//=BC

∴HP//=BC

∴四边形PHBC是平行四边形

∴∠PHB=∠PCB

又∠PAB=∠PCB

∴∠PAB=∠PHB

∴A、H、B、P四点共圆

∴∠PHA=∠PBA

∴∠PBA=∠PDA

补充:

补充:

把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.

已知点o为三角型ABC在平面内的一点,且向量OA2+BC2=OB2+CA2=OC2+AB2,,则O为三角型ABC的()

只说左边2式子 其他一样

OA2+BC2=OB2+CA2 移项后平方差公式可得

(OA+OB)(OA-OB)=(CA+BC)(CA-BC)化简

得 BA(OA+OB)=BA(CA-BC)

移项并合并得BA(OA+OB+BC-CA)=0

即 BA*2OC=0 所以BA和OC垂直

同理AC垂直BO BC垂直AO哈哈啊是垂心

设H是△ABC的垂心,求证:AH2+BC2=HB2+AC2=HC2+AB2.

作△ABC的外接圆及直径AP.连接BP.高AD的延长线交外接圆于G,连接CG. 易证∠HCB=∠BCG,从而△HCD≌△GCD.

故CH=GC.

又显然有∠BAP=∠DAC,从而GC=BP.

从而又有CH2+AB2=BP2+AB2=AP2=4R2.

同理可证AH2+BC2=BH2+AC2=4R2.

第四篇:谈初中几何证明题教学(模版)

谈初中几何证明题教学

众所周知,几何证明是初中数学学习的难点之一,其难就难在如何寻找证明思路,追根问底还是因为几何证明题的本质不易把握。为此,在初等几何的学习中融入数学思想方法,具有重要意义,而且切实可行。通过平时的学习、探索和积累,我发现其中的“结构思想”,即“数学是一个有机的整体,观察数学问题要着眼于结构的整体性。从宏观上对数学问题进行整体研究,抓住问题的框架结构和本质关系,把一些貌似独立而实质又紧密联系的特征视为系统中的整体”对探寻几何的证明思路,把握问题的本质,培养观察能力有一定的指导意义。

新一轮课程改革立足于“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。”在这样的指导思想下,初中几何发生了较大的变化。

初中几何一直就是中学数学的重要内容,秉承“深化教育改革,全面推进素质教育”的指导思想,在这次新课程改革中,初中几何部分有了较大的调整。对比新课程改革后初中几何的变化,深入理解教改的初衷,全面贯彻教改的思想,不但有利于更好地完成教改的任务,而且有利于利用新教材创造性地提高学生的数学素养。

考题:如图,在Rt△ABC中∠C=90°以AC为直接径,作⊙O,交AB于D,过O作OE∥AB,交BC于E,连接ED。

⑴求证:ED是⊙O的切线。

⑵E为BC的中点,如果⊙O的半径为1.5,ED=2,求AB的长。

这是某市九年级人教版秋季学期一道期考试题,从题型看这是一道再普通不过的圆有关证明和计算的几何考题,而我校作为一所比较有名的初中,全校九年级约500个考生的答卷中,第问“求AB的长”尚有80%左右的考生能正确的解答出来,而第(1)“求证:ED是⊙O的切线”只有约10%的考生能正确地写出证明解答过程。究其原因何在?笔者认为,其主要原因是教师在平时的课堂教学中,对几何证明的指导不到位、引导方法不够灵活,措施不到位造成的直接后果。

怎样指导学生对几何证明题进行有效正确的证明分析解答,并简单地写出证明过程,笔者通过对本考题学生答卷出现的各种错误情况,结合本校使用新课改教材突出的特点,归纳总结出以下4个步骤,进行指导,收到良好的效果。

1.读

读就是阅读题目和题图的过程中,做到逐个条件,逐个问题地对号入座地进行审题、读图。

2.记

记就是在“读”的过程中,对题目中给出的条件和问题作简要的浓缩并作划记,并用①、②„„和“?”作标记。如本考题问可作标记为:已知①∠C=90°;②AC为直径;③OE∥AB求证ED是⊙O的切线?

3.选

“选”就是选定解题思路,确定解题方法,即根据读题和标记的结果,结合自己所掌握的数学知识。选定解题思路,最终确定解题方法,并写出简要解答过程。如本题中,要证明DE为⊙O的切线,得作辅助线:连结

OD,则点D就是⊙O的外端,只须再证明OD⊥DE(即∠ODE=90°)就可以了,从而选定证明∠ODE=90°;而要达到这个∠ODE=90°这个结果,只有通过证明△EOC≌△EOD从而也就确定了解题方法。

4.返

就是选定了解题思路、确定了解题方法,并写出解答的过程中,特别是遇到解答的过程受阻时,不断地返回到题目中已作的标记和题图的标记和已知条件中去,检查是否漏用或误用已知条件,及时调整解题方案。可以看出,“读、记、选、返”四个步骤通俗易懂、浅显具体,只要始终坚持渗透课程数学课堂教学之中,并要求学生始终运用到平时的练习之中,善于积累,逐渐养成“见其型,通其路,套其法”的良好习惯,就能很好纠正学生不良的解题思维习惯和学习习惯!

初中数学,广西贺州市从2008年秋季学期启用人教版新课改教材至今,恰好经历了两个周期。五年来,课改的新理念、新思维、新评价如风暴袭来,我们有过欣喜和期盼,教学实践中,没有石头照样过河。

评价考试后,我们充满困惑与无奈,却不知路在何方。长期以来,我们数学课堂教学关注的是大量繁杂的公式,陷入了题的海洋。中学数学课堂教学最应该关注什么?既不是单纯的方法总结,也不是数学知识技能的简单积聚。数学教育的发展方向应与教育发展的大方向相一致,数学教育更应该关注思考:上完一节数学课,在学生颔首的同时还是有那么多的学生仍在质疑,到底学到了什么?他们对自己在数学学科上付出那么多的时间和精力感到惋惜,对自己在数学上的天赋和能力产生怀疑与反思。而教师本身是否也反省过自己,一节课下来我们到底教给了学生什

么?方法、过程,还是答案?所谓“点石成金”我们到底教给学生“点石”的手指还是“点成”的金子?我们不能武断地归结于学生的不努力,我们的数学教育有没有问题。就目前的状况,中学数学教育仍旧可以用“纸上谈兵”这句成语简单概括之。

课堂是教师演练阵容的战场,解题成为操起的刀戈,忽略了解题思路、解题方法,一味追求解题结果,将会逐渐迷失自我,丧失自我思考的能力!我们是否思考过:路就在自己的脚下,路就在自己的每一节课中,让校本科研走进我们每一个数学教师的每一节课中吧!

当今世界,反思意识已成为学术界的重要特征。要使基础教育课程改革向纵深推进,就必须提高教师的素质,尤其是提高教师的反思特质。开展校本教育科研活动,有利于学校引导教师理性反思教学,唤醒教师的自觉能动性和创造性,促使教师不断追求教育实践的合理性,让教师学会“教”,学生学会“学”。

学校要倡导教师以科学的精神、研究者的姿态,在不断反思中自觉运用先进的教育理论指导实践,探索教育规律。这既是时代对教师的要求,也是促进每一个学生都得到发展的前提条件。

校本科研的特征是“为了学校,在学校中,基于学校”,教师要获得专业发展,离不开“校本科研”的引领。学校应积极构建以校为本的研究机制,引领教师专业成长,反之又以教师的专业成长来推动学校发展,提升学校的办学水平。教学的生机与活力存在于教学研究中,教科研必须充分考虑教师的感受和内在需求。从教师角度讲,加强理论学习,并自觉接受理论的指导,努力提高教学理论素养,这也是教师专业成长的必经之路。

第五篇:初中数学几何证明题

平面几何大题 几何是丰富的变换

多边形平面几何有两种基本入手方式:从边入手、从角入手

注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方式?

难题

相关内容

热门阅读

最新更新

随机推荐