第一篇:倍数和因数教案
因数和倍数教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。教学重点:掌握找一个数的因数和倍数的方法。
教学过程:
一、创设情境,引入新课
师:我和你们的关系是……?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。是啊,人与人之间的关系是相互的。再比如:我们班的曹雪飞与贺正博之间是同桌关系,他们之间的关系是相互依存的,不能单独存在的,我们可以说曹雪飞是贺正博的同桌,或者说贺正博是曹雪飞的同桌,而不能说曹雪飞是同桌!在数学王国里,也存在着这样相互依存的关系,这节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
(设计意图:先让学生体会关系,再通过同桌关系让学生体会相互依存,不能独立存在,进而为因数与倍数的相互依存关系打下基础。)
二、探究新知
(一)1、出示主题图,仔细观察,你得到了哪些数学信息?
老师说:图上有12边长为1厘米的正方形,如果要摆成一个长方形,能怎样摆呢?
(注意培养学生提取数学信息的能力和语言表达能力,即:数学语言要求简练严谨)
教师 :你们能够用乘法算式表示出来吗?
学生说出算式,教师板书:2×6=12 3×4=121×12=12
2.出示:因为2×6=12
师:我们就说2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3.3×4=12 1×12=12
从这两道算式中,你知道谁是谁的因数?谁是谁的倍数吗?(让学生自己说一说,进而加深因数倍数关系的认识。)
教师总结:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。因数和倍数不能单独存在。(在课堂上可以不说)
4.展示算式:0×3=00×10=0
进而得出:为了方便,我们在研究因数与倍数时,我们所说的数
是整数,一般不包括0.4、师:出几道乘法算式来考考大家。
11×4=44(答案让学生说,并在过程中告诉学生他们所说的答案正好就是11和4的倍数,11和4是44的因数)
12×5=609×8=725、看来都难不住你们,那老师来考考你们:
18÷3=656÷8=742÷7=6在这三道算式中,谁来说说谁是谁的因数,谁是谁的倍数。
6,加入判断题
(设计意图:为了培养学生思维的逆向性)
(二)找因数:
1、师:在上面的式子中,我们知道了因数与倍数之间的关系,那么现在同学们能说一下12的因数有哪些吗?
12:1,2,3,4,6,12(要从小到大排列)
那么怎样求一个数的因数呢?
出示例1:18的因数有哪几个?怎样才能做到不遗漏不重复呢?学生尝试完成:汇报
(18的因数有: 1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,…;用乘法一对一对找,如1×18=18,2×9=18…)
2、用这样的方法,请你再找一找36的因数有哪些?
老师也写出来了,你们和自己的对比,看看老师的对吗?
汇报36的因数有:1,2,3,4,6,6,9,12,18,36
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
师:在这些因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
请同学们观察一个数的因数有什么特点。
在教师引导下,学生总结出:任何一个数的因数,最小的一定是(),而最大的一定是(),因数的个数是有限的。
(设计意图:培养学生探索、归纳、总结、概括的能力。)
(三)找倍数:
1、我们学会找一个数的因数了,那如何找一个数的倍数呢?2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的?
(生:只要用2去乘
1、乘
2、乘
3、乘
4、…)
那么2的倍数最小是几?最大的你能找到吗?
2、再找3、4、5的倍数。
3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
4的倍数有:4,8,12,16,.....5的倍数有:5,10,15,20,……
(用数轴表示出这些倍数的规律性)
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢? 让学生观察2、3、5的倍数,说一说一个数的倍数有什么特点。
学生试着总结:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
三、课堂小结:
通过今天这节课的学习,你有什么收获?
学生汇报这节课的学习所得。
四、拓展延伸
猜数游戏完美数
五、板书设计
因数和倍数
2×6=123×4=121×12=12 2是12的因数,6也是12的因数
12是2的倍数,也是6的倍数
12的因数有:1,2,3,4,6,12
一个数的最小因数是1,最大因数是他本身。一个数的因数的个数是有限的。
2的倍数有:2,4,6,8,…
一个数的倍数的个数是无限的。一个数的最小倍数是它本身,没有最
大的倍数。
第二篇:因数和倍数教案
因数和倍数
教学目标:
1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重、难点:
1、理解因数和倍数的含义。
2、学会求一个数的因数或倍数的方法。
教学过程设计:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……? 生:父子(父母、母子、母女)关系。师:我和你们的关系是……? 生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、探究新知
(一)学习因数和倍数的概念
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式? 出示:因为2×6=12 所以2是12的因数,6也是12的因数; 12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?(指名生说一说)
4、师:你有没有明白因数和倍数的关系了? 那你还能找出12的其他因数吗?
(二)、学习求一个的因数或倍数的方法。A、找因数:
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有: 1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些? 汇报36的因数有: 1,2,3,4,6,9,12,18,36 师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需 要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
B、找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗? 汇报:2、4、6、8、10、16、…… 师:为什么找不完? 你是怎么找到这些倍数的?(生:只要用2去乘
1、乘
2、乘
3、乘
4、…)那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。汇报 3的倍数有:3,6,9,12
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)5的倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数
3的倍数
5的倍数
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
作业布置:练习三第1题 板书设计:
因数与倍数
因为2×6=12 所以2是12的因数,6也是12的因数; 12是2的倍数,12也是6的倍数。
18的因数有: 1,2,3,6,9,18
36的因数有: 1,2,3,4,6,9,12,18,36
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数
第三篇:因数和倍数教案
五年级数学下册第二单元第一课时因数和倍数教案
教学内容: 新人教版五年级下册p5-8 教学目标: 知识与技能
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的; 过程与方法
1、能熟练地找一个数的因数和倍数;
2、培养学生的观察能力。情感态度与价值观:
1、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
2、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:掌握找一个数的因数和倍数的方法。教学难点:能熟练地找一个数的因数和倍数。教具准备:相关课件 教学过程
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式? 出示:因为2×6=12
所以2是12的因数,6也是12的因数; 12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?(指名生说一说)
师:你有没有明白因数和倍数的关系了? 那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数与倍数)
齐读p5的注意。
二、新课讲授:
(一)找因数:
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
同学尝试完成:汇报
(18的因数有: 1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=„;用乘法一对一对找,如1×18=18,2×9=18„)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些? 汇报36的因数有: 1,2,3,4,6,9,12,18,36 师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几? 看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42„„)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如 18的因数
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的自身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗? 汇报:2、4、6、8、10、16、„„ 师:为什么找不完? 你是怎么找到这些倍数的?(生:只要用2去乘
1、乘
2、乘
3、乘
4、„)那么2的倍数最小是几?最大的你能找到吗?
2、让同学完成做一做1、2小题:找3和5的倍数。汇报 3的倍数有:3,6,9,12 师:这样写可以吗?为什么?应该怎么改呢? 改写成:3的倍数有:3,6,9,12,„„
你是怎么找的?(用3分别乘以1,2,3,„„倍)5的倍数有:5,10,15,20,„„
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示 2的倍数 3的倍数 5的倍数 师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?(一个数的倍数的个数是无限的,最小的倍数是它自身,没有最大的倍数)
三、课堂练习
1、A、一个数的因数和该数的倍数一样,是无限的。()B、因数有最大的,所以,倍数也有最大的。()
C、一个数的最小因数是------,一个数的最大因数------D、一个数最小的倍数是------,一个数有最大倍数吗?
2、请写出各数的因数和5个倍数 17 28 32 48 4 7
3、在下面的圈里填上适当的数
64 36 40 8 4 16 160 32 40的因数 16的因数
四、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
五、独立作业: 完成练习二1~4题
板书设计
因数与倍数
18的因数有:1,2,3,6,9,18.一个数的最小因数是1,最大因数是他本身。一个数的因数的个数是有限的。2的倍数有:2,4,6,8,„。
一个数的最小倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的
教学反思
教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出12的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。进而又让学生说出30和36的因数,达到了巩固练习的目的。又明确了像36当两个因数相等时,只写其中的一个6。这样设计由易到难,由浅入深,符合了学生的认知规律。
第四篇:倍数和因数教案
倍数与因数
教学目标:
1、理解和掌握因数和倍数的概念,认识他们之间的联系和区别。
2、学会求一个数的因数或倍数的方法,能够熟练的求出一个数的因数或倍数。
3、知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。教学重难点:掌握找一个数的因数和倍数的方法;理解和掌握因数和倍数的概念。教学准备:课件,正方形纸片 教学过程:
一、智力竞猜,引入新课
师:这是老师国庆外出游玩拍摄的一张图片,秋高气爽的季节,公园里许多人在划船。看到这里,我想到一个脑筋急转弯:一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(局部同学能猜出三个人分别是爷爷、爸爸、和孙子)师:同学们脑筋转的很快,一下就解决了这个问题。这三个人分别是爷爷、爸爸、和孙子。爷爷、爸爸、孙子的名字分别是韩广发、韩有才、韩韩。请同学以韩有才为中心介绍—下三个人的关系。(同学可能会说出“韩有才是爸爸”,“韩有才是儿子”的语句,这时引导同学说出“谁是谁的爸爸”“谁是谁的儿子”。)
师:上述“父子关系”是一种互相依存的关系,在表述时一定要完整。在生活中除了父子关系是相互依存关系之外,还有例如师生关系,同桌关系等都是相互依存的关系。在数学王国里,在整数乘法中也存在着这样相互依存的关系,这节课,我们一起探讨两数之间的倍数与因数关系。(板书课题:倍数与因数)
二、探究新知(一)认一认
1、师:请同学们拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并在老师准备的草稿纸上写下相应的乘除法算式。
生独立思考,请学生汇报不同的摆法以及相应的乘除法算式。
师总结并用课件展示出学生的摆法。(向学生说明:假如一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让学生将重复的图形和算式去掉。)
2、师:好的,那现在我们一起看乘法算式3×4=12。在这个算式中3和4都是什么数?(乘数)这些乘数与积有什么关系呢?(1)师引导学生理解乘数与积的关系。
(12是3的4倍,12是4的3倍。)
师引出因数与倍数:因为3x4=12,所以12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。或者说12是3和4的倍数,3和4是12的因数。也就是说:在整数乘法:乘数X乘数=积 中,积是两个乘数的倍数,两个乘数是积的因数。
2.课件出示书本第31页例图:运动会上两个班同学分别排出下面两种队形,算一算两班各有多少人?
让学生先观察,再算一算两班各有多少人。学生列式计算,汇报。
追问:你能说出哪个数的是哪个数的倍数,哪个数是哪个数的因数吗?
学生在小组内交流。教师巡视指导学困生。
学生汇报。
教师小结:为了方便,我们在研究因数与倍数时,我们所说的数是整数,一般不包括0.特别要注意的是,我们在说倍数和因数时通常是说“()是()的倍数”或者说“()是()的因数”,所以倍数和因数是相互依存的,不能单独存在。
(二)说一说
1、师:现在大家对倍数和因数的关系了解的怎样了呢?我们一起来看两个小练习。课件出示:25x3=75,,20x5=100.生交流汇报。
2、师:看来大家对倍数和因数的关系已经有了一定的了解了,那谁来说一道乘法算式考考大家。(指名生说一说)
3、让其他学生来说一说谁是谁的因数谁是谁的倍数。(注:可以让几位学生互相说一说。)
4、看来都难不住你们,那老师来考考你们:18÷3=6在这道算式中,谁来说说谁是谁的因数谁是谁的倍数。
(三)议一议
1、师:看来大家都是学习小能手,那能不能请各位小能手帮老师解决一个小问题?
下面哪些数是7的倍数?与同桌交流你的想法。(课件出示)7、14、17、25、77 学生先独立找一找,再与同桌交流想法。学生汇报。
2、引导学生说说自己的想法。
质疑:为什么17和25不是7的倍数?
(因为:17÷7和25÷7不能整除,它们的商是整数还有余数。)
追问:那能不能再找出7的其他倍数来呢?试一试。
学生找一找在小组内交流。
引导学生归纳出:7的倍数有7、14、21、28、35、42······
3、提问:你们是怎么找出来的?(先找7的1倍,就是7x1=7,2倍就是7x2=14,3倍就是7x3=21·····)
追问:你们能找的完吗?(不能)
师明确:一个数的倍数有无限个,最小的倍数就是它本身。
质疑:一个数的倍数有无限个,那一个数的因数的个数也是无限个吗?(不是)请你找出12的所有因数。
师:根据因数的意义我们知道,如果()X()=12,两个数相乘的积是12,那么这两个数都是12的因数。
生独立思考,师巡视指导,并选择有代表性的作品展示。
师:怎样找才能不重复也不遗漏呢?(从1X12=12开始,一对一对的找,并从两端写起)
大家再试试找一找15和16的因数。师小结:一个数的倍数有无限个,最小的倍数是它本身,没有最大的倍数。因数的个数是有限的,最大的它本身,最小是1.也就是说一个数最小的倍数是它本身,最大的因数也是它本身。
三、巩固练习
1、完成教材第32页“练一练”第1题。
学生先独立完成。师巡视指导。小组内交流说一说,学生汇报。
2、完成教材第32页“练一练”第2题。
学生在小组中直接说一说,再让学生在班上说一说。
3、完成教材第32页“练一练”第5题。
学生先找出4的倍数,再找出6的倍数。
让学生理解既是4的倍数又是6的倍数的含义。
四、课堂小结:
通过今天这节课的学习,你有什么收获?
学生汇报这节课的学习所得。
师:今天我们学习了倍数与因数,知道一个数的倍数是无限的,其中最小的是它本身,没有最大的倍数,一个数的因数的个数是有限的,最大的它本身,最小是1.五、布置作业
完成教材第32页“练一练”第3、4题。复习课本第31页。板书设计
倍数与因数
一个数的最小倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。
第五篇:倍数和因数教案
倍数和因数
教学内容:
义务教育课程标准实验教科书(苏教版)数学四年级下册第70—72页
教学目标:
1、使学生结合整数乘、除法运算初步认识理解倍数和因数的意义,探索求一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
2、在探索中,培养学生的观察、分析和抽象概括能力,感受数学知识的内在联系,体会数学内容的奇妙,产生学习数学的浓厚兴趣。
教学重点:
1.正确理解倍数和因数的含义;
2.探求一个数的倍数或因数的方法。
教学准备:
教师:课件、几张数字牌
学生:准备12个正方形卡片
教学过程:
一.操作感知揭示课题
1.提出要求:每个学生拿出事先准备好的12个完全一样的正方形卡片按要求完成:
(1)用这12个正方形拼成一个长方形,你有多少一个数种不同的摆法?(2)每种摆法中,每排摆几个?摆几排?(3)用乘法算式把自己的摆法表示出来。2.教师板书:
4×3=12
6×2=12
12×1=12 3.揭示课题,教师选择 4×3=12,向学生说明12是4的倍数,12也是3的倍数,4和3都是12的因数。4.板书课题:倍数和因数。
5.根据黑板上的另两道乘法算式,指名说说哪个数是哪个数的倍数?哪个数是哪个数的因数?6.学生回答后教师指出:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
7、出示“想想做做”第一题
8.出示辨析题:有一位同学说“18是倍数,3是因数。”可以吗?为什么?
二.自主探究,探究规律
(一)找一个数的倍数
1.探究方法
(1)出示例题:你能找出多少个3的倍数?
(2)教师组织交流答案、方法,当学生出现用省略号表示一个数的倍数有无数个时,教师及时追问:省略号表示什么意思?怎样找3的倍数比较好?
(3)提问:用这种方法找有什么好处?(4)完成第71页“试一试”。
(二)找一个数的因数
2、探究规律
(1)提问:根据找一个数的倍数的规律,你能发现一个数的因数有哪些规律?(2)根据学生的交流归纳:一个数的最小的因数是1,最大的因数是它本身。一个数的因数的个数是有限的。
三:组织练习,加深理解
1、完成“想想做做”第2题。(1)出示第72页“想想做做”第2题。
2、完成“想想做做”第2题。
(1)出示第72页“想想做做”第3题。
(2)提问:表中的“排数”和“每排人数”与24都有怎样的关系?
3、游戏
(1)宣布游戏名称:看谁反应快。
(2)宣布游戏规则:凡是座位号符合以下要求的,请站起来,看谁反应快。(3)宣布游戏内容:
①座位号是5的倍数
②座位号是36的因数,③座位号是48的因数
④座位号是1的倍数,„„
四:全课总结
提问:你通过这节课的学习,①学到了哪些知识?
②掌握了哪些方法?
③理解了哪些结论?
④还有哪些收获?
五:附板书:
倍数和因数
一个数倍数的个数是无限的 3的倍数有:3、6、9、12„„
一个数最小的倍数是它本身
2的倍数有: 2、4、6、8 一个数没有最大的倍数
5的倍数有:5、10、15、20
一个数因数的个数是有限的 12的因数有:1、2、3、4、6、12
一个数最小的因数是
136的因数有:1、2、3、4、6、9、12、18、36 最大的因数是它本身
15的因数有:1、3、5、15 16的因数有:1、2、4、8、16