第一篇:OLED有机光电材料
一、全球OLED产业概况
有机发光显示器(Organic Lighting Emitting Display,OLED)是指有机半导体材料在电场作用下发光的技术,OLED为全固态结构,主动发光,无需背光源,被业内人士称为“梦幻般的显示技术”,是最有发展前景的新型显示技术之一,也是国际上高技术领域的一个竞争热点。与液晶显示器(LCD)相比,OLED具有许多优点,如高亮度、高对比度、超轻期薄、响应时间短、无视角限制、低功耗、抗震性能好、工作温度范围宽、能实现柔软显示等。根据驱动方式不同,OLED可分为2种,一种是无源驱动型OLED(PMOLED),一种是有源驱动型OLED(AMOLED)。目前,全球中、小尺寸PMOLED技术现已成熟,产品主要应用于手机副屏、MP3、仪器仪表等,预计未来全球PMOLED的年出货量将维持在5000万支左右。AMOLED显示市场也呈现出强劲的发展势头,中小尺寸的AMOLED技术日益成熟,诺基亚、LG、三星已推出了多款AMOLED屏手机,索尼、LG也都相继推出了其AMOLED电视。三星移动显示(Samsung Mobile Display)部门科技长Sang-Soo Kim
在2010年5月25日由信息显示学会(Society for Information Display,SID)所举办的年会上发表主题演讲时指出,AMOLED可望在2015年成为大尺寸电视机的主流技术。Kim表示,AMOLED可望继LED、3D技术之后成为电视机市场的成长动能来源,届时采用的生产线将由目前的4.5代跃升至8代。在移动显示应用方面,Kim预估OLED的渗透率将由2010年的8.2%跳升至2015年的53%。由于具有可大面积成膜、功耗低等特性,OLED还是一种理想的平面光源,在节能环保型照明领域具有广泛的应用前景。随着技术的不断成熟,OLED照明市场现在已经开始启动,国外3大照明公司欧司朗(OSRAM)、飞利浦(Philips)、通用电气(GE)都有OLED照明的量产计划。根据权威市场调研机构Display Search2009年 发布的数据预测,预计2016年OLED在显示领域的产值将达到87亿美元,在照明领域的产值将达到60亿美元。实现大尺寸OLED技术的突破和产业化是未来OLED产业的发展趋势 目前全球OLED技术较为发达的国家和企业都给予OLED产业充分的重视比如日本、韩国等国政府都给予了本国OLED产业巨大的支持;全球显示领域的主要企业,如三星、LG、索尼等均对OLED技术及其未来应用十分重视,投入巨资进行技术和产品开发并取得了 初步成果,并试图通过掌握核心技术来推动本国OLED产业的迅猛发展。
二、我国OLED产业发展现状
我国从20世纪90年代开始进行OLED材料、器件以及量产工艺的研发。在过去几年里,我国OLED技术研究水平上升很快,介入的科研机构和企业也越来越多,主要包括清华大学、华南理工大学、吉林大学、上海大学、南京邮电大学、中国科学院长春光学精密机械与物理研究所、中科院化学所、昆山维信诺显示技术有限公司(以下简称“维信诺公司”)、四川虹视显示技术有限公司、彩虹集团、上海天马微电子有限公司、京东方科技集团股份有限公司、广东中显科技有限公司等。其中,以清华大学和维信诺公司为代
表的一批科研院校和企业通过不断创新实现了多项OLED技术的突破,使我国OLED整体技术达到国际先进水平,并且在多项关键技术方面达到了国际领先水平,例如清华大学成功解决了高亮度、抗电磁干扰、抗震动和抗力学冲击等关键技术问题,将OLED经过多年的不懈努力,我国OLED产业实现了全套量产工艺的开发,大规模产业化由理想变为现实。清华大学和维信诺公司、四川虹视显示技术有限公司、彩虹集团也相继投建了PMOLED生产线,并且已经取得了阶段性的成果。例如,2008年,清华大学和维信诺公司依靠自主技术建设的国内第一条PMOLED大规模生产线在江苏昆山建成投产,标志着中国新型平板显示技术领域通过多年的自主创新,已取得重大突破,显示产业由“中国制造”开始走向“中国创造”。发展大尺寸AMOLED、OLED照明、OLED柔性显示是未来全球OLED产业发展的重点和热
点。在OLED柔性显示方面,清华大学和维信诺公司对柔性OLED材料、器件结构及基板技术进行了系统研究,制备了基于塑料基板的柔性OLED显示器件及照明器件,并采用特殊的表面平整化技术和透明电极结构设计,制备了基于不锈钢基板的红、绿、蓝柔性OLED器件;苏州大学和华南理工大学也推出了柔性OLED显示器件。在照明领域,清华大学、维信诺公司、苏州大学、吉林大学、华南理工大学、中国科学院理化技术研究所、中科院长春应用化学所等都在开展OLED白光技术的研究。由清华大学和维信诺公司开发出的OLED白光照明器件在1000cd/m2初始亮度下,寿命超过10万h,为国际最高水平之一。2009年,维信诺公司率先在国内推出了OLED照明灯具,也是国际上继欧司朗光电半导体公司后推出OLED照明灯具的单位之一。维信诺公司计划在2~3年内实现OLED照明产品的大规模生产。在中大尺寸AMOLED方面,维信诺公司、上海天马微电子有限公司、彩虹集团、京东方科技集团股份有限公司、四川虹视显示技术有限公司等国内多家企业都在开展AMOLED技术和产业的布局。维信诺公司与昆山工研院共同合作于2010年5月建成了大陆第一条AMOLED中试生产线,并计划在未来的两三年内实现大尺寸AMOLED的规模化生产。未来中国本土生产的OLED显示屏将不仅能用在手机、MP3等中小尺寸产品上,还可将触角延伸至笔记本电脑甚至是高清彩电等更广阔的领域。
在全球OLED技术竞争加剧和加速产业化的背景下,我国OLED产业的发展正处于前所未有的战略机遇期。未来中国OLED产业要与全球OLED产业齐头并进,必须要充分发挥企业、科研院所和政府的作用。企业应把自主创新、增强企业的核心竞争力放在首位;科研院所 在重点进行创新成果研发的同时,要更关注创新成果的转化;政府则应从战略的高度重视OLED技术及产业,大力支持重点企业。最终,通过产学研政合力抢占全球OLED产业发展的制高点。及早介入占领高端历史上我国显示产业两次错失发展良机,而OLED技术带来了新的机遇。我国在OLED技术研发和产业化方面与国际基本同步,这为我国OLED产业的进一步发展创造了机会。技术和产业化成绩的取得并不意味着中国OLED产业的发展可以高枕无忧。相反,作为一项新兴产业,OLED还面临很多风险和挑战。成熟期的TFT-LCD产业对新兴的OLED产业的打压、国际产业发展制高点的白热化竞争使我国OLED产业发展面临行业挑战和国际竞争的双重挑战。因此,我国OLED产业发展的时机就显得尤为重要。
TFT-LCD产业的发展经验表明,一旦技术的产业化可行性得以证明,越早介入产业,越容易形成技术路线、标准锁定和拥有排他性的知识产权,从而占领价值链的高端位置。现在我国已经实现了小尺寸OLED技术的大规模产业化,未来OLED产业需要加速推进在大尺寸等前沿领域的产业化进程,在整体市场供不应求的情况下获得良好的利润收益,步入良性发展的轨道。以 4.5代AMOLED生产线为例,若2013年以前能够建成,预计投资人民币50亿元,产值将达到约60亿元,投资者可利用回笼资金推动产业滚动持续发展。如果相反的话,投资和生产线建设延迟,将有可能陷入到成本竞争、价格下降、利润下滑、投 资回报慢的境地,进而严重影响投资者信心和企业的后期发展。
自主创新为核心动力今后,我国的OLED产业要想赢在全球产业发展的起跑线上,必须抓住全球OLED产业起步这一重要的机遇期,把自主创新作为产业发展的核心动力,充分 调动产学研政各方面的作用,合力推动产业的发展。为此建议如下:
第一,要增强依靠创新发展产业的信心,从源头重视创新。在发展OLED这一新兴产业的进程中,需要树立依靠自主创新发展产业的信心,结合OLED产业发展的具体实际情况,从技术和产业发展的源头上进行创新,建立完善的创新
第二,发挥科研院所的作用,注重创新成果的转化。科研院校在基础性原始创新、高新技术与应用技术研发和科技人才培养中扮演着重要的角色。目前,国内有很多高校和科研院所都在进行OLED相关技术的研究,并取得了一系列成果。今后应进一步发挥科研院所在OLED产业发展中的作用,正确处理好基础研究和应用研究的关系,建立良好的创新成果转化机制,充分发挥科研院所和企业在技术创新和产业发展中的作用。
第三,将OLED产业发展上升到国家战略层面。OLED产业在国际范围内的竞争已不单是企业间的竞争,更体现为国家间的竞争。未来应将OLED产业的发展纳入国家战略,从最高层面设计我国OLED产业化的道路,制定OLED产业发展国家战略和计划,多部门政策联动,出台明确、更具操作性的支持计划,引导产业整体发展方向和发展模式,成立国家层面的专家委员会。
第四,建立国家级的创新平台,加大OLED在大尺寸、照明、柔性等核心前沿技术的布局。第五,政府以适当的方式解决企业产业化的投资需求,培育出具有国际竞争力的领军企业,打造完善产业链。要实现我国OLED产业的跨越式发展,单纯依靠个别企业的努力很难带动 整个产业的快速发展。因此从宏观层面上对整个OLED上下游的布局异常重要。建议制定引导性关键技术计划,在科学论证、统筹规划的基础上,加强对OLED产业的宏观调控措施,培育OLED上游原材料和设备产业的发展,催生国内OLED产业链的成熟。
中国OLED联盟在惠州成立为有效整合产业资源加快突破核心技术加强行业交流与协作提升产业整体实力共同促进我国产业持续健康发展在工业和信息化部国家发展改革委的指导下经过年多时间的酝酿筹备由国内家企事业单位共同发起的中国产业联盟于今年月日在广东惠州正式宣布成立工业和信息化部杨学山副部长广东省佟星副省长国家发改委高技术产业司李新副处长惠州市有关究成的有机领导以及联盟成员单位代表参加了中国产业联盟成立大会相关兄弟协会及企业媒体等各界嘉宾共百余人共同见证了这一重要时刻中国产业联盟是由积极投身于产业从事产品及应用的研究开发制造服务的企事业单位及有关机构自愿组成的非营利性的全国性社会组织家发起单位涵盖了有机材料专用装备显示器件整机应用等在内的全产
成立大会上四川长虹电器股份有限公司董事长赵勇作为联盟联合主席之一代表联盟宣读了成立宣言向社会承诺联盟将以推动中国OLED产业进入世界先进水平为己任整合国内产学研各方面资源聚集材料装备器件整机全产业链优势合理布局统筹开展核心技术
研发做好上下游配套构建完善的标准和知识产权体系引领未来显示技术进入千家万户。彩虹筹建4.5代QLED试验线在三星电子投资21亿美元建设的5.5代AM-OLED面板生产线提前量产后国内OLED行业的追赶步伐也在加快6月9日彩虹股份发布公告称其控股子公司彩虹(佛山)平板显示有限公司拟自筹3.15亿元资金建设AM-OLED面板中试线项目并拟发行16亿元短期融资券据悉作为全国最大的显像管厂商彩虹集团早在2004年香港上市后就筹备战略转型彩虹股份此前多次融资投资了合肥和张家港的第6代液晶玻璃基板项目加上之前在咸阳投资的第5代液晶玻璃基板项目彩虹集团在液晶玻璃基板领域的投资显然已经有了不错的效果而今年彩虹股份还与佛山市顺德区诚顺资产管理有限公司签署合资协议共同出资设立彩虹(佛山)平板玻璃显示有限公司(以下简称佛山玻璃公司)投资建设8.5 代液晶玻璃基板生产线项目期待为广州LGD或深圳的华星光电进行玻璃基板项目的配套市场调查机构Displaysearch大中华区副总裁谢勤益透露液晶玻璃基板特别是高世代液晶玻璃基板的技术门槛很高彩虹此前的5代液晶玻璃基板的良品率都偏低
彩虹股份公司董事会认为建设中试线项目符合公司发展战略可提升公司在业内的龙头地位同时该项目的建设可减少代生产线投资的技术产品和市场风险彩虹集团在佛山的三期项目
计划总投资将超过亿元可见其在上的决心不过谢勤益表示在大尺寸面板的核心技术领域三星电子有着明显的优势而且绝对不会出让技术所以彩虹等国内企业要
想有所突破很难而且中国企业很容易陷入液晶面板领域被动追赶的局面而为了缩小与三星的差距包括长虹彩虹在内的家国内厂商月初在惠州成立了中国产业联盟试图通过联合 研发来追赶三星等韩国厂商不过三星电子的第代线面板试验线已经在建设中中国企业 这次能追上吗
三星抢占高地
在三星电子苏州代液晶面板生产线举行开工仪式后一天月日三星移动显示公司三星电子与三星的合资公司宣布其在韩国投资21亿美元建设的5.5代有机电子发光面板生产线已提前两个月进入量产更令液晶面板界恐慌的是6月2日三星移动显示宣布其第8代AM-OLED面板试验线将于明年月投入使用可以切割英寸英寸等大尺寸面板三星计划将面板的使用领域从智能手机平板电脑延伸到电视等领域OLED面板其未来3-4 年在大尺寸OLED领域的投资总额有望超过千亿元。三星电子的5.5代OLED面板生产线投产是确实的但其8代OLED线能否产业化还是个未知数国内液晶面板企业京东方副总裁张宇在接受电话采访则表示但是我们比较清楚的就是其原来提出的10代 11代液晶面板生
产线计划纯粹是忽悠人的据悉三星电据悉三星电子之所以之前宣布跟进夏普的10代线计划其实是为了在其拥有绝对技术优势的OLED大尺寸研发上赢得时间。也是为了让中国大陆和台湾地区的液晶面板生产商愿意继续投资高世代液晶面板从目前来看这一声东击西的战略已经起到了效果谢勤益指出目前在大尺寸AM-OLED面板领域即便是LG电子也无法取得突破而三星电子已成功将高世代液晶面板的投资转移到中国苏州等地今年5月还大幅削减与索尼的液晶面板合资公司S-LCD的资本金显然三星电子在下一代显示技术领域已经占据了高地
2.液晶面板业危机
目前大尺寸OLED面板技术还有很多技术瓶颈良品率的提升基板工艺过于昂贵使用寿命还有待提高等谢勤益介绍第八代OLED面板工厂只要能达到七成左右的良品率 OLED价格就可降到与液晶面板相抗衡目前OLED良品率还不到50% 三星预测最早2013-2014年
可以实现良品率70%的目标随着良品率提高三星电子还计划在试验线中将昂贵的低温多晶硅基板工艺换成下一代工艺甚至计划将已折旧完毕的八代液晶面板厂改装生产OLED 将成本进一步降低至液晶面板的45%三星电子有关人士向记者透露与高世代液动辄40亿美元的投资规模相比在现有8代线基础改造每条8代OLED面板生产线的成本要减少到1
亿美元台湾工研院的一份研究报告指出一旦三星(基板尺寸为2.2m 2.4m)OLED生产线投产台湾的板行业将面临灭顶之灾总产值上兆元雇用数十工的产业将灰飞烟灭耗资千亿元的精密设备顿时铁加上数千亿元的银行贷款变为呆账同样的危机也在影响着大陆的面板行业因的高世代液晶面板生产线完全投产都需等到2012年其资产折旧还需要6-7年时间一旦大尺寸OL技术取得突破国内面板行业的压力可想而知不过张宇表示三星刚刚在苏州投资了7.5代线大陆的液晶面板行业至少还有一个资产折旧周期的好日子所以不要过度担心OLED技术的冲击但是5代以下的液晶面板生产线可能在短期内就会受到冲击三星在大尺寸OLED领域的技术优势非常明显台湾及其他面板商要想通过购买技术专利来进
入这一高门槛领域非常艰难虽然台湾和大陆很多企业都杀入了小尺寸OLED面板领域但 是在大尺寸领域要想突破依然很难友达全球执行副总彭双浪说不过下游的苹果等平板电脑巨头也不希望三星在OLED领域一家独大所以台湾企业还是有机会的中国大陆的彩虹集团长虹集团上海天马等已经开始在OLED领域布局而京东方也计划投资建设小尺寸的OLED面板生产线但均为4代以下
3.三星将开发柔性OLED电视虽然目前的OLED屏可实现超薄弯曲特性但是它只限于小型显示屏未来真正使用到像
第二篇:有机光电材料研究进展..
有机高分子光电材料 课程编号:5030145 任课教师:李立东 学生姓名:李昊 学生学号:s20130447 时间:2013年10月20日 有机光电材料研究进展 摘要:本文综述了有机光电材料的研究进展,及其在有机发光二极管、有机晶体管、有机太阳能电池、有机传感器和有机存储器这些领域的应用,还对有机光电材料的未来发展进行了展望。关键词:有机光电材料;有机发光二极管;有机晶体管;有机太阳能电池;有机传感器;有机存储器 Abstract: This paper reviewed the research progress in organic optoelectronic materials, and its application in fields of organic light emitting diodes(OLED), organic transistors, organic solar cells, organic sensors and organic memories , but also future development of organic photoelectric materials was introduced.Keywords:organic optoelectronic materials;organic light emitting diodes(OLED);organic transistors;organic solar cells;organic sensors;organic memories 0.前言 有机光电材料是一类具有光电活性的有机材料,广泛应用于有机发光二极管、有机晶体管、有机太阳能电池、有机存储器等领域。有机光电材料 通常是富含碳原子、具有大π共轭体系的有机分子,分为小分子和聚合物两类。与无机材料相比,有机光电材料可以通过溶液法实现大面积制备和柔性器件制备。此外,有机材料具有多样化的结构组成和宽广的性能调节空间,可以进行分子设计 来获得所需要的性能,能够进行自组装等自下而上的器件组装方式来制备纳米器件和分子器件。近几年来,基于有机高分子光电功能材料的研究一直受到科技界的高度关注,已经成为化学与材料学科研究的热点,该方面的研究已成为21世纪化学、材料领域重要研究方向之一,并且取得了一系列重大进展。1.有机发光二极管 有机电致发光的研究工作始于 20 纪 60 年代[1],但直到 1987 年柯达公司的邓青云等人采用多层膜结构,才首次得到了高量子效率、高发光效率、高亮度和低驱动电压的有机发光二极管(OLED)[2]。这一突破性进展使 OLED 成为发光器件研究的热点。与传统的发光和显示技术相比较,OLED具有低成本、小体积、超轻、超薄、高分辨、高速率、全彩色、宽视角、主动发光、可弯曲、低功耗、材料种类丰富等优点[3],而且容易实现大面积制备、湿法制备以及柔性器件的制备。近年来,OLED技术飞速发展。2001年,索尼公司研制成功 13 英寸全彩 OLED 显示器,证明了 OLED 可以用于大型平板显示。2002 年,日本三洋公司与美国柯达公司联合推出了采用有源驱动OLED显示的数码相机,标志着OLED 的产业化又迈出了坚实的一步。2007年,日本索尼公司推出了11英寸的OLED彩色电视机,率先实现OLED在中大尺寸、特别是在电视领域的应用突破。
图 1 各大公司和研究机构展示的最新开发的OLED样品(自左至右:美国 GE大面积白光光源;韩国三星大面积超薄平板显示;日本先锋柔性显示器;德国弗劳恩霍夫应用研究促进协会透明 OLED)Figure 1 The latest samples of OLED exhibited by companies and research institutions 除了在显示领域的应用,白光OLED作为一种新型的固态光源也得到了广泛关注。2006年,柯尼卡美能达技术中心开发成功了1000 cd/m2 初始亮度下发光效率 64 lm/W、亮度半衰期约1万小时的OLED白色发光器件,展示了OLED在大面积平板照明领域的前景。目前WOLED最高效率的报道来自德国Leo教授的研究组[4],他们采用红、绿、蓝三种磷光染料,并采用高折射率的玻璃基板提高光取出效率,得到了1000 cd/m2下效率124 lm/W 的白光器件,效率超过了荧光灯。但是迄今为止, 可溶液处理的蓝光材料相比于红光[5-7]和绿光[8-9]材料, 无论是发光效率、寿命,还是色纯度都与前两者相去甚远, 这样不仅制约了电致发光平板显示器的实用化, 还影响了作为光源的白光OLED的开发进程。因此, 开发高度可溶、高效的蓝光材料成为今后白光OLED开发过程中的重中之重。OLED器件的基本结构为叠层式结构, 目前最优的结构如图2所示, 含空穴注入、传输层与电子注入, 传输层有助于提高器件的效率和使用寿命。叠层式OLED的概念是由Kido教授于2003年首先提出的,将多个OLED通过透明的连接层串联在一起,可以在小电流下实现高亮度,器件的寿命也大幅度提高[10]。2004年廖良生与邓青云等人[11]利用n型和p型掺杂的Alq3:Li/NBP:FeCl3 结构作为连接层,在堆叠的周期数目为3时实现了130cd/A的高效率。2008年,廖良生报道HAT-CN/Alq3:Li 的连接层可进一步降低驱动电压并提高了器件的稳定性,使得叠层器件达到了可实用化的水平[12]。图2 叠层式OLED结构 Figure 2 Stacked OLED structure 总体来看,未来OLED的方向是发展高效率、高亮度、长寿命、低成本的白光器件和全彩色显示器件,由于一般的有机小分子面临着易结晶、难以制备大面积平板显示器等缺点,因此开发高性能可湿法制备的小分子OLED材料是降低成本的关键。高稳定性的柔性OLED能充分体现有机光电器件的特点,但相关基板技术、封装技术都是亟待解决的问题。今后的研究将主要集中在用溶液法制备器件、对器件结构进行优化、发光层掺杂以及各层新材料的开发。2.有机晶体管材料和器件 有机晶体管材料是一类具有富含碳原子、具有大π共轭体系的有机分子,也可称作有机半导体材料。按照传输载流子电荷的类型可以分为 p 型(空穴)和 n 型(电子)半导体。与无机晶体管相比,有机晶体管(OTFT)[13]具有下述主要优点:有机薄膜的成膜技术更多、更新,如Langmuir-Blodgett(LB)技术、分子自组装技术、真空蒸镀、喷墨打印等,从而使制作工艺简单、多样、成本低;器件的尺寸能做得更小,集成度更高,分子尺度的减小和集成度的提高意味着操作功率的减小以及运算速度的提高;以有机聚合物制成的晶体管,其电性能可通过对有机分子结构进行适当的修饰而得到满意的结果;有机物易于获得,有机场效应管的制作工艺也更为简单,它并不要求严格的控制气氛条件和苛刻的纯度要求,因而能有效地降低器件的成本;全部由有机材料制备的所谓“全有机”的晶体管呈现出非常好的柔韧性,而且质量轻,携带方便。有研究表明,对器件进行适度的扭曲或弯曲,器件的电特性并没有显著的改变。良好的柔韧性进一步拓宽了有机晶体管的使用范围。并五苯是目前在有机晶体管中应用最广的有机半导体材料,其薄膜的载流子迁移率 可以达到 1.5 cm2/Vs[14]。对并五苯分子进行修饰是目前有机半导体研究的一个重点。2003 年 Meng 等人[15]制备了 2, 3, 9, 10-四甲基取代并五苯,它的晶体排列与并五苯几乎一样,但是由于甲基的引入,显著降低了分子的氧化电位,改善了从金电极到有机半导体的电荷注入。2009 年,美国 Polyera 公司的Yan等开发了新型的基于萘二甲酰亚胺(naphthalene-dicarboximide)和北二甲酰亚胺(perylenedicarboximide)的聚合物,电子迁移率高达 0.85 cm2/Vs,该聚合物弥补了目前n型有机半导体材料的空白[16]。在2010年的SID上,索尼发布了一款 4.1寸OTFT驱动全彩OLED屏,该屏幕厚度只有80μm,具备极强的柔软度,可轻松缠绕在半径为4mm的圆柱体上。索尼独自开发了新型OTFT有机薄膜晶体管,它使用的有机半导体材料为peri-Xanthenoxanthene 衍生物[17],该晶体管的驱动力达到先前传统OTFT的八倍。图3 并五苯的结构 Figure 3 The structure of pentacene 相对于多晶薄膜晶体管,有机单晶晶体管具有更高的载流子迁移率,可以满足高端领域的需求。近年来,随着有机单晶制备技术的提高,在单晶晶体管研究方面出现了一系列新的突破。目前采用红荧烯制备的单晶晶体管,载流子迁移率超过15cm2/Vs[18],优于传统的无机半导体多晶硅的水平。图4 红荧烯的结构 Figure 4 The structure of rubrene 2006年,鲍哲南等人[19]成功的制备了并五苯和红荧烯的单晶阵列,并在此基础上组装了晶体管器件。他们首先采用印章法,在 Si/SiO2 基底上制备一层图案化的十八烷基氯硅烷(OTS),然后在此基底上采用真空蒸镀的方法制备并五苯、红荧烯、C60 等有机半导体。采用这种方法制备的晶体管器件阵列,并五苯的载流子迁移率为 0.2 cm2/V,开关电流比为 106;红荧烯的载流子迁移率为 2.4 cm2/Vs,开关电流比为 106。虽然有机半导体材料的研究取得了巨大进展, 但仍有许多问题需要解决, 主要包括: 有机半导体材料大多数为p型, n型的较少, 材型过于单一;具备高迁移率且在空气稳定存在的半导体材料缺乏;大多数有机半导体材料难溶且不易熔化, 很难使用溶液成膜技术制备器件;设计合成具有双极性传输性质的有机半导体材料.尽管OTFT还存在一些问题, 但OTFT具有质轻、价廉、柔韧性好等优点, 在各种显示装置以及存贮器件方面显示了较好的应用前景.随着研究的不断深入, 其良好的应用前景必将显现出来, 并有望成为电子器件的新一代产品。3.有机太阳能电池的发展 有机太阳能电池以其材料来源广泛、制作成本低、耗能少、可弯曲、易于大规模生产等突出优势显示了其巨大开发潜力, 成为近十几年来国内外各高校及科研单位研究的热点。但是与无机硅太阳能电池的光电转换效率相比[20],有机太阳能电池的光转换效率仍停留在比较低的水平上,这限制了其市场化进展。因此,有机太阳能电池的研究核心是提高电池的光电转换效率。通过设计合理的器件结构、改善界面形貌、提高聚合物晶化程度等方法,有机太阳能电池的光电转换效率有了很大的提高。为了更有效的利用太阳光中的红外部分,目前对窄带隙聚合物有机半导体的研究也开始引起人们的 关注,成为有机太阳能电池的一个新的热点,通过 采用苯并二噻吩类窄带隙聚合物,UCLA 的 YangYang 小组实现了光电转换效率超过 7 %的有机太阳能电池[21]。·· 有机太阳能电池的分类方法较多, 按照有机半导体层材料的差别, 可分为3 类: 单质结结构有机太阳能电池、p-n 异质结结构有机太阳能电池、p-n 本体异质结结构有机太阳能电池。1991年,Gratzel[22]提出了一种新型的使用羧酸 联吡啶钌(Ⅱ)配合物敏化二氧化钛多孔纳米光阳极的光伏电池—染料敏化太阳能电池(Dye Sensitized Solar Cell,DSSC),为光电化学电池的发展带来了革命性的创新。染料敏化太阳能电池当前的最高效率是 11.04%[23],仍有大幅度提高的余地。改进方向: 新型、合适敏化剂的探索、制备工艺的改进及纳米化薄膜化的研究。有机太阳能电池的研究现状及成熟程度相对与无机太阳能电池具有很大差距, 因此可以借鉴研究无机材料的成熟技术及研究思路等推进有机光伏材料的研究进展, 并应用于器件, 通过优化器件结构、改善材料性质等提高有机太阳能电池的综合性能。如无机太阳能电池的高光电转换效率和p-n 掺杂都曾给了有机太阳能电池很大启发, 后来出现的双层异质结和本体异质结等都是基于此产生的。同时, 有机材料与无机材料各有其优缺点, 充分利用这2种材料优点制备有机/无机复合材料而应用于有机太阳能电池, 将成为以后研究的热点。染料敏化太阳能电池在目前研究众多的有机太阳能电池中具有较高的转化效率,可能成为又一个热点。此外,纳米材料因是由超微粒组成, 且这些微粒边界区的体积大约是材料总体积的50%, 因此利用纳米材料[24]组装有机太阳能电池, 其特殊结构可能会使有机太阳能电池的研究产生较大进展。4.有机传感器 基于有机晶体管的有机传感器可以广泛的应用于化学和生物领域,用来检测化学物质和生物大分子。相比于传统的传感器,有机晶体管传感器的优点在于体积小、易于实现阵列化、便于携带、价格低廉。此外,有机晶体管传感器的响应信号通常是 电流信号,便于测试。与其他化学传感器相比,有机晶体管传感器的优点还在于能够提供更多的电学信息,例如有机薄膜的电导率、场效应电导率、阈值电压、场效应迁移率等。从待测物的形态来分,可以把有机晶体管传感器分为两类,即气体传感器和液体传感器。未来有机晶体管传感器的发展是进一步提高器件的响应速度、检出限以及稳定性。随着有机晶体管技术的发展,尤其是柔性化、阵列化、图案 化技术的不断进步,有机晶体管传感器也将随之发展,有望实现柔性传感器[25]和多种样品同时在线分析,成为名符其实的“电子鼻”。5.有机存储器 对于某种特定材料的薄膜,两边加电压,当场强达到一定值时,器件可能由绝缘态(0)转为导电态(1)。通过某种刺激(如反向电场、电流脉冲、光或热等)又可使器件由(1)态恢复到(0)态。这种器件被称之为开关器件。当外加电场消失时,0 或 1 状态能够稳定存在,即具有记忆特性,成为存储器件。相对于传统的硅存储器,有机存储器有着易加工、低成本、可做成大面积、可制备柔性器件、可实现三维存储(高存储容量)等诸多优点。2005年Yang等人[26]发现有机薄膜的纳米粒子间电荷转移引起的电导率突变也可用于存储。以 聚苯乙烯作为主体,掺入 6,6-苯基-碳61-丁酸甲脂(PCBM)作为电子受体、四硫富瓦烯(TTF)作为 电子给体,通过甩膜制备成二极管器件。对器件施 加从 0 到 2.6 V的电压,在 2.6 V附近,电流从 10-7A 迅速升高到 10-4 A,即从低电导态(关)升高到高电导态(开)。转变之后,器件保持在高电导态,实现 了信息的写入。通过施加一个较高的电压,电流从10-4 A 降低到 10-6 A,可以擦去写入的信息。同基于晶体管结构的三极有机存储器相比,二极存储器具有结构简单、易于集成、能够充分发挥有机材料特点等优势,因而二极有机储存器将有可能成为今后发展的主流。有机存储器的另一个发展趋势是与纳米技术相结合,实现纳米器件乃至分子器件的组装,提高存储密度。6.结论与展望 在21世纪,有机光电材料的研究将会有不断的发展和突破。在今后几年,预计会围绕下列问题开展研究:从有机光电活性材料和无机光电材料本质上的异同点出发,建立并发展有机光电材料能带理论;基于结构与性能相关性的研究,通过制备新材料,进一步优化材料性能;研究影响材料性能稳定性的因素,探索提高光电性能持久性的途径;近期内在对称共轭结构双光子吸收方面的研究有望得到新型光敏性有机材料,带有C60链节的聚合物的研究有望得到具有光电导性和三阶非线性的聚合物材料;在技术方面,材料加工、器件制作技术及提高成品率的技术保障、延长器件使用寿命等方面的进步将导致更多有机光电材料的实用化和产业化,有机信息材料的发展将为突破无机材料集成度极限提供物质基础,如硅基半导体集成电路极限为线宽0.1чm,有机聚合物分子导线比此极限小几个数量级;从电子信息传输向光子信息传输的转变等信息科学的发展将对光电材料提出新的要求,同时将促进有机光电材料的发展。有机光电材料以其响应速度快、存储密度高、价格低廉、易加工等优点成为正在崛起的新一代光电信息材料,替代无机材料已成必然之势。以有机光电材料为基础的光电器件的开发和产业化将推动有机光电产业达到一个新的高度,甚至有专家预言“光电产业的未来属于有机光电材料”。参考文献 [ 1] Pope M, Kallmann H, Magnante P.Electroluminescence in Organic Crystals.J.Chem.Phys.1963, 38:2024-2043.[2] Tang C.W, VanSlyke S.A.Organic Electroluminescent Diodes.Appl.Phys.Lett.1987,51:913-915.[3] 林楹, 陈彧, 顾慧丽, 潘喆, 陈军能.基于芴的蓝色电致发光材料研究进展[J].功能高分子学报,2012,1:1008-9357.[4] Reineke S, Lindner F, Schwartz G, et al.White Or-ganic Light-emitting Diodes with Fluorescent Tube Efficiency, Nature 2009, 459,234-238.[5] Tsubo yama A, Iw aw aki H, Furug or i M, et al.Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode[ J].JAm Chem Soc, 2003, 125(42): 12971-129791.[6] Jiang Jian, Jiang Changyun, Zhang Yong , et al.High-efficiency saturated red emitting polymers der ived from fluorene and naphthoselenadiazole[ J].Macromolecules, 2004, 37(4): 1211-12181.[7] Zhou Guijiang, Wong Wai Yeung , Yao Bing, et al.Tripheny lamine-dendronized pure red iridium phosphors with superior OLED efficiency color purity trade-offs[ J].Angew Chem Int Ed, 2007, 46(7): 1149-11511.[8] Baldo M A, Lamansky S, Burrows P E.Very high-efficiency green organic light-emitting devices based on electrophosphorescence[ J].Appl Phy s Lett, 1999, 75(1): 4-61.[ 9] Ding Junqiao , Gao Jia, Cheng Yanxiang, et al.Highly efficient green-emitting phosphorescent ir idium dendrimers based on carbazoledendro ns[ J].Adv Funct Mater, 2006, 16(4): 575-5811 [10] Matsumoto T, Nakada T, Endo J, et al.Proceedings of IDMC'03, p.Feb.18-21, Taipei, Taiwan, 2003, 413.[11] Liao L S, Klubek K P, Tang C W, High-efficiency Tandem Organic Light-emitting Diodes.Appl.Phys.Lett,2004, 84:167-169.[12] Liao L S, Slusarek W K, Hatwar T K, et al.Tandem Organic Light-Emitting Diode using Hexaazatriph-enylene Hexacarbonitrile in the Intermediate Connector.Adv.Mater,2008, 20: 324-329.[13] 马锋, 王世荣, 郭俊杰, 李祥高.有机薄膜晶体管半导体材料的研究进展[J].2012, 32:497-510.[14] Lin Y Y, Gundlach D J, Nelson S, et al.Pentacene-based Organic Thin film Transistors.IEEE Trans.Electron Devices,1997, 44: 1325.[15] Meng H, Bendikov M, Mitchell G, et al.Tetram-ethylpentacene: Remarkable Absence of Steric Effect on Field Effect Mobility.Adv.Mater,2003, 15: 1090-1093.[16] Yan H, Chen Z.H., Zheng Y, et al.A High mobility Electron-transporting Polymer for Printed Transistors.Nature,2009, 457:679-U1.[17] Kobayashi N, Sasaki M, Nomoto K.Stable peri-Xanthenoxanthene Thin-Film Transistors with Efficient Carrier Injection.Chem.Mater,2009, 21:552-556.[18] 耿延候, 田宏坤.高迁移率有机薄膜晶体材料进展[J].分子科学学报,2005,6:15-20.[19] Briseno A L, Mannsfeld S C B, Ling M M, et al.Patterning Organic Single-crystal Transistor Arrays, Nature,2006, 444:913-917.[20] Benanti T L, Venkataraman D.Organic Solar Cells: An Overview Focusing on Active Layer Morphology, Photosynth.Res, 2006, 87: 73-81.[21] Chen H Y, Hou J H, Zhang S Q, et al.Polymer Solar Cells with Enhanced Open-circuit Voltage and Efficiency, Nat.Photonics, 2009, 3:649-653.[22] O'regan B, Gratzel M.A Low-cost High–efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films.Nature, 1991, 353:737-740.[23] Gratzel M.Conversion of Sunlight to Electric Power by Nanocrystalline Dye-sensitized Solar Cell, Photoch J.Photobio.A.2004, 164: 3-8.[24] 丁迎春, 徐 明, 沈益斌.纳米结构太阳能电池材料的研究进展[J].材料导报,2006,9:116-119.[25] Nilsson D, Kugler T, Svensson P O, et al.An All-organic Sensor-transistor Based on A Novel Electro-chemical Transducer Concept Printed Electrochemical Sensors on Paper.Sens.Actuators B,2002, 86: 193-197.[26] Chu C W, Exhibiting Electrical 1440-1443.Ouyang J, Tseng H H, et al.Organic Donor-acceptor System Bistability for Use in Memory Devices.Adv.Mater.2005, 17:
第三篇:OLED 演讲稿
Hello, My name is Wang Wenping.I will introduce you something about the OLED Technology.Let’s see the contents.I will show you the OLED definition, the developed history, the structure, the application and the advantage of OLED to LCD.First, it’s the definition.You can call the OLED in two kinds.It is called organic light emitting diode in USA, and it is called organic electroluminescence display in Japan.In 1963 the first organic electroluminescent(EL)based on anthracene single crystal,In 1987 first organic electroluminescent(EL)based on amorphous organic molecules,In 1990---First organic electroluminescent(EL)based on polymer;(Cambridge University);After then, it is used in several territorys.You can see it is used in MP3 display, cellular, digital camera and TV.We must know what the OLED structure is.There are two styles of drive mode, but I will just introduce the basic structure to you.If we amplify the cross section of the OLED, you can see there are two electrodes, cathode and anode.There are also three layers electron transporting layer, emitting layer and hole transporting layer.If I give a voltage from the cathode to the anode, it will emit.I want to show you the applications of OLED.From the developed history you can see OLED is most useful in mobile phone, PDA, smart phones, games and the vehicle display panel.From 2001 to 2009 it is used almost every display.In fact there is also something you cannot imagine.The transparent display, you can see the things across it.The bending display, you can supposedly roll it up into a little cigar with a radius of one single centimeter.So you see the OLED has many advantage ,It is solid state devices.It has thin film.So it is lighter and thinner;it has high brightness and high resolution;It’s viewing angle is wide.the visual angle is greater than about 170 degrees;it has microsecond response speed, about 1000 times of LCD;there is no back light source in OLED so it has low energy consumption;The process is more simple than LCD, but have low cost;It can work normally In 20℃~ 70 ℃.Because of these advantages the OLED is becoming available in commercial products and is expected to eventually replace LCD and PDP Technology.
第四篇:OLED终极发光材料
终极有机EL技术”——荧光材料实现与磷光同等的发光效率
核心提示:日本九州大学最尖端有机光电子研究中心(OPERA)宣布,开发出了使荧光材料以100%的内部量子效率发光的有机EL器件。这是将OPERA以前开发的 “热活性型延迟荧光(TADF)”材料掺杂在传统荧光发光有机EL器件的发光层实现的。
日本九州大学最尖端有机光电子研究中心(OPERA)宣布,开发出了使荧光材料以100%的内部量子效率发光的有机EL器件。这是将OPERA以前开发的 “热活性型延迟荧光(TADF)”材料掺杂在传统荧光发光有机EL器件的发光层实现的。与原来的TADF相比,可以用更通用、更简便的方法制作出有机EL 材料和器件,同时还具有器件耐久性高的优点。OPERA负责人安达千波矢对这次新开发的技术充满信心,甚至“被(外部技术人员等)称做有机EL的终极技 术”。
九州大学开发的辅助掺杂剂和此次的发光原理。颜色为单独发光时的发光色。
有机EL器件的发光层一般要组合使用受电流激发产生激子的主体材料和直接关系到发光的掺杂剂材料。
据论文作者、OPERA的中野谷一介绍,此次有机EL器件的发光层使用的主体材料是“传统有机EL使用的通用材料”。作为发光材料(掺杂剂)使用的荧光材 料为发蓝色光的TBPe、发绿色光的TTPA、发橙色光的TBRb以及发红色光的DBP等,也都是通用材料。如果直接使用这些材料,有机EL器件的外部量 子效率最高只有3~4%。
元件采用的荧光发光掺杂剂材料和发光时的光谱。
OPERA在这些材料构成的发光层中,添加了TADF材料作为辅助掺杂剂,由此提高了外部量子效率,蓝色光为13.4%,绿色光为15.8%,橙色光为18.0%,红色光为17.5%。
该技术可带来两大好处。一是由于基本结构是材料设计自由度高而且在器件制造方面已经有丰富技术经验的荧光材料器件,因此可以更加简便地开发出发光效率高的有机EL器件。
另一个好处是有望大幅改善高发光效率的有机EL器件的发光寿命。这是因为,辅助掺杂剂的作用是为主体材料与掺杂剂材料之间的能量输送提供帮助。由于直接关系到发光的掺杂剂是电化学稳定性较高的荧光材料,因此“器件的驱动耐久性显著提高”(九州大学)
第五篇:OLED市场调研报告
中国OLED产业调研及未来前景预测研究报告
2010-2012年
2010-11-12 9:28关键字:研究报告 OLED研究报告 OLED报告导读: 专业提供OLED研究报告及OLED报告。《全球及中国OLED产业全面调研及预测分析报告2010-2012年》,本研究报告提供OLED市场前景、规模、企业运营数据、行业经营情况、竞争格局和策略、投资发展环境及政策、销售及生产等情况,并基于客观情况作出合理的预测,是全方位为您分析OLED行业的研究报告。
【报告名称】: 全球及中国OLED产业全面调研及预测分析报告2010-2012年
【出版时间】: 2010年11月
【中文价格】: 打印版:6000元;电子版(pdf):6500元;两版合价:7000 元;
【目录】
2010-2012年中国OLED产业调研及未来前景预测报告正文目录
第一章 2009-2010年OLED产业及技术简述
第一节 OLED简述
一 OLED定义
二 OLED优势
三 OLED结构
四 OLED发光材料
五 OLED关键工艺
六 OLED彩色化技术
第二节 OLED分类
一 OLED分类
二 PMOLED
三 AMOLED
第三节 OLED发展历史
一 国外OLED历史
二 国内OLED历史
第二章 2009-2010年全球OLED市场及前景
第一节 2009-2010年全球OLED市场容量
一 2009年全球OLED市场规模
二 2009-2011年OLED量产企业
三 2009-2015年OLED市场成长
第二节 2009-2010年全球OLED市场竞争
一 2009-2010全球企业竞争格局
二 2009-2010年全球企业专利竞争
第三节 2009-2010年全球OLED应用领域
一 全球OLED应用领域
二 全球OLED应用领域结构
第四节 2009-2010年各国OLED产业分析
一 美国OLED市场
二 日本OLED市场
三 韩国OLED市场
四 台湾OLED市场
第五节 2009-2010年国外企业OLED分析
一 Kodak(柯达)
二 UDC(通用显示公司)
三 CDT(剑桥显示技术公司)
四 欧司朗
五 飞利浦
六 GE
七 台湾铼宝
八 韩国三星
九 台湾友达
十 韩国LG
第六节 2009-2010年OLED产业及技术动态
第三章 2009-2010年中国OLED市场及前景
第一节 2009-2010年国内OLED产业政策
一 财政部免征OLED企业部分进口关税
二 发改委鼓励突破AMOLED关键技术
第二节 国内OLED产业发展进程简述
一 2009-2010年国内OLED技术实力
二 2009-2010年国内OLED产业化
三 2009-2010年国内OLED产业链
第三节 2009-2010年国内OLED生产
一 2009-2010年国内PMOLED
二 2009-2010年国内AMOLED
第四节 2009-2010年OLED投资项目
一 四川长虹OLED屏生产线
二 昆山维信诺OLED生产线
三 彩虹(佛山)OLED项目
四 东莞宏威数码OLED生产线
第五节 2009-2010年OLED地方基地
一 广东
二 江苏
三 四川
第四章 2009-2010年OLED下游重点应用分析
第一节 2009-2010年小尺寸显示
一 2009-2010年小尺寸显示市场
二 2010-2015年市场成长性分析
第二节 2009-2010年大尺寸显示
一 2009-2010年大尺寸显示市场
二 2010-2015年市场成长性分析
第三节 2009-2010年照明市场
一 2009-2010年照明市场分析
二 2010-2015年照明应用预测
第五章 2009-2010年国内OLED相关企业分析
第一节 北京维信诺科技
一 企业概况
二 企业竞争力
三 企业运营分析
第二节 四川长虹--虹视
一 企业概况
二 企业竞争力
三 企业运营分析
第三节 彩虹集团
一 企业概况
二 企业竞争力
三 企业运营分析
第四节 宏威数码
一 企业概况
二 企业竞争力
三 企业运营分析
第五节 其它OLED相关企业
一 南京高科
二 深圳天马微电子
三 信利半导体
四 吉林奥来德光电材料
第六章 2010-2012年OLED产业前景及投资
第一节 2010-2012年产业趋势
一 OLED产业技术发展趋势
二 OLED产业竞争格局趋势
三 OLED产业市场需求趋势
第二节 2010-2012年产业影响因素
一 有利因素分析
二 不利因素分析
第三节 2010-2012年产业投资建议
重要声明
图表 1CRT结构和显示原理
图表 2CRT和LCD体积对比
图表 3AMOLED 与TFT-LCD 技术特性比较
图表 4国内和国外现有液晶生产线对比
图表 5全球AMOLED 生产线建设情况
图表 6OLED技术原理
图表 7OLED与LCD比较图
图表 8OLED显示屏轻薄
图表 9OLED显示屏可弯曲
图表 10OLED技术分类图
图表 11OLED与其它平板、CRT显示器的性能对比
图表 12平板显示器性能对比图
图表 132009年前五大OLED供应商营收排名
图表 142009-2011年各公司对OLED进入大批量生产
图表 15全球主要OLED厂商分布
图表 16小分子OLED基础专利许可情况
图表 17高分子OLED基础专利许可情况
图表 182009-2015年全球OLED电视销售收入变化图
图表 192005-2010年OLED应用领域分布图
图表 202008年美国固态照明投入经费分布
图表 21中国OLED区域企业布局
图表 22LG显示器开拓OLED的特有用途
图表 23OLED面板的大型化及低成本化技术课
图表 24LED照明与OLED照明区别
图表 252008年北京维信诺科技有限公司财务运营一览表千元
图表 26四川长虹OLED项目发展进程
图表 272008年四川虹视显示技术有限公司财务运营一览表千元
图表 282008年彩虹集团电子股份有限公司财务运营一览表千元
图表 292008年东莞宏威数码机械有限公司财务运营一览表千元
图表 302008年上海天马微电子有限公司财务运营一览表千元
图表 312008年信利半导体有限公司财务运营一览表千元
本研究报告深入分析了OLED行业市场现状,市场规模,市场竞争格局与形势和相关企业运营情况等,并基于目前的客观情况对未来市场发展前景和行业发展方向做出了合理预测。本研究报告是了解OLED行业的明智选择。
(.00867X06.)