首页 > 文库大全 > 精品范文库 > 7号文库

32.2 平行四边形的判定定理及其证明(范文)

32.2 平行四边形的判定定理及其证明(范文)



第一篇:32.2 平行四边形的判定定理及其证明(范文)

滦县三中九年级数学学科第一学期导学案

课题: 32.2平行四边形的判定定理及其证明主备人:主审人:使用时间: 202_.11.25编号:

五.学以致用:

有一块平行四边形的玻璃片ABCD,不小心碰碎了,聪明的你想想看有没有办法把原来的平行四边形重新画出来.A

B

C

六.能力提升:

已知:如图,E、F分别是ABCD的边AD、BC上的点,DE=BF,G、H在BD上,BG=DH.求证:四边形EGFH是

.D

H

F

C

变式:如图,G、H是

ABCD的对角线BD上的点,BG=DH,直线EF∥AB,分别交AD、BC与点E、F 当直线EF从AB出发,沿A到D方向平移时,是否存在某一时刻使四边形EGFH是平行四边形,存在,说出EF的位置,不存在,说明理由.E

D

H

F

七.能力测评: 1.已知:如图,在ABCD中,BE=DF 求证:四边形DEBF是

2变式.在1的条件下,延长BF、DE,分别交AD、CB的延长线与H、G求证:FH =EG

E

3变式.在1的条件下,连接AF、CE.求证EF与GH互相平分

E

第二篇:平行四边形的性质定理和判定定理及其证明

4.1平行四边形的性质定理和判定定理及其证明

姓名:成绩:

1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC, AD=BCB.AB=DC,AD=BC C.AB∥DC,AD=BC

D.OA=OC,OD=OB

2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和

3B.3和

2C.4和

1D.1和

4E 3.如图,在平行四边形ABCD中,AC,BD相交于点O.下列结论中正确的个数有()结论:①OAOC,②BADBCD,③ACBD,④BADABC180.

A

D.4个

第3题图

A.1个B.2个C.3个

4.能够判别一个四边形是平行四边形的条件是()

A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行 5.下列条件中不能确定四边形ABCD是平行四边形的是()

A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC 6.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()

A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88° 7.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件()

A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180° 8.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()

A.1个B.2个C.3个D.4个

二、填空题

5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是

(添加一个条件即可)

6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______,∠D=_________。7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。

如图2,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF

为平行四边形.

D

第5题图

C

C

A第7题图

9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD

相交于M、N,你认为OM、ON有什么关系?为什么?

10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明

BE=CF。

A

12.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?

13.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由

.三、如图3,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?

若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).

第三篇:平行四边形判定定理教案

18.1.2平行四边形的判定

(第一课时)

一、教学目标

(一)知识教学点

1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

2.使学生理解判定定理与性质定理的区别与联系.

3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

(二)能力训练点

1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

二、重点·难点·疑点及解决办法

1.教学重点:平行四边形的判定定理1、2、3的应用.

2.教学难点:综合应用判定定理和性质定理.

3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理(强调在求证平行四边形时用判定定理,在已知平行四边形时用性质定理).

三、课时安排

2课时

四、教具学具准备

投影仪,投影胶片,常用画图工具

五、师生互动活动设计

复习引入,构造逆命题,画图分析,讨论证法,巩固应用.

六、教学步骤

【复习提问】

1.平行四边形有什么性质?学生回答教师板书

2.将以上性质定理分别用命题的形式叙述出来. 【引入新课】

用投影仪打出上述命题的逆命题.

上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法(定义法).

那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).

【讲解新课】

1.平行四边形的判定

我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?

如图1,在四边形 中,如果,那么 .

∴ .

同理 .

∴四边形 是平行四边形,因此得到:

平行四边形判定定理1:两组对角分别相等的四边形是平行四边形. 类似地,我们还会想到,两组对边相等的四边形是平行四边形吗? 如图1,如果,那么

,,连结

,则△

≌△

得到

,则四边形 是平行四边形.

由此得到:

平行四边形判定定理2:两组对边分别相等的四边形是平行四边形.

(判定定理1、2的证明采用了探索式的证明方法,即根据题设和已有知识,经过推理得出结论,然后总结成定理).

我们再来证明下面定理

平行四边形判定定理3:对角线互相平分的四边形是平行四边形.

(该定理采用规范证法,如图1由学生自己证明,教师可引导学生用前面三种依据分别证明,借以巩固所学知识)

2.判定定理与性质定理的区别与联系

判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆.

例1 已知:且 是

对角线 上两点,并,如右图.

是平行四边形.

是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用

利用判定定理3简单.

求证:四边形

分析:因为四边形定义或判定定理1、2都可以,还可以连结

证明:(由学生用各种方法证明,可以巩固所学过的知识和作辅助线的方法,并比较各种证法的优劣,从而获得证题的技巧).

【总结、扩展】

1.小结:(投影打出)

(1)本堂课所讲的判定定理有

(2)在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.

2.思考题

教材P144B.3

八、布置作业

教材P142中7;P143中8、9、10

九、板书设计

十、随堂练习

1.下列给出了四边形

、、的度数之比,其中能判定四边形 是平行四边形的是()

A.1:2:3:4 B.2:2:3:3

C.2:3:2:3 D.2:3:3:2 2.在下面给出的条件中,能判定四边形 是平行四边形的是()

A.,B.,C.,D.,3.已知:在 中,点

求证:四边形 是平行四边形.、在对角线上,且

第四篇:平行四边形的判定定理

课题

§8.1.2平行四边形(二)

教学目标

(一)教学知识点

1.推理论证能力的培养.

2.能够用综合法证明平行四边形的判定定理.

(二)能力训练要求

1.经历探索、猜想、证明的过程,进一步发展推理论证能力.

2.能够用综合法证明平行四边形的判定定理.

3.体会在证明过程中所运用的类比、转化、归纳等数学思想方法.

(三)情感与价值观要求

1.通过猜想、证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.

2.体会在解决问题的过程中,如何与他人合作交流.

教学重点

平行四边形的判定定理.

教学难点

探索、寻找判定定理.

教学方法

探索、归纳法.

教学过程

I.探索、寻找平行四边形的判定定理

Ⅱ.解决问题:

[师]上节课我们研究了平行四边形的性质定理.下面我们来做一练习以复习上节课的知识.

如上图;

(1)若四边形ABCD是平行四边形,则∠A=,∠B;

(2)若四边形ABCD是平行四边形,则AB=,BC=;

(3)若四边形ABCD是平行四边形,则ABCD;

(4)若平行ABCD的对角线AC、BD交于点O,则OA=,OB=.[生]若四边形ABCD是平行四边形,则∠A=∠C,∠B=∠D;AB=CD,BC=AD;

ABOA=OC,OB=OD;

[师]任何一个命题都有逆命题,那大家来想一想:对于上述四个性质,你想到了什么?

[生甲]若∠A=∠C,∠B=∠D,则四边形ABCD是平行四边形.

[生乙]若AB=CD,BC=AD,则四边形ABCD是平行四边形.

[生丙]若ABCD,则四边形ABCD是平行四边形. CD;

[生丁]若四边形的对角线AC、BD相交于点O,且OA=OC,OB=OD,则四边形ABCD是平行四边形.

[师]由此我们得出平行四边形可能的判别条件,这些判别条件成立吗?

这节课我们就来研究平行四边形的判定定理.

[师]刚才我们得出四个猜想,它们对不对呢?能不能用它们来判定平行四边形呢?如果能判定,你能证明吗?如果不能判定,那请你举出反例.下面我们分组来讨论.

[生甲]因为任意一个四边形都可以由一条对角线把它分成两个三角形,而一个三角形的内角和为180°,所以由此可知,四边形的内角和为360°.即∠A+∠B+∠C+∠D=360°.因为∠A=∠C,∠B=∠D,所以就可得∠A+∠B=180°,∠B+∠C=180°.利用平行线的判定定理可知:AD//BC,AB//CD.再利用平行四边形的定义可以得到:四边形ABCD是平行四边形.

[生乙]因为研究平行四边形的主要辅助线是对角线,所以我连结AC.因为AB=CD,BC=AD,所以根据全等三角形的判定定理:“三边对应相等的两个三角形全等”得△ABC≌△CDA,因为全等三角形的对应角相等,所以∠DAC=∠ACB,∠BAC=∠ACD.利用平行线的判定定理可以得到:AB//CD,BC//AD.根据平行四边形的定义得到:四边形ABCD是平行四边形.

[生丙]证明第3个命题时,我同样连接了对角线.如下图,连结AC,因为AB//CD,所以∠1=∠2,又因为AB=CD,CA=AC,所以△ABC≌△CDA,所以∠3=∠4,所以得AD//BC,因此,四边形ABCD是平行四边形.

[生丁]老师,我们已经证明了第2个命题是正确的命题,就可以把它作为定理直接应用,所以,我们组在证明第3个命题时,也证明三角形全等,只是最后利用了:“两组对边分别相等的四边形是平行四边形”来证明四边形ABCD是平行四边形,即△ABC≌△CDA.∴BC=DA.

∵AB=CD,∴四边形ABCD是平行四边形.

[生戊]对于第4个命题我们也通过证三角形全等,得证了四边形ABCD是平行四边形.即

如图,∵OA=OC,∠1=∠2,OB=OD,∴△AOB≌△COD,∴AB=CD.

同理可以证明:BC=AD.

∴四边形ABCD是平行四边形.

[师]很好,通过同学们的讨论、证明、说明平行四边形的性质定理的逆命题都是正确的.这时我们把它们叫做平行四边形的判定定理.

定理:两组对边分别相等的四边形是平行四边形.

定理:对角线互相平分的四边形是平行四边形.

定理:一组对边平行且相等的四边形是平行四边形.

定理:两组对角分别相等的四边形是平行四边形.

[师]刚才我们通过口述证明了以上四个命题是正确的,大多数同学是应用了平行四边形的定义来证明的;也有少部分同学先用平行四边形的定义证明一个命题是正确的,然后利用它来证明其他命题,这很好,这也就开阔了你的思路.下面大家来书写一下证明过程.„„

[师]同学们来交流一下你的证明思路.

(也可以把学生的证明过程用幻灯片来演示,一来发现错误,以及时纠正;二来开阔同学们的思路)

[师]我们有了这四个定理后,在做题时要根据题目条件从中灵活选用方法来解题.下面我们来做一做.

证明:如图中的四边形MNOP是平行四边形.

[生甲]从图中可知,△MON是直角三角形,而每边长又用数或代数式表示.要证四边形MNOP是平行四边形,需要知道这个四边形的四条边长,由此想到在Rt△MON中利用勾股定理列出方程,即可求出边长,结论自然就明白了.

[生乙]顺着甲同学的思路,解答如下:

222解:在Rt△MON中,OM+ON=MN.

即42+(x-5)2=(x-3)2.

整理,得4x=32,解得x=8.

从而可得:ON=3,MN=5,PM=3.

所以MN=PO,PM=ON.

因此,四边形MNOP是平行四边形.

[师]很好,这是一个综合运用勾股定理、方程、平行四边形的判定定理进行推理的问题,由此我们也看到了代数与几何的联系,同学们能想到用代数的方法来解决几何问题,我很高兴,为你们感到自豪.

接下来,我们通过做练习进一步巩固平行四边形的判定定理.

例2.如下图,已知在平行四边形 ABCD中,BF=DE.

求证:四边形AFCE是平行四边形.

证明:在 ABCD中,AB=CD,AB//CD.

∵BF=DE,∴AF=CE.

∴四边形AFCE是平行四边形.

(也可以证:AE=CF,CE=AF;或证:AE//CF;或证明对角相等)

Ⅲ.课堂练习

然后小结.

Ⅳ.课时小结

本节课我们主要探讨并证明了平行四边形的判定定理、课本以“两组对边分别相等的四边形是平行四边形”和“一组对边平行且相等的四边形是平行四边形”这两个定理为主,以其他两个为辅,但我们都要掌握,并且在解题过程中应灵活应用.

Ⅴ.课后作业,大多数同学是应用了平行四边形的定义来证明的;也有少部分同学先用平行四边形的定义证明一个命题是正确的,然后利用它来证明其他命题,这很好,这也就开阔了你的思路.下面大家来书写一下证明过程.

„„

[师]同学们来交流一下你的证明思路.

(也可以把学生的证明过程用幻灯片来演示,一来发现错误,以及时纠正;二来开阔同学们的思路)

[师]我们有了这四个定理后,在做题时要根据题目条件从中灵活选用方法来解题.下面我们来做一做.

证明:如图中的四边形MNOP是平行四边形.

[生甲]从图中可知,△MON是直角三角形,而每边长又用数或代数式表示.要证四边形MNOP是平行四边形,需要知道这个四边形的四条边长,由此想到在Rt△MON中利用勾股定理列出方程,即可求出边长,结论自然就明白了.

[生乙]顺着甲同学的思路,解答如下:

解:在Rt△MON中,OM2+ON2=MN2.

即42+(x-5)2=(x-3)2.

整理,得4x=32,解得x=8.

从而可得:ON=3,MN=5,PM=3.

所以MN=PO,PM=ON.

因此,四边形MNOP是平行四边形.

[师]很好,这是一个综合运用勾股定理、方程、平行四边形的判定定理进行推理的问题,由此我们也看到了代数与几何的联系,同学们能想到用代数的方法来解决几何问题,我很高兴,为你们感到自豪.

接下来,我们通过做练习进一步巩固平行四边形的判定定理.

例2.如下图,已知在平行四边形 ABCD中,BF=DE.

求证:四边形AFCE是平行四边形.

证明:在 ABCD中,AB=CD,AB//CD.

∵BF=DE,∴AF=CE.

∴四边形AFCE是平行四边形.

(也可以证:AE=CF,CE=AF;或证:AE//CF;

或证明对角相等)

Ⅲ.课堂练习

(一)课本P78

(二)看课本P77~然后小结.

Ⅳ.课时小结

本节课我们主要探讨并证明了平行四边形的判定定理、课本以“两组对边分别相等的四边形是平行四边形”和“一组对边平行且相等的四边形是平行四边形”这两个定理为主,以其他两个为辅,但我们都要掌握,并且在解题过程中应灵活应用.

Ⅴ.课后作业

(一)课本P87

第五篇:平行四边形判定定理教学设计

叙述式教学设计方案模板

《平行四边形的判定》教学设计

一、概述

《平行四边形的判定》是人教版中学数学八年级下册十九章第一节的第二课时。这一课的教学目的是让学生掌握平行四边形的判定方法,并能灵活运用提高学生的说理论证能力,发展学生的逻辑思维能力,让学生体会转化的数学思想感受数学的奥妙。

二、教学目标分析

知识与技能:使学生掌握平行四边形的判定定理,并能初步运用判定定理进行简单的论证和计算。通过定理的证明和应用的教学,使学生领会“数学直觉——操作验证——说理论证”的探究问题的方法,进一步提高学生分析问题、解决问题的能力。

过程与方法:经历探究过程,激发学习的兴趣,培养学生的逻辑思维能力和推理能力。通过定理的证明和应用的教学,使学生领会“直觉判断——探究试验——说理论证”的问题探究方法进一步提高学生分析问题、解决问题的能力。

情感、态度及价值观:在学习活动中体验数学知识与实际生活之间的联系,体会数学源于生活又服务于生活的道理。

三、学习者特征分析

数学学习活动是一个以学生已有知识和经验为基础的主动建构过程。学生是学习的主人,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发让学生亲身经历知识的形成过程。我在课堂教学中尝试采取多种手段引导每一个学生积极主动地参与学习过程。经过第一课时的学习学生已经初步掌握了平行四边形的定义和性质。同时经过近两年的学习学生的思维水平有了一定的提高,说理论证能力有所加强,具备用已有知识解决未知知识的能力。学生对于多媒体教学非常感兴趣,喜欢在多媒体环境中上课。课堂教学气氛活跃,学生思路开阔,思维活跃,具有较强的自主学习能力和协作学习能力。

四、教学策略选择与设计

本节课使用多媒体课件的演示功能,一方面激发学生的学习兴趣,另一方面将教学内容直观地呈现给学生,突破教学重、难点。在新知传授环节充分发挥学生的主动性、积极性和创造性,采用新课标倡导的“自主、合作、探究”新型学习方式让学生在探究、协作中自主建构知识意义。在创新扩展环节充分调动学生的发散性思维,培养学生的创新精神和创新意识。

五、教学资源与工具设计

利用多媒体这个教学硬件资料,结合所准备的课件来完成教学。

六、教学过程

1.创设情境,导入新课

师:同学们,上节课我们学习了平行四边形的定义和性质(出示平行四边形木框),请大家回顾一下上节课的知识。

学生自由回答平行四边形的定义和性质。

师:老师昨天从商店买了一块平行四边形的玻璃片,想做个漂亮的相框,可惜不小心碰到了墙壁,玻璃片的一个角碰碎了。请同学们想想,怎么样才能将玻璃片还原呢?有没有办法把原来的平行四边形重新画出来?(图1)【 图片】

学生思考讨论,尝试画图。

师:看来同学们对这个问题都很感兴趣,其实这就是我们这节课所要学习的内容——平行四边形的判定。

设计意图:复习近平行四边形的定义和性质,并采用“抛锚式”的教学策略,设计生活情境问题,激发学生的探究欲望,引入新知教学。

2.自主探究,协作交流

(1)提出问题,探索交流。

叙述式教学设计方案模板

例1:如图2,在四边形ABCD中,AB//CD且AB=CD。求证:四边形ABCD是平行四边形。

【图片】

师:同学们,上面的四边形是平行四边形吗?

生:是。

师:你是如何判断的呢?怎样证明它就是平行四边形呢?请同学们先自主探究,然后分组讨论尝试验证你的结论。

学生画图连线,尝试验证。小组合作,交流彼此想法,共同探究实验。

教师巡视,指名回答。

生:利用平行四边形的定义,连结AC或BD,构造全等三角形,说明角相等,从而证明AB//CD。师:说得非常好。要证明某个结论,我们必须有根据能利用已有的定理或定义来说明。从例1的解决中,我们看到其实在应用数学中常用一种问题解决方法,即“直觉判断——探究实验——说理论证”。那么除了判定定理1可以判断平行四边形外,是否还有其他的判定定理呢?(幻灯片出示判定定理1,提示学生判定定理1其实是性质1“平行四边形的对边平行且相等”的逆命题)

(2)补充和完善平行四边形判定定理。

师:请同学们应用例1的解决方法尝试探究解决例2和例3,找到平行四边形其他判定定理。例2:在四边形ABCD中,AB=CD AD=BC。求证:四边形ABCD是平行四边形。

生1:例2可转化为平行四边形的定义。

生2:可转化为判定定理1。

生3:两组对边分别相等的四边形是平行四边形可作为判定定理2。(幻灯片将平行四边形判定定理2显示成红色。)

例3:证明:对角线互相平分的四边形是平行四边形。

教师引导学生用不同方法求解。

生1:例2可转化平行四边形定义或判定定理

1、判定定理2。

生2:可以利用判定定理3证明。(幻灯片出示三种证明过程并将判定定理3显示成红色。)

设计意图:学生独立思考,并能用不同的方法求解,培养学生数形结合和转化的思想,从而提高学生分析问题和解决问题的能力。

(3)总结平行四边形判定定理。

师:同学们分析得非常正确,数学需要我们有严密的思维。学习数学可以培养我们严谨的学习作风。本节课我们学了平行四边形的三个判定定理。总结并板书——

判定定理1:一组对边平行且相等的四边形是平行四边形。

判定定理2:两组对边相等的四边形是平行四边形。

判定定理3:对角线互相平分的四边形是平行四边形。

3.方法迁移巩固运用

【图片 】

题1:已知:如图3,在平行四边形ABCD中,E、F是对角线BD上的点且BE=DF。

求证:四边形AECF是平行四边形。

题2:如图4,AB、CD相交于点O,AC//BD AO=BO

E、F分别为OC、OD的中点。求证:四边形AFBE是平行四边形。

学生以小组为单位展开讨论,用不同的方法解决问题。

教师巡视,并及时给予指导,抽查学生回答解题的思路师生共同评价。

设计意图:设计例题,让学生运用问题探究的方法尝试解决问题,并体会一题多解的方

叙述式教学设计方案模板

法,从而巩固新知培养学生知识的迁移运用能力。

4.回归问题,创新拓展

师:学习了平行四边形的判定定理,下面让我们再回到最开始老师遇到的“还原玻璃片”问题。现在,请同学们先自主思考,然后小组讨论使用什么方法可以将老师碰碎的玻璃片还原为平行四边形。

学生自主画图,小组讨论。教师巡视全班相机指导。

师:其实生活中还有很多类似的问题,需要我们应用数学知识和数学思维去思考并解决。下面也是生活情境应用题,请同学们发挥想象力,运用我们所学的数学知识去解决它。应用题:李木匠在制作家具的过程中,遇到一个难题。他想把一块平行四边形的板子切成四个面积相等的平行四边形,请同学们帮木匠想想办法,看看有几种分法 ?

学生根据平行四边形的定义、性质以及判定定理,思考划分的方法。教师鼓励学生尝试不同的方法解题。

设计意图:设计练习题检测学生的课堂学习效果,并结合生活中的实际情境问题,引导学生应用平行四边形的判定定理去解决实际问题,培养学生的数学知识应用意识和创新思维。

5.畅谈收获,课堂小结

师:通过本节课学习你有什么收获?

生1:做数学题可以用不同方法,我们要寻求简单的方法。

生2:我明白了转化的数学思想,我们可以用已学过的知识去解决生活中的问题。

师:同学生们总结得很好。这节课我们不但证明了三个判定定理,而且能够灵活运用。让我们看到了集体的力量,体会了转化的数学思想。希望大家共同努力解决一个又一个难题。

七、帮助和总结

总结以上几个环节的设计,环环相扣,由浅入深,由表及里,与学生的认识规律相符。通过这一节学习,学生不仅掌握了平行四边形的两个判定定理,还初步培养了分析问题,解决问题的能力。学习过程中,愉快的合作学习,多角度的展开思维活动,无形中培养了学生的创新精神,是利于学生知识、能力、情感发展的。

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jingpin/7/2723864.html

相关内容

热门阅读

最新更新

随机推荐