第一篇:怎样发展学生的数学思维能力
怎样发展学生的数学思维能力
教师:申道富
数学课堂就是教学加活动,课堂上学生是学习的主体,是教学的中心。在小学数学教学中,如何发挥学生的主体意识、合作意识、实践意识,把课堂变为学生学习活动的场所,恰如其分地组织数学活动、发展学生思维,让学生自主地参与生动、活泼的数学教学活动、灵活运用数学知识积极创新,使其个性、潜能得以充分开发,数学能力、数学思想得到充分的发展,是课堂上组织数学活动,发展学生思维能力的主要目标。活动是数学内容的载体和实现教学目标的主要手段,在课堂上要让学生自主地参与活动,通过让学生动手做、动脑想、动口说,使学生在活动中发现问题、探索求新,灵活运用知识解决问题。
一、组织游戏趣味型数学活动,发展学生思维的自主性。
数学课上,如果老师动得多,那么学生可能就只是一个听众,静的机会多,失去了亲身经历的机会,学生的主体地位很难显现出来。教师应通过一系列的活动转化知识的呈现形式,做到贴近实际、贴近生活,培养学生思维的自主性。例如:排队是学生天天都在经历的生活事例,通过排排坐游戏活动,可以使学生自主地了解基数和序数的知识。学习“人民币的认识”这一课,可以通过创设模拟的商场,让学生在组内进行买卖活动,在充满趣味性的自主活动中,学生不仅认识了人民币,而且也学会了简单的兑换。这样,学生在学习中有着更显的自主性。学生实实在在地体会到生活中的数学,切实感受数学与自己学习生活的密切联系,使他们学会用数学的眼光去观察身边的事物。因此,自主参与活动是帮助学生积极思维,掌握知识的法宝。
二、组织知识拓宽型数学活动,发展学生思维的灵活性。
小学数学新课程标准十分强调学生是数学学习的主体,注意让学生运用所学的知识,灵活地解决生活中的实际问题。诱发学生思维的源头就是课堂,在组织数学活动过程中,我们要激活学生的思维,鼓励学生标新立异,只有这样,才能真正学活知识,用活知识。例如:教学“两位数减一位数的退位减法”时,我创设买玩具的活动情景,让学生用36元钱买一件价值8元的玩具,看看还剩多少元?学生通过活动、交流得出了几种不同的计算方法。有的小组认为可以先用10元减8元,再加上没用的26元得28元;有的小组认为可以先用36减6再减2得28元;还有的小组认为6减8不够减就用16减8得8,再加20得28元„„ 经过讨论,学生争着说在不同的情况下,可以用不同的计算方法。我让学生课后用自己想出的计算方法,看看什么时候你会选用什么样的方法。第二天学生兴高采烈地说:我有21元,买文具盒要用6元,我就用10元减去6元得4元,再加11元,就剩下15元了;我有32个珠子,送给弟弟8颗后还有24颗,因为12减8等于4再加20就是24颗了„„ 学生通过在生活中去看、去想,在课堂上议一议、算一算,即拓宽了学生知识视野,又把数学课上获得的知识灵活运用到平时的生活实际中,让学生觉得学了数学非常有用,这样的数学活动,就培养了思维的灵活性。
三、组织探究创新型数学活动,发展学生思维的创造性。
在教学过程中,教师要充分发挥创造性,依据学生的年龄特征和认知水平,设计探究性和开放性的问题,给学生提供自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析、整理过程中,理解数学问题的提出、数学概念的形成和数学结论的获得,以及数学知识的应用。因此开展有组织的数学实践活动,能为学生探索知识形成过程,掌握思维方法提供广阔的思维空间,同时也让学生通过观察、操作、分析、比较、归纳,清楚地发现其本质的内在联系,从而获得知识,并在此基础上有所发展。
例如,教学“角的分类”一课时,我为学生提供了十个角为学具,以小组合作的形式,让学生先量出各个角的度数,然后各小组进行讨论,把十个角进行分类。汇报时,学生各抒
己见,发现划分的标准不一样,得到的种类也不同。在这一操作过程中,培养了学生多角度的创造性思维。当学生按照三角形角的特点分为三类时,我要求学生根据三类角的特点,大胆地为它们取名。学生争着回答,课堂气氛达到了高潮。对于取对名的学生我及时加以表扬,大大树立了学生的自信心。把学生置于主体地位,把学习数学知识转化为数学活动,使学生学得轻松、学得灵活,从而最大限度地挖掘了学生的潜能,激发了学生的创新意识。把活动的时间交给学生,把活动的主动权交给学生,让每个学生的聪明才智充分地得到发挥;把活动的空间留给学生,为每个学生的个性发展创造条件,是数学课组织活动的有效策略。课堂上组织数学活动,改变了一种静态的教学,给了数学课堂一种蓬勃的生机。学生是活泼的个体,在自主参与活动的过程中,给学生动手的机会,思考的空间,创新的余地,让学生灵活的运用数学知识,解决生活中的实际问题。因此,有效的组织丰富多彩的数学活动,发展学生的思维能力,是数学教学的根本
第二篇:强化数学语言教学发展学生思维能力
强化数学语言教学发展学生思维能力
一、用丰富多彩的语言,活跃学生的思维
语言,是知识信息的载体,是人际之间交流思想情感的主要工具。教师的教学语言,是教师进行教学的主要途径,是体现教师主导作用的重要工具,也是提高教学质量好效率的重要条件。因此,我们必须不断地加强学习,在实践中逐步提高自己的语言能力,提高教学的语言艺术性。教师运用形象鲜明、优美流畅、妙趣横生的语言,能激发学生的学习兴趣,吸引学生有意注意,调动学生积极思维,促进学生广泛参与。要做到这一点,就要求教师联系数学知识,抓住“热点、活点、趣点”,正确引导,“点穴到位”,挖掘开发数学知识的趣源,在教学中实施“趣教”。例如:在教学“循环小数”时,教师绘声绘色地讲一个故事:“从前有座山,山上有座庙,庙里有个老和尚,他对小和尚说,从前有座山,山上有个老和尚,他对小和尚说……”然后,让学生接着往下说,教师问学生为什么讲不完?学生兴趣盎然,畅所欲言。又如:在进行“圆”的教学引入时,可以这样设计“传说在公元5-6世纪,英国有位叫亚瑟王的英雄,在招待骑士们时,使用了圆桌;现在的国际会议上也常常使用圆桌,我国现在的绝大多数酒店也使用了圆桌和旋转式圆桌;火车的轮子、汽车的轮胎等等,都是圆形的。圆有什么好处呢,值得人们这么宠爱?”“在我们人类生活的每一个角落,圆都扮演这重要的角色,并成为美的使者与化身。”学生在这些具有较强的感染力的语言指引下,产生了浓厚的兴趣和探究的热情,让他们领略到了数学知识的精彩、美妙和趣味。
二、在规范的数学语言训练中,培养学生思维能力 数学是一门系统性、逻辑性很强,非常严密的科学,应该把科学性放在首位。数学语言的特点是严密、准确、精练、逻辑性强。往往一字之差,会有不同的含义。如“数”与“数学”,“增加”与“增加到”,“数位”与“位数”,“除”与“除以”,“扩大”与“扩大到”等。因此数学教师的教学语言错误,会导致教学失败。语言是思维的外壳,语言与思维发展有着十分密切的联系。准确灵活地掌握了数学语言,就等于掌握了进行数学思维、数学表达和交流的工具。因此,当阅读一个概念、定理或其证明时,必须了解其中出现的每个数学术语和每个数学符号的含义,仔细推敲每一个关键的词汇,明确关键词句之间的依存关系,将抽象的数学问题具体化,从字词句或符号中揭示其本质属性,加深理解。教师在课堂上要注意语言的运用,具体地说,应做到:一是教师的语言必须力求用词准确、简明扼要、条理清楚、前后一致、层次清楚,合乎一般的语法规则和逻辑要求,做到“想得清楚,说得明白,写的干净”。二是教师要使用规范的教学语言。教师的语言对学生来说是一种示范,数学教师必须熟练掌握数学专用术语,对数学定义、定理、公式、法则等数学语言的概括与表述必须准确、恰当、合理、科学。如果教师的数学语言不够准确、规范,会使学生对数学知识产生模糊理解,影响学生对数学语言的正确使用。三是教师要善于将抽象的数学语言“口语”化、通俗化、形象化,数学语言与自然语言互译互释,以便学生理解、掌握数学语言。教师还要注意讲好普通话,尽量避免在课堂上使用地方性语言。标准的发音,娓娓的讲述,会使学生不知不觉地沉浸在课堂中。
1.注重概念教学的数学语言训练。在概念教学中,进行“说”的训练是由直观认识转化为理性认识的桥梁。各种定义、定理、公式、法则和性质等都是通过数学语言来表述的。因此,概念教学必须重视说出本质的训练,一要能举出概念反映的现实原型;二要能叙述概念的内涵与外延,即概念所反映的一类事物的共同本质属性,概念所反映的全体对象;三要能说出表示概念的词语或符号。而对于相近的概念,不仅让学生说出他们的共同点与内在的联系,还要说出这类概念的易混之处。对于学生表述不正确的概念教师要及时进行修正,防止学生对错误认识的定势。
2.注重计算教学的数学语言训练。数与计算是人们在日常生活中应用最多的数学知识,学生在学习计算式过程中,只有明确了算理和算法,才能进行灵活简便的计算,才可能有计算的多样性。因此在计算教学中,让学生说算理、说运算顺序、并要介绍自己的多种算法,以及优化的理由。同时对于计算中的错误,也要让学生说出错误的原因,以及自己的看法。这样加强算理教学,重视说过程,既可以帮助学生巩固所学的计算方法,又能使学生的语言表达流畅,数学语言更为严谨有序,思维更为开阔。
3.注重应用题教学的数学语言训练。在进行应用题教学时,审题是关键,说思路是有效途径,抓数学语言的训练使劲上也是抓思维能力的训练,而应用题最能培养学生的语言条理性。这就鼻息加强语言训练,启动思维,要教会学生认真读题,梳理信息;抓住题中的“关键词语”,浓缩题意、突出问题的本质。通过训练,由此提高学生建立数学模型的能力,培养其数学应用能力。通过口述解题思路,说出自己的想法,填写数量关系式,编应用题,补充条件和问题等进行数学语言的训练,在这样的说理训练中,提高了数学语言的训练,在这样的说理训练中,提高了数学语言表达能力,优化了应用题的教学过程,有利于学生分析数量关系能力的提高,有利于学生逻辑思维能力的培养。
4.注重几何形体教学的数学语言训练。几何形体的教学可以培养学生的空间观念,更能发展学生的口头表达能力。因此,我们在几何形体的教学中要重视学生说的培养。让学生通过讨论、交流说出其特征及生活中的联系,因为它们并不孤立存在,和生活密不可分。形体知识还要重视学生参与公式的推导过程,让学生通过实际操作,口述公式的推导过程,学生通过自己说、同桌说、小组说,人人都能得到“说”的机会,学生的语言表达能力得到协调发展。把知识的获取与发展数学语言有机结合起来,激发了学生对空间的探索欲望,形成几何形体的表象,建立正确、清晰的几何概念,提高正确运用所学知识解决实际问题的能力。
三、在操作中强化数学语言,发展学生思维能力
小学生对食物的认识,是从具体到抽象、从感性到理性、从低级到高级,逐步上升、逐步发展的。到了中高年级,抽象逻辑思维在很大程度上仍要凭借事物的具体形象或表象。在教学中教师要根据儿童这一思维活动特点,充分利用直观教具的演示和学具的操作这一外部活动,手脑结合,发展儿童的数学语言。
如在教学苏教版小学数学三年级下册“轴对称图形”时,通过实物图像的直观性,联系儿童熟悉的事例或已有的知识,来形象地引进新的概念。教学开始时,教师先出示天安门、飞机、奖杯等物体(模型),让学生观察、分析,并说出他们的共同点,尽管天安门、飞机、奖杯都是学生比较熟悉的物体,但要学生发现这三个物体的共同特征仍会有困难,教学时要给予适当的暗示或启发,如把手指或一根小棒放在天安门中央,使学生注意到天安门的左右两边的形状与大小,引出“对称”的概念。并要求学生结合生活经验再找出一些具有对称特征的物体,在小组里交流,如:京剧脸谱、美丽的蝴蝶、开爱的玩具熊等。通过这一环节帮助学生感知对称现象。接着,把上面的物体天安门、飞机、奖杯的一个画面下来,抽象为平面图形,使研究的对象从物体转移为平面图形。然后,组织学生把教材第115页准备的天安门、飞机、奖杯的图形剪下来并对折,要求每个学生至少剪、折两个图形,引导他们自己折一折、比一比、议一议,发现这些图形对折后,折痕两边的部分完全重合。教师演示“部分重合”与“完全重合”的区别,完全重合的两边必定大小一样、形状一样,这是轴对称图形的本质特征,也是概念的重要内涵。再让学生想一想用什么方法判断比较好。以学生为主体,让学生充分的看一看、想一想、折一折、说一说,去亲自感知、亲身体验,经历轴对称图形的探索过程,从而引导学生发现轴对称图形的基本特征,引出轴对称图形的概念。这样有利于学生加深对所学知识的理解。学生通过操作活动,可以丰富性认识,通过用数学语言有条理地叙述操作过程,表述获取知识的思维过程,使儿童的数学语言得到强化,也为概念的形成打好了基础,有发展了学生的数学观察、数学思维等能力,教学因此而有效。
第三篇:小学数学教学怎样培养学生的思维能力
小学数学教学怎样培养学生的思维能力-
培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。下面就如何培养学生思维能力谈几点看法。
1.培养学生的逻辑思维能力是小学数学教学中一项重要任务
思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。
值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。
《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。
2.培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。
(1). 培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。
(2). 培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。
(3). 培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。
第四篇:怎样培养学生几何逻辑思维能力
怎样培养学生几何逻辑思维能力
数学思维能力是数学素质的重要表现,如何在几何课中培养学生的逻辑思维能力是需要认真探索的。几何的学习和研究时时刻刻在概念、判断、推理过程中运动着,而概念、判断、推理是逻辑思维的基本形式,其它知识内容,如性质、定理、公式等无非是一种判断。培养学生逻辑思维能力有利于学生自觉、深刻而牢固地理解和掌握几何知识。然而培养学生逻辑思维能力又是初中几何课教学的一个难点,所以在几何入门阶段,教师应该首先激发学生的学习兴趣,然后从概念、作图、推理这三个环节中着手,重视逻辑思维能力的启蒙,帮助学生打好学习几何的基础。
1、创设情境,激发学生学习几何的兴趣
兴趣是最好的老师,没有学生的学习兴趣,任何教学改革都是搞不好的。于是在学习正课之前,首先上两节预备课,主要谈几何的作用,从古希腊的测地术到今日的高楼大厦,从工农业生产到日常生活,到处都可以看到几何踪影,到处都可以看到数学家的功绩,几何是学习其它学科的工具,更是开发智力,培养逻辑思维能力的新起点,然后介绍几何的发展史,提出一些有趣的几何问题,为学生创设情境,启动思维,从而大大激发了学生学习几何的兴趣。
2、分成三个阶段,逐步培养学生的逻辑思维能力
第一阶段,培养学生的判断能力。这一阶段主要是通过直线、射线、线段、角几部分的教学来培养。要求学生在搞清概念的基础上,通过图形直观能有根据地作出判断,如“对顶角是相等的角”、“两点确定一条直线”、“两直线相交,只有一个交点”,等等。这个阶段,应该看到学生从“数”的学习转入对“形”的研究是很大的变化,而对形的学习开始又接触较多的概念,所以使学生理解所学的概念是一个难点,学生难以适应,不少小学时的优等生适应不了这一转变,以致学习掉队了。解决的办法,主要是注意从感性认识到理性认识,即从感性认识出发,充分利用几何的直观性,再提高到理性认识,从特殊的具体的直观图形抽象出一 1 般的本质属性。并注意用生动形象的语言讲清基本概念。例如讲直线这一概念时,问:你能画一条完整的直线吗?学生感到问题提的新鲜,谁不会画直线呢!有些莫明其妙,我指出:一个人从出生记事之日起,一直到老为止也画不了一条完整的直线,因为直线是无限长的,正因为画不了一条完整的直线,才用画直线的上的一段来表示直线,但决不止这么长!这样学生在开头对直线就建立了向两方无限延伸的印象。又如在学过“角的概念”后,可让学生回答:直线是平角吗?射线是周角吗?在学习“互为余角、互为补角”的概念后,可以问:∠α与90º-∠α互为余角吗?∠β与180º-∠β互为补角吗?并要求用“因为……,所以……,根据……”的模式回答,这能使掌握线与角、角与角的联系和区别的同时,熟悉推理谁论证的日常用语,逐步养成科学判断的习惯。
第二阶段,培养学生进行简单推理论证的能力。这一阶段主要是通过定义、定理、平行线、全等三角形几部分的教学来培养,要求学生能正确地辨别条件和结论,掌握证明的步骤和书写格式。做法是:(1)分步写好证明过程,让学生的括号内注明每一步的理由;“加注理由”的练习题,主要在第二章,这无疑把学生引入逻辑推理的王国,教师在教学中应十分重视它的作用,指导学生认真阅读教材中每个例题,认真完成教材中每一个练习,并强调推理论证中的每一步都有根据,每一对“∵∴”都言必有据,都是有定义、定理、公理做保证的。此外,还要学生象学写作文一样背记一些证明的“范句”,熟悉一些“范例”,做到既掌握证明方法步骤和书写格式,也努力弄清证题的来龙去脉和编写意图。(2)让学生论证一些写好了已知、求证并附有图形的证明题,先是一两步推理,然后逐渐增加推理的步数,主要是模仿证明;(3)让学生自己写出已知、求证、并自己画出图形来证明,每一步都得注明理由。另一方面通过例题、练习向学生总结出推理的规律,简单概括为“从题设出发,根据已学过的定义、定理用分析的方法寻求推理的途径,用综合的方法写出证明过程。
第三阶段,培养学生对较复杂证明题的分析能力。这一阶段主要通过全等三角形以后的教学来培养。要求学生对题中的每个条件,包括求证的内容,要一个 2 一个地思考,按照定义、公理或定理把已知条件一步步推理,得出新的条件,延伸出尽可能多的条件,避免忽视有些较难找的条件,同时不要忽视题中的隐含条件,比如图形中的“对顶角”、“三角形内角和”、“三角形外角”等等。
实践证明,培养学生逻辑思维能力,要有一个较长的过程,初二仅仅是一个开始,不能操之过急,必须有意识、有计划的从简单到复杂循序渐进,使学生逐步学会推理论证的方法。
3、狠抓几何语言训练
“语言是思想的直接现实”候选任何一门学科都有自己待有的语言,数学等别要通过一些符号和字母来表达,它抽象精确、简便,这是数学语言的特点,也是它的优点,要跨入几何的大门,首先就要过好“语言关”,为此,我作了如下训练:(1)要求学生理解和熟记几何常用语。几何教材开始就明确地给了一些常用语,如“直线AB与CD相交于点A”、“直线AB经过点C”,经过即通过,对某些字“咬文嚼字”,加强学生的理解,为了让学生熟记“几何常用语”,经常组织学生在课堂上朗读和学说,以提高他们的口头表达能力。(2)由基本语句画出图形,给出基本语句,要求学生画出图形,把语句和图形结合起来,训练学生熟记语句,如延长线段AB到D使BD=AB,在线段AB的反向延长线上取一点C,使AC=AD,等等。(3)将定义、定理等翻译成符号语言,并画出图形,符号语言能将文字语言与图形结合起来,有利于学生理解几何概念的本质属性,也为文字证明打下基础,如点M是线段AB的中点,翻译成符号语言:AM=BM或BM=1/2AB或AB=2AM=2BM等。(4)编写范句,形成规范的书写:如延长_____到点____,使_____=____。此外,我讲课时,努力做到语言规范化。对几何语言的教学,我是随着几何知识的教学逐步进行,通过培养和训练学生的几何语言,使学生的思维能力在探讨中进一步得以发展。
4、教学中时刻注意几何的学习方法和严格要求
学生初接触几何,不知道应怎样学习,于是在教学中注意教学生怎样学概念、怎样学定理、怎样分析问题、怎样总结几何知识。
几何概念往往是很抽象的,因此引入概念或定理教学时,尽可能从实际事例、模型或学生已有的知识引入,结合分析图形的特征得出几何概念和图形性质,并用文字定义把概念表述出来,这样,使学生对几何图形的认识有实际模型作基础,对概念的理解有几何图形作依据,也就是使学生能够真正抓信几何概念所反映的几何图形的本质属性,在他们使用定义时,即运用概念进行思维或者在口头上或书面中表述的时候,在头脑中能呈现出相应的图形,以及这个图形的基本特征,而不是机械模仿,硬背概念的字句。
几何定理是解答和论证几何问题的重要依据之一,一个定理掌握得好坏,对提高学生解决问题的能力起着重要的作用,在教学中,除了重视定理的引入和证明外,还特别着重讲清怎么样应用定理。一个定理研究完毕之后,除正面给学生举一些满足定理的例子外,同时也给出那些因不具备条件而有适合定理的反例,使学生懂得定理在各方面的应用信息,使其心中有数才能对定理运用自如。在讲课时按逻辑程序,层层深入,不断地提出问题,使学生不断产生“是什么”、“为什么”的定向反射,注意精心创设思维情境和加强对学生的思维训练。总之讲几何概念或定理时,让学生多观察、多思考、多动手,千方百计培养学生分析问题的能力。
几何是一门逻辑性比较严谨的学科,因此要求学生养成良好的学风与科学态度,培养学生课前预习,上课认真听讲,独立思考的习惯;培养学生先复习,后作业,先审题,找思路,后解题,认真完成作业的良好习惯。
实践证明,思维能力的培养并不是完全不可捉摸的,培养学生逻辑思维能力,要有一个较长的过程,不能操之过急,必须有意识、有计划的从简单到复杂循序渐进,使学生逐步学会推理论证的方法。
第五篇:如何提高学生的数学思维能力
在小学数学教学中,如何发挥学生的主体意识、合作意识、实践意识,把课堂变为学生学习活动的场所,恰如其分地组织数学活动、发展学生思维,让学生自主地参与生动、活泼的数学教学活动、灵活运用数学知识积极创新,使其个性、潜能得以充分开发,数学能力、数学思想得到充分的发展,是课堂上组织数学活动,发展学生思维能力的主要目标。活动是数学内容的载体和实现教学目标的主要手段,在课堂上要让学生自主地参与活动,通过让学生动手做、动脑想、动口说,使学生在活动中发现问题、探索求新,灵活运用知识解决问题。
一、组织游戏趣味型数学活动,发展学生思维的自主性。
数学课上,如果老师动得多,那么学生可能就只是一个听众,静的机会多,失去了亲身经历的机会,学生的主体地位很难显现出来。教师应通过一系列的活动转化知识的呈现形式,做到贴近实际、贴近生活,培养学生思维的自主性。例如:排队是学生天天都在经历的生活事例,通过排排坐游戏活动,可以使学生自主地了解基数和序数的知识。学习人民币的认识这一课,可以通过创设模拟的商场,让学生在组内进行买卖活动,在充满趣味性的自主活动中,学生不仅认识了人民币,而且也学会了简单的兑换。这样,学生在学习中有着更显的自主性。学生实实在在地体会到生活中的数学,切实感受数学与自己学习生活的密切联系,使他们学会用数学的眼光去观察身边的事物。因此,自主参与活动是帮助学生积极思维,掌握知识的法宝。
二、组织知识拓宽型数学活动,发展学生思维的灵活性。
小学数学新课程标准十分强调学生是数学学习的主体,注意让学生运用所学的知识,灵活地解决生活中的实际问题。诱发学生思维的源头就是课堂,在
组织数学活动过程中,我们要激活学生的思维,鼓励学生标新立异,只有这样,才能真正学活知识,用活知识。例如:教学两位数减一位数的退位减法时,我创设买玩具的活动情景,让学生用36元钱买一件价值8元的玩具,看看还剩多少元?学生通过活动、交流得出了几种不同的计算方法。有的小组认为可以先用10元减8元,再加上没用的26元得28元;有的小组认为可以先用36减6再减2得28元;还有的小组认为6减8不够减就用16减8得8,再加20得28元经过讨论,学生争着说在不同的情况下,可以用不同的计算方法。我让学生课后用自己想出的计算方法,看看什么时候你会选用什么样的方法。第二天学生兴高采烈地说:我有21元,买文具盒要用6元,我就用10元减去6元得4元,再加11元,就剩下15元了;我有32个珠子,送给弟弟8颗后还有24颗,因为12减8等于4再加20就是24颗了学生通过在生活中去看、去想,在课堂上议一议、算一算,即拓宽了学生知识视野,又把数学课上获得的知识灵活运用到平时的生活实际中,让学生觉得学了数学非常有用,这样的数学活动,就培养了思维的灵活性。[page]-->
三、组织探究创新型数学活动,发展学生思维的创造性。在教学过程中,教师要充分发挥创造性,依据学生的年龄特征和认知水平,设计探究性和开放性的问题,给学生提供自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析、整理过程中,理解数学问题的提出、数学概念的形成和数学结论的获得,以及数学知识的应用。因此开展有组织的数学实践活动,能为学生探索知识形成过程,掌握思维方法提供广阔的思维空间,同时也让学生通过观察、操作、分析、比较、归纳,清楚地发现其本质的内在联系,从而获得知识,并在此基础上有所发展。
例如,教学角的分类一课时,我为学生提供了十个角为学具,以小组合作的形式,让学生先量出各个角的度数,然后各小组进行讨论,把十个角进行分类。汇报时,学生各抒己见,发现划分的标准不一样,得到的种类也不同。在这一操作过程中,培养了学生多角度的创造性思维。当学生按照三角形角的特点分为三类时,我要求学生根据三类角的特点,大胆地为它们取名。学生争着回答,课堂气氛达到了高潮。对于取对名的学生我及时加以表扬,大大树立了学生的自信心。把学生置于主体地位,把学习数学知识转化为数学活动,使学生学得轻松、学得灵活,从而最大限度地挖掘了学生的潜能,激发了学生的创新意识。把活动的时间交给学生,把活动的主动权交给学生,让每个学生的聪明才智充分地得到发挥;把活动的空间留给学生,为每个学生的个性发展创造条件,是数学课组织活动的有效策略。课堂上组织数学活动,改变了一种静态的教学,给了数学课堂一种蓬勃的生机。学生是活泼的个体,在自主参与活动的过程中,给学生动手的机会,思考的空间,创新的余地,让学生灵活的运用数学知识,解决生活中的实际问题。因此,有效的组织丰富多彩的数学活动,发展学生的思维能力,是数学教学的根本。