第一篇:电容器检测技巧分享
好范文原创投稿
电容器检测方法主要分为三个大类:可变电容器的检测、电解电容器的检测、固定电容器的检测。
1、可变电容器的检测
A用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象。将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象。
B用一只手旋动转
轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象。转轴与动片之间接触不良的可变电容器,是不能再继续使用的。
C将万用表置于R×10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动。在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象。
2、固定电容器的检测
A检测10pF以下的小电容因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。
B检测10PF~0.01μF固定电容器是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。
C对于0.01μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。
3、电解电容器的检测
A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。
B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。
C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。
D使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量。
第二篇:电容器简介
电容器简介
一、电容器的主要性能
电容器的电气性能一般有四个主要参数,它们是:
1标称电容量及偏差
某一个电容器上标有220nT,表示这个电容器的标称电容量为220nF,实际电容量应220nF±5%之内,此处T表示容量误差为±5%。若T改为K,表示误差为±10%;改为M表示误差为±20%。2额定电压
电容器上还标有额定电压值,在不注明的情况下,均指直流额定工作电压。电容器在工作时,其上承受的直流电压应小于额定电压。选择电容器额定电压的原则如下:
1)低压时,实际工作电压与额定电压的比率可以高一些。
2)高压时,实际工作电压与额定电压的比率要低一些。
3)工作于交流状态或直流上的脉动交流成份比较大时,比率要选低一些,频率越高,比率越低。
4)要求可靠性高时,比率要选低一些。
3绝缘电阻
理想的电容器,在其上加有直流电压时,应没有电流流过电容器,而实际上存在有微小的漏电流。直流电压除以漏电流的值,即为电容器的绝缘电阻。现在CL11、CBB22等塑料薄膜电容器的绝缘电阻值可达到5000MΩ以上。电容器的绝缘电阻是一个不稳定的电气参数,它会随着温度、湿度、时间的变化而变化。
4损耗角正切值
损耗角正切值,简称损耗或写成tgδ。当交流电流通过电容器时,其上有一个交流电压降,对于理想的电容器,其两端的交流电压乘上流过的电流所得的值称为无功功率,此时,电容器不会发热。实际的电容器会产生微小的热量,其发热的功率称为有功功率。有功功率与无功功率之比称为损耗角正切值。例如CBB22型电容器的损耗约在万分之五左右,也就是说发热功率占无功功率的万分之五。在电压值为基准的矢量图上,不发热的电流超前它90°,发热的电流与它同相,正好是直角三角型的两个直角边,发热的电流(阻性电流)与不发热的电流(容性电流)之比即为损耗,也就是正切值。电容器的损耗受工作频率的影响较大,一般而言,均随频率的增高而增大,但也有例外。例如:某电容器在1kHz时比在100Hz时的损耗还要小。除了以上四个主要参数外,还有一个重要参数就是电容量的温度系数。实际电容器的电容量是随着温度变化而变化的,当温度升高时,有的电容量会变大,称为正温度系数的电容器;有的则变小,称为负温度系数的电容器。温度系数用温度变化一度时,电容量的变化比率来表示,单位为PPM/℃。PPM表示百万分之一。例如:CBB22的温度系数约为-300PPM/℃,则表示每升高一度,电容量减小万分之三即003%。如果温度上升40℃,则003%×40=12%,容量要下降12%
二、电容器的分类:
为了便于记忆,我们把主要的电容器分成三类,并称为主流产品。
1电解电容器
电解电容器属老产品,近年来的改进主要是体积越做越小。铝电解电容器的电性能较差,损耗tgδ在100Hz时约为5%~10%左右,容量的稳定性和温度系数也差。这种电容器主要应用在电源滤波和要求不严的低频电路中。使用者要记住的是:同样的容量,大体积的要比小体积的损耗小;同样的容量,高压的比低压的损耗要小;不同的容量,小容量比大容量的损耗要小。钽电解电容器(CA型)电性能包括损耗、容量的稳定性和温度系数,要比铝电解好得多。但价格也要高些。
2塑料薄膜电容器
塑料薄膜电容器是近一、二十年发展起来的电容器,现已成为主流产品(淘汰了以往的纸介电容器)。
薄膜电容器的容量上限可以很大,如电动机启动用CBB60、CBB61型电容器,容量可达几十微法。薄膜电容器主要有两种材料,聚酯(涤纶)CL型和聚丙烯CBB型。每种材料主要有两种结构;箔式CL11、CBB11和金属化CL21、CBB21、CBB22等。这样我们就能很容易从型号上看出它们的材料和结构。例如:CL21则表示这个电容器的材料是涤纶,结构是金属化。CL11型是数量最大的一种低价产品。箔式结构是指电容器用塑料薄膜和铝箔叠在一起卷绕而成,导电电极为铝箔。金属化结构是预先用真空蒸发的方法在薄膜上蒸发了一层极薄的金属膜,然后用这个薄膜卷绕成的电容器,导电电极为蒸发的金属膜(大多仍为铝膜)。在同样规格情况下,金属化电容器的体积要比箔式的小。金属化薄膜电容器有自愈特性,即电容器中塑料薄膜某一点若存在缺陷,加电压时会击穿,则此处的金属膜会蒸发掉,而不会产生短路现象,从而使电容器仍能正常工作。金属化电容器还有一个优点就是引出线是从喷了金属的端面引出,从而使电流通路很短,所以也称为无感电容器。
损耗:CL型和CBB型电容器在外形上差别不大,但在损耗这一电性能上差别较大。涤纶电容器的损耗较大,在1kHz时典型值约为50×10-4,与纸介电容器相当。聚丙烯电容器的损耗(1kHz),指标大约是10×10-4,实际上一般小于5×10-4,约为涤纶电容器的十分之一。
绝缘:CL型和CBB型绝缘性能都特别好,优于其它电容器。例如,一只CBB22型100nF电容器,其绝缘电阻可超过五万兆欧。
温度系数:CL型与CBB型电容器的温度系数大体上都为300PPM/℃左右,但是CL型为正温度系数,CBB型为负温度系数。前面介绍过CBB型电容器在温度升高40℃时,容量要下降12%左右。所以这两种电容器都不能制成精密电容器,最高精度只有±5%(J)。有时候,电容器上的标记不清,若要辨别真假CBB电容器,可以利用CL型和CBB型温度系数方向不同的原理来辨别,可以用手掌型数字电容表和电吹风来进行试验。先把电容器接到电容表上读出冷态时的电容值,然后用电吹风加热电容器,注意温度要调低一点,如果电容器的容量变大,说明是CL型电容器,反之则是CBB型电容器。顺便提一下,所有的非极性薄膜电容器均为负温度系数,例如聚苯乙烯电容器。
3陶瓷电容器
陶瓷电容器分为三个品种:1类瓷CC型,2类瓷CT型,3类瓷CS型。1类瓷、瓷介电容器电性能最好,一般工作在高频领域。绝缘和损耗也都非常好,温度系数也很小。陶瓷电容器与其它电容器不同,介质是属复合材料,所以改变材料的配方可调节温度系数。所以1类瓷、陶瓷电容器除了标明容量外,还要标明其温度系数以及温度系数的误差。例如:标有CH、C表明其温度系数基数为0,H表示温度系数的误差为±60PPM/℃,如标有PJ,P表示温度系数基数为-150PPM/℃,J表示其误差为±120PPM/℃,有时也用电容器顶上的颜色来表示温度系数。黑色的温度系数最小,红色、橙色……依次次之。温度系数越小的电容器,其体积要大一些,所以一般情况下,1 类单片高频瓷介电容器的最大电容量不会超过1000pF。2类瓷和3类瓷陶瓷电容器又称为铁电陶瓷。它们的特点是材料的介电系数特别高,所以制成的电容器容量特别大,而体积又小。例如:铁电陶瓷电容器的损耗和绝缘这两个参数,比CL11型要差5倍左右,容量的温度系数也较大。例如:E型温度特性的电容量变化率为+20%~-55%,F型为+30%~-80%,只有B型较好为±10%。容量的温度特性具有居里点,温度在30℃左右时容量最大,温度降低和温度增高时,容量都急骤下降。所以这种电容器只能用在要求不高的地方。对于陶瓷电容器,同样的电容量和工作电压,体积越大的电性能越好。
4非主流电容器
(1)云母电容器(CY型)
以前在高频领域主要应用云母电容器,后来逐步由高频陶瓷电容器取代。云母电容器应用的减少不是因为电性能不好,而是因为云母矿源稀少,制造云母电容器生产工艺复杂造成的。云母电容器的电性能非常好,所以云母电容器可以制成标准电容器。
(2)聚苯乙烯电容器(CB型)
聚苯乙烯电容器是最早的塑料薄膜电容器。由于聚苯乙烯本身耐潮湿,电容器外表一般不进行环氧树脂包封和染色,呈本色透明状。国产品种主要是箔式,圆形结构。聚苯乙烯属非极性材料,具有优良的电
性能,工艺良好的聚苯乙烯电容器,绝缘性能是最好的。此外,聚苯乙烯电容器的温度系数也比其它塑料薄膜电容器好,可以做到优于-150PPM/℃的水平,但由于不耐热,体积大,工艺性能不好等原因,未能普及使用。
第三篇:超级电容器
超级电容器在生活中的趣味应用
青岛莱西职业教育中心于志强
摘要:超级电容器是最近十几年才发展起来的新型电子元件,由于采用了新材料、新工艺,使得它的性能指标比传统电容器有了质的飞跃,从而在社会生产和生活中有了非常好的应用前景,本文简要介绍了超级电容器的基本常识和在日常生活中的应用,以期引起人们对它的注意和重视,使它能更好的为用户服务。
关键词:超级电容器 法拉电容器 新材料 新产品 日常应用引言
电容器的作用可能大家都有所了解,就是存储电荷(本质是存储能量),再稍微详细一点的说,就是在外部电压高时存储能量,等外部电压低了以后又释放能量,起到一个能量的峰谷调节作用。以前的电容器由于工艺和材料的限制,容量非常有限,一般是皮法(10-12F)或者微法(10-6F)级别,存储的电荷不多,放电电流小,放电时间短,所以作用也比较有限,大多只能用在弱电中,起到滤波,交流旁路等作用。
而就在十数年之前,由于材料学和制作工艺的发展,出现了容量超过1F的超级电容器(最大可以超过10000F),这样电容器的应用可以被大大的扩展了。可以实现很多非常有趣的应用。超级电容器简介
2.1 超级电容器原理
超级电容器(supercapacitor,ultracapacitor),又叫双电层电容器(Electrical Doule-Layer Capacitor)、电化学电容器(Electrochemcial Capacitor, EC),黄金电容、法拉电容,通过极化电解质来储能。超级电容器是建立在德国物理学家亥姆霍兹提出的界面双电层理论基础上的一种全新的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用 1
下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,两个电层间距非常近,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。它具有功率密度大、容量大、使用寿命长、免维护、经济环保等优点。
2.2 优缺点
优点:在很小的体积下达到法拉级的电容量;无须特别的充电电路和控制放电电路;和电池相比过充、过放都不对其寿命构成负面影响;从环保的角度考虑,它是一种绿色能源;超级电容器可焊接,因而不存在像电池接触不牢固等问题。
缺点:如果使用不当会造成电解质泄漏等现象;和铝电解电容器相比,它内阻较大,因而不可以用于交流电路。
2.3 超级电容器用途
超级电容器作为大功率物理二次电源,在国民经济各领域用途十分广泛。在特定的条件下可以部分或全部替代蓄电池,应用在某些机电(电脉冲)设备上,可使其产生革命性进步。
A.配合蓄电池应用于各种内燃发动机的电启动系统,如:汽车、坦克、铁路内燃机车等,能有效保护蓄电池,延长其寿命,减小其配备容量,特别是在低温和蓄电池亏电的情况下,确保可靠启动。
B.用作高压开关设备的直流操作电源,铁路驼峰场道岔机后备电源,可使电源屏结构变得非常简单,成本降低,储能电源真正免维护。
C.用于重要用户的不间断供电系统。
D.应用于电脉冲技术设备,如:电弧螺栓焊机、点焊机、轨道电路光焊机、充磁机、X光机等。
E.用作电动车辆起步,加速及制动能量的回收,提高加速度,有效保护蓄电
池,延长蓄电池使用寿命,节能。
F.代替蓄电池用于短距离移动工具(车辆),其优势是充电时间非常短。G.用于风力及太阳能发电系统。
2.4 最新动态
2007年1月16日,美国得克萨斯州一家研制电动汽车储能装置,名为EEStor的公司对外宣告了其超级电容器产品的关键物质钡钛酸盐粉末已经完成了最初的纯化,纯度达到了99.9994%。由于钡钛酸盐有足够的纯度,存储能量的能力大大提高。EEStor公司负责人声称,该超级电容器每公斤所存储的能量可达0.28千瓦时,相比之下,每公斤锂电池是0.12千瓦时,铅酸电池只有0.032千瓦时,这就让超级电容器有了可用在从电动车、起搏器到现代化武器等多种领域的可能。
这一发明的意义相当重大,该突破不仅从根本上改变了电动车在交通运输中的位置,也将改进诸如风能、太阳能等间歇性能源的利用性能,增进了电网的效率和稳定性,满足人们能源安全的需求,减少对石油的依赖。显然,该突破也对下一代锂电池的研制者造成威胁。EEStor公司负责人暗示,他们的技术不仅适用于小型旅客电动车,还可能取代220-500瓦的大型汽车。日常生活中的应用
3.1、充电手电筒
美国加利福尼亚公司5.11 Tactical推出了一款创新产品——“Light For Life”UC3.400手电筒。不同于需要变换电池的普通手电筒,这款新产品可以在极短时间内充满电。UC3.400使用了超级电容器技术,每次充满电仅需90秒,能连续使用90分钟,手电筒的充电次数高达5万次以上。军事和救援单位可受益于此项技术,确保始终有光源。
3.2 电动玩具
在电子玩具中,常要求瞬时大电流,而电池无法提供,将超级电容器与电池组合可以解决问题,超级电容器也可以作为电源对电子玩具供电,可以降低使用成本、减轻质量。
最典型的就是可以飞的玩具级电动飞机,电动玩具飞机之所以不能飞起来的主要原因是就现在的材料水平而言,玩具飞机如果不计电源和电动机的质量将是
极其轻的,电动机也可以做得很轻,最重的便是电池。如果让飞机飞起来,电池能提供的功率与电动机牵引飞机飞起来的功率相差很多。专业航模的飞机可以不计成本,并且采用高倍率放电的充电电池,个头也相对很大,远远超出玩具的概念,如果采用质量远低于电池甚至远低于电动机的超级电容器就可以很好地解决电源质量与电源功率的矛盾。一只4.7F超级电容器不到10克,而两节6号电池将重达近50克,三节镍氢电池则更重300克。
3.3 应急照明灯储能系统
为了确保应急照明灯具有节电、高亮度、长寿命和不间断性,采用由直流电源供电的半导体照明灯LED。采用LED灯后,节约了大量的电能,维修费用,同时也确保了照明质量。采用超级电容器作为储能元件,确保了应急照明灯的超长寿命和免维护、可靠性强等特性。
3.4 太阳能、风能蓄电装置
随着社会经济的快速发展,资源和能源日渐短缺,生态环境日益恶化,人类将更加依赖于太阳能、风能或者燃料电池等清洁和可再生的新能源。但是,这些能量来源本身的特性决定了这些发电的方式和电能输出往往具有不稳定性,而超级电容器不仅能起到功率调节作用,而且还可作为太阳能电池和风力发电的储能系统,白天储存太阳能电池和风力发电产生的电能,夜间提供照明等所需的能量。
3.5 公交车
电容公交车智能运行系统采用了高科技成果---超级电容器作动力电源;采用了先进的交流变频调速牵引技术和车辆制动时的动能再利用技术;采用了智能化车辆动力管理系统、车辆运行动态信息系统等现代化手段,是零污染、节能高效环保的新型公共交通系统。
在开启空调的情况下,电容公交车每公里带空调耗能仅为1.4度电,能耗费用仅为燃油汽车的33%,在刹车制动时能量回收率达到40%。电容电车充电速度快,中途充电时间为30秒钟,终点站的充电时间约90秒钟。按照上海公交的客运模式,一次充电可运行3~8公里,最高速度达到每小时44公里,车辆行驶平稳、舒适。新型快速充电景观候车站,与有轨、无轨电车相比,没有地面轨道和空中触线网,有利于“净化”城市空间,车辆机动灵活性好,可以根据街道、场馆等风貌,进行匹配的景观设计,并融入人性化理念,成为都市一道靓丽的风景线。结语
超级电容器作为最近几年出现的新型元器件,发展势头极为迅猛,开始为越来越多的领域所使用,并取得了极好的应用效果。随着材料和工艺技术的进一步成型实用化,超级电容器的使用甚至会远远超出我们的想象。作为电子技术的爱好者,我们尤其应该密切关注其发展动态和趋势,并向广大用户热心推荐经济环保的超级电容产品,为低碳生活做出自己的贡献。
第四篇:实训项目六 常用电容器的识别与检测
【课题名称】 实训项目六
常用电容器的识别与检测 【课时安排】
1课时(45分钟)【教学目标】
1.能识别常用电容器。
2.学会电解电容器极性的判别。
3.学会用万用表的电阻挡判别较大容量电容器质量的好坏。
【教学重点】
重点:较大容量电容器质量的判别。
【教学难点】
难点:从万用表指针的变化情况来判断电容器质量的好坏。【关键点】
正确使用万用表的相关电阻挡进行测量 【教学方法】
实践操作法、做中学、个别指导 【教具资源】
万用表、常用电容器若干 【教学过程】
任务一 常用电容器的识别
教师活动:教师可提供10个不同类型的电容器给学生,说明电容器识别的常用方法,布置具体操作任务和要求。
学生活动:学生可根据提供的电容器、操作任务和要求一一进行检测与识别。并把识别结果填入技训表中。
任务二 电解电容器极性的判别
教师活动:教师可通过实物或多媒体演示,引导学生学习电解电容器极性的直接观察法,然后再演示万用表判别法的具体操作过程和方法。
学生活动:学生可在教师的引导下,通过仔细观察、模仿、实操等手段学习电解电容器极性的直接观察法和万用表判别法。
知识点:
1.直接观察法:电解电容器有两个引脚,在使用中应注意正负极性。一般长引脚为正极,短引脚为负极。另外,从电容器的外壳也可判断其正、负极性,标有“-”号的一端为负极,另一端为正极。
2.万用表判别法:①先测量电解电容器任意两极间的漏电阻。②交换红、黑表笔,再一次测量电解电容器的漏电阻。③如果电解电容器性能良好的话,在两次测量结果中,阻值大的一次便是正向接法,即红表笔接电解电容器的负极,黑表笔接正极。
任务三 常用电容器质量的检测
教师活动:教师可现场示范或利用多媒体展示电容器质量检测的正确操作方法与步骤。并要求学生把测量的结果填写到规定的技训表中。
学生活动:学生可在教师的组织与引导下练习各种电容器质量检测。任务四
实训小结
教师活动:教师可引导学生总结用万用表进行电容器质量检测的操作步骤、注意事项及收获与体会,并检查任务完成情况、仪器仪表的使用情况、安全文明操作以及团队协作精神。
学生活动:学生可在教师的引导下自行总结万用表进行电容器质量检测的操作过程、注意事项及收获与体会,并根据要求进行自我评价。
拓展:
通过阅读教材中电容器的典型应用或通过其他手段,了解电容器还有哪些典型应用?
第五篇:超级电容器2mic
超级电容器
二、超级电容器发展概况简述
1超级电容器研究的意义
伴随人口的急剧增长和社会经济的快速发展,资源和能源日渐短缺,生态环境日益恶化,人类将更加依赖洁净和可再生的新能源。有的学者则更进一步认为21世纪将是以电池为基础的社会。近年来在许多储能装置应用方面对功率密度的要求越来越高,已超过了当前电池的标难设计能力。超级电容器(SC)正是在这样的背景下产生的。“超级电容器”一词来自20世纪60年代末日本NEC公司生产的电容器产品“Supercapacitor”。它泛指具有很高功率和高能量密度的电容器[1]。所谓“超级电容器”本质上是根据电化学原理设计、制造出来的,因此它又被称为电化学电容器(Electrocamical Capacitors,EC)。新型的电化学电容器具有优良的脉冲充放电性能以及大容量储能性能,并且具有充电快、循环寿命长、环境适应性强、无记忆效应、免维护、对环境无污染等优点。“冷战”时期超级大国间的军备竞赛,特别是美国的“星球大战”、“导弹防御系统”计划大大加快了超级电容器在军事装备的应用。它可作为新一代激光武器、潜艇、导弹以及航天飞行器等高功率军事装备的激发器。军用坦克、卡车在恶劣条件下的启动、爬坡、刹车等动力响应过程的瞬间启动电源等等;近年来电动汽车的兴起,更进一步推动了超级电容器的发展,由于超级电容器具有较大的功率密度,在新一代电动车中,可以与锂离子电池联用,用于解决起步,加速及制动能量的回收,从而起到保护电池,提高整车性能的作用。在普通机车的运行过程中,超级电容器也可以配合蓄电池应用于各种内燃发动机的电启动系统.作为一种新的储能元件,超级电容器填补了传统电容器(如平板电容器、电解电容器)和电池之间的空白,无论是从电荷储存原理、还是器件的性能,它都与常规的物理(介质)电容器有较大的区别。它能提供比普通电容器更高的比能量和比二次电池更高的比功率以及更长的循环寿命,同时还具有比二次电池耐温和免维护的优点。超级电容器具有法拉级的超大电容量;其脉冲功率比蓄电池高近十倍。充放电循环寿命在十万次以上;有超强的荷电保持能力,漏电源非常小。充电迅速,使用便捷;无污染,有利于环保。因此,它在计算机、通信、电力、交通、航空、航天、国防等领域具有广阔的应用前景。各工业国家都纷纷把电化学电容器列为国家重点战略研究开发项目。1996年欧共体制定了超级电容器的发展计划,美国能源部及国防部也制定了相应的发展超级电容器的研究计划。我国在“十五”国家863计划中要求研究满足电动车整车要求的超级电容器。超级电容器正成为研究热点[2]。
2研究与发展概况
超级电容器的研究源于美国GE公司1957年Becker取得的第一篇双层电容器专利[3],它以碳材料为电极,硫酸水溶液作电解质,工作电压lV。进入90年代以来,由于电动汽车的兴起,对超级电容器的各类研究也逐渐增多,目前超级电容器的研究主要集中在以下几个方面:
(1)电极材料的选择和优化
a碳电极材料
超级电容器电极材料按照种类可以分为碳电极材料,金属氧化物电极和导电聚合物电极 三大类,对于碳电极材料而言(包括活性炭、碳纤维、碳气溶胶和碳纳米管材料等),主要遵循双电层电容储能原理,即利用碳材料具有较大的表面积,通过碳材料吸附电解液中的离子在电极表面形成双电层来完成储能过程[4];
b过渡金属氧化物电极材料
对过渡金属氧化物而言,主要是通过在电极表面发生高度可逆的氧化还原反应来实现电荷的储存,自1975年conway发表了过渡金属氧化物准电容储能理论[5],目前已有许多关于过渡金属氧化物如RuO2[6]、IrO2[7]、MnO2[8]、NiO[9]、Co3O4[10]、V2O5[11]、SnO2[12]作为超级电容器电极材料的报道。按同等表面积计算,遵循法拉第准电容理论的过渡金属氧化物电极,其比容量可达到碳电极材料的10-100倍,其中氧化钌电极材料具有最好的电容特性,但氧化钌昂贵的价格极大的限制了其具体应用,对于用氧化钌制备的超级电容器,氧化钌电极材料的成本就占据了整个电容器价格的90%,所以目前人们进行了许多研究,尝试采用廉价金属氧化物取代
氧化钌电极。
C导电聚合物材料
除了碳材料和过渡金属氧化物可作为超级电容器材料以外,高分子聚合物材料[13]目前也被用于超级电容器电极材料的制备,其储能也是遵循法拉第准电容原理。相比过渡金属氧化物电极工作电压较低的特点,采用高分子聚合物材料可以在高电压下工作,同时也具有较大的能量密度和功率密度,高分子聚合物电极材料代表了超级电容器电极材料研究的一个新的发展方向。但其可逆性相比碳电极和过渡金属氧化物电极较差,此外在长时间的循环过程中保证其稳定性(包括防止外形的膨胀或收缩)及内阻较大也是目前急需解决的问题,而这些因素常常会限制高分子聚合物电极的进一步应用,目前高分子聚合物电极材料仍处于基础研究阶段。
一、超级电容器简介
超级电容器又称超大容量电容器或者电化学电容器,是介于传统电容器和电池之间的一种新型储能器件。与传统电容器相比,超级电容器具有更大的容量以及更高的能量密度,其容量可达法拉级(F)甚至数千法拉,而传统的电容器只有微法(μF)级,1F=106μF;与电池相比,超级电容器具有更高的功率密度和更长的循环寿命,可实现大电流充放电,工作温度范围可达-25 ~ +75℃,已成为世界各国的研究开发的热点。超级电容器在航空航天、军工领域、汽车行业、通信领域、仪器仪表、消费电子、电动玩具等领域都具有重要的应用市场。
1超级电容器概况
1.1超级电容器的原理
超级电容器是利用电极和电解液之间形成的界面双电层电容来存储能量的一种新型储能器件。
当电极插入电解液时,电极表面上的净电荷将从溶液中吸引部分不规则分配的带异种电荷的离子,使它们在电极-溶液界面的溶液一侧离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。这个界面由两个电荷层组成,一层在电极上,另一层在溶液中,因此称为双电层。根据电容器原理,电容量C=(其中,ε—介电常数;S—电极有效表面积;d—电介质厚度),表面积S越大,电介质厚度d越小,电容器容量C就越大。
对于超级电容器,d为溶剂化离子半径,一般水化后的离子半径为0.3~0.5nm,而一般电解电容器的介电质氧化膜厚度在数十纳米以上;另外,超级电容器的电极材料一般选用高比表面积的多孔炭材料,其比表面积可高达2000-3000m2/g,远大于电解电容器的电极面积。因此,双电层电容器可以取得法拉级甚至数千法拉的高电容量。
1.2超级电容器的特性
超级电容器作为一种新型储能器件,兼具电池和传统电容器的优点(见表1),具体叙述如下:
(1)可储存巨大的能量,容量达几法拉级甚至数千法拉;其存储的能量E=1/2CU2(C:器件的电容量;U:器件的端电压)。
(2)环境友好,无需采用污染性物质为原料;
(3)免维护,长时间放置不失效,即使几年不用仍可保留原有的性能指标。
(4)超级电容器充放电速度快(根据容量的不同为几秒~几分钟),可以在瞬间释放出安培级至数千安培级的大电流,具有独特的大电流充放电特性,特别适合大功率脉冲电路的应用。
(5)循环寿命长(>10万次),充放电效率高(>95%),充放电过程仅发生离子的吸附脱附,电极结构不会发生变化;
(6)工作温度范围宽(-25~75℃),可满足恶劣环境使用的要求。
(7)相对成本低,尽管价格比铅酸电池高3倍,但寿命比铅酸电池高20倍。
(8)体积比容量与重量比容量高,外形紧凑,易于安装,符合新型电子产品对电源的短小轻薄要求;
(9)通过串并联可制成高耐压、大容量组件,满足不同领域的需要。元器件
普通电容器
超级电容器
充电电池 表1超级电容器与普通电容器、充电电池的性能比较 能量密度 功率密度 循环寿命 /次 / Wh·kg-1 / W·kg-1 <0.2 0.2-20 20-200 104-106 102-104 <500 >106 >105 10
31.3超级电容器应用领域
根据放电量、放电时间、工作电压以及电容量大小,超级电容器可用作后备、替换和主电源三类,主要应用领域如下:
(1)军事领域
用于新一代激光武器、粒子束武器、微波武器、潜艇、导弹等大功率脉冲电源;航天飞行器、军用坦克和卡车等军事装备的启动电源上。
(2)无线通讯领域
GSM手机通讯脉冲电源,移动电脑、PDA、其它使用微处理器的便携式设备以及其它数据通讯设备的备用电源。
(3)消费电子领域
音响、视频和其它电子产品断电时须用记忆保持电路的产品;电子玩具;无线电话;电热水瓶;照相机闪光灯系统;助听器等。
(4)工业领域
智能水表、电表与气表,远程载波抄表,无线报警系统,电磁阀,电子门锁,脉冲电源,UPS,电焊机,充磁机,电动工具,税控机。
(5)交通运输领域
主要应用于汽车、火车、船舶和码头等领域。如交通工具的启动设备,瞬间提供大电流,以及与电池配合使用组成混合动力车和开发纯电容交通车,提供动力驱动电源。应用于汽车零部件领域,如音响、电动座椅、空调、转向和制动等。应用于码头的集装箱起重机等领域。
(6)特殊要求的智能设备或电路设计领域。
(7)其它应用领域,如太阳能光伏产品储能器件等。
1.4超级电容器的性能指标
(1)容量:电容器在一定的重量或者体积范围内存储的容量,量纲为F(法拉)。
(2)内阻:又称为等效串联电阻,分为直流内阻和交流内阻,量纲为Ω。
(3)漏电流:恒定电压情况下,一定时间后测得的电流,量纲为mA。
(4)比能量:是指单位重量或单位体积的电容器所给出的能量,也叫重量比能量或体积比能量,也称能量密度,量纲为Wh/kg或Wh/L。
(5)比功率:单位重量或单位体积的超级电容器所给出的功率,表征超级电容器所承受电流的大小,超级电容器的比功率是电池的数量级倍数,量纲为W/kg或Wh/L。
(6)循环寿命:超级电容器经历一次充电和放电,称为一次循环或叫一个周期。
(7)高低温性能:在高温、低温环境下其电性能的变化情况。
1.5超级电容器的组成与关键技术 如图1所示,超级电容器主要由极化电极、集电极、电解液、隔膜、引线和封装材料几部分组成。电极材料、电解质的组成、隔膜质量以及电极制造技术对超级电容器的性能有决定性的影响。电极材料的性能决定其电容量的大小;电解质的分解电压决定超级电容器的工作电压,以水溶液为电解液的电容器工作电压只有lV左右,而有机电解液的可达3V左右。超级电容器的关键技术包括:
(1)高比容量电极材料的制备技术;
(2)高性能电解液的合成技术;
(3)电容器的组装和封装技术。