首页 > 文库大全 > 精品范文库 > 7号文库

数学教育教学设计(模板18篇)

数学教育教学设计(模板18篇)



了解别人是如何看待某个问题的,对于我们的判断和决策会有很大的启发。合理安排篇章结构,使得总结条理清晰、层次分明。这是一些总结优秀范文的精选,希望能够对大家的写作有所启示。

数学教育教学设计篇一

运用公式法dd完全平方公式(1)。

教学目标。

2.理解完全平方式的意义和特点,培养学生的判断能力.

3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.。

4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想,数学教案-运用公式法。

教学重点和难点。

重点:运用完全平方式分解因式.

难点:灵活运用完全平方公式公解因式.

一、复习。

1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。

(2)16m4-n4=(4m2)2-(n2)2。

=(4m2+n2)(4m2-n2)。

=(4m2+n2)(2m+n)(2m-n).

问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式.

请写出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

二、新课。

和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到。

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

问:具备什么特征的多项是完全平方式?

答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

问:下列多项式是否为完全平方式?为什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

x2+6x+9=(x+3).

(2)不是完全平方式.因为第三部分必须是2xy.

(3)是完全平方式.25x=(5x),1=1,10x=2・5x・1,所以。

25x-10x+1=(5x-1).

(4)不是完全平方式.因为缺第三部分.

答:完全平方公式为:

其中a=3x,b=y,2ab=2・(3x)・y.

例1把25x4+10x2+1分解因式.

分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+2・5x2・1+12=(5x2+1)2.

例2把1-m+分解因式.

问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“”是的平方,第二项“-m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2・1・+()2=(1-)2.

解法2先提出,则。

1-m+=(16-8m+m2)。

=(42-2・4・m+m2)。

=(4-m)2.

三、课堂练习(投影)。

1.填空:

(1)x2-10x+()2=()2;

(2)9x2+()+4y2=()2;

(3)1-()+m2/9=()2.

2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多。

项式改变为完全平方式.

(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;

(4)9m2+12m+4;(5)1-a+a2/4.

3.把下列各式分解因式:

(1)a2-24a+144;(2)4a2b2+4ab+1;

(3)19x2+2xy+9y2;(4)14a2-ab+b2.

答案:

1.(1)25,(x-5)2;(2)12xy,(3x+2y)2;(3)2m/3,(1-m3)2.

2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.

(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.

(3)是完全平方式,a2-4ab+4b2=(a-2b)2.

(4)是完全平方式,9m2+12m+4=(3m+2)2.

(5)是完全平方式,1-a+a2/4=(1-a2)2.

3.(1)(a-12)2;(2)(2ab+1)2;

(3)(13x+3y)2;(4)(12a-b)2.

四、小结。

运用完全平方公式把一个多项式分解因式的主要思路与方法是:

1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.

2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b)2;如果是负号,则用公式a2-2ab+b2=(a-b)2.

五、作业。

把下列各式分解因式:

1.(1)a2+8a+16;(2)1-4t+4t2;

(3)m2-14m+49;(4)y2+y+1/4.

2.(1)25m2-80m+64;(2)4a2+36a+81;

(3)4p2-20pq+25q2;(4)16-8xy+x2y2;

(5)a2b2-4ab+4;(6)25a4-40a2b2+16b4.

3.(1)m2n-2mn+1;(2)7am+1-14am+7am-1;

4.(1)x-4x;(2)a5+a4+a3.

答案:

1.(1)(a+4)2;(2)(1-2t)2;

(3)(m-7)2;(4)(y+12)2.

2.(1)(5m-8)2;(2)(2a+9)2;

(3)(2p-5q)2;(4)(4-xy)2;

(5)(ab-2)2;(6)(5a2-4b2)2.

3.(1)(mn-1)2;(2)7am-1(a-1)2.

4.(1)x(x+4)(x-4);(2)14a3(2a+1)2.

1.利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质.

2.本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法.在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点.例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法.

数学教育教学设计篇二

一、教学内容:人教课标版五年级上册《数学广角》身份证号码。

二、教学目标:

1、让学生通过观察、比较、猜测来探索学号和身份证编码的方法,学习用数字来进行编码,学习抽象概括方法。

2、使学生在数学活动中养成与人合作的良好习惯,培养分工协作能力。

3、通过生活事例初步体会数字编码思想在实际生活中,给人们生活带来的便利,培养学习数学的积极情感。

渗透《中华人民共和国身份证法》第1、2、3条。

三、教材分析。

1、本单元的主要教学内容是探索数字编码的简单方法。数字编码与学生的生活紧密相关。为更好地帮助学生理解,教材通过生活中的事例向学生渗透数字编码思想。由于这是数学广角中的内容,属于第一课时,因此学生在学习时感觉比较新鲜,只要教师组织到位,学生学起来应该不是特别困难。但如果作为第一课时没有引起学生的兴趣,那么在后面的教学中就会存在一定的问题。

2、教材从老师点名的情境引入,说明我们可以用数字编码来区分班上的学生。而本节课的内容则是通过邮政编码在生活中的应用实例让学生体会数字编码在生活中的应用,初步了解邮政编码的结构与含义,探索数字编码的简单方法。

四、学情分析。

1、数字编码与日常生活联系比较密切,学生在探究规律时容易理解,思维难度不大。

2、教学中,老师尽量从学生身边的具体事例来引入教学,同时,启发学生了解生活中的数学。

3、学生在实践中可以有不同的编码方法,老师要允许学生采用不同的形式,放手让学生去调查、体会、经历运用所学知识解决问题的过程。

五、教学重点:初步体会、探索数字编码的简单方法。

六、教学难点:理解编码的组成及数字反映的信息。

七、教学准备:学生收集不同编码资料,了解各种数字编码含义和编排方法。

八、教学方法:小组合作探究学习。

九、教学过程。

一、创设情景,生成问题。

到银行开户储蓄时要用到什么证件?(身份证)你还知道什么时候用到身份证吗?

生答:1、父母外出打工2、住旅馆3、办结婚证4、高考5、出国旅游。

看来身份证在日常生活中的应用非常广泛,今天我们就来研究身份证号码是怎样组成的?

相关内容

热门阅读

最新更新

随机推荐