首页 > 文库大全 > 精品范文库 > 5号文库

压电陶瓷的制备与应用

压电陶瓷的制备与应用



第一篇:压电陶瓷的制备与应用

压电陶瓷的制备与应用 【摘要】本文主要概述了国内外关于压电陶瓷材料的发展历史进程和研究现状,提出压电陶瓷材料的制备方法,探讨了其发展趋势和应用前景。指出了现代压电陶瓷材料正在向着复合化,薄膜化,无铅化及纳米化方向发展。该材料应用前景广阔,是一种极有发展潜力的材料。【关键词】 压电陶瓷性能参数 制备方法应用

压电陶瓷是指把氧化物混合(氧化锫、氧化铅、氧化钛等)高温烧结、固相反应后而成的多晶体.并通过直流高压极化处理使其具有压电效应的铁电陶瓷的统称,是一种能将机械能和电能互相转换的功能陶瓷材料。压电陶瓷是含高智能的新型功能电子材料,随着材料及工艺的不断研究和改良,压电陶瓷的技术应用愈来愈广。压电材料作为机、电、声,光、热敏感材料,在传感器、换能器、无损检测和通讯技术等领域已获得了广泛的应用,世界各国都高度重视压电陶瓷材料的研究和开发。

1、压电陶瓷的性能参数(1)机械品质因数

机械品质因数的定义是:Qm=×2∏,他表示在振动转换时,材料内部能量消耗的程度。机械品质因数越大,能量的损耗越小。机械品质因数可以根据等效电路计算而得:Qm=,式中R1为等效电阻,Ws为串联谐振频率,C1为振子谐振时的等效电容。当陶瓷片作径向振动时,可近似地表示为Qm=,式中C0为振子的静态电容,单位F;△f为振子的谐振频率fr与反谐振频率fa之差,单位Hz;Qm为无量纲的物理量。(2)基电耦合系数

机电耦合系数K是综合反映压电材料性能的参数,它表示压电材料的机械能与电能的耦合效应。机电耦合系数可定义为K2=(逆压电效应),K2=(正压电效应)没有量纲。机电耦合系数是压电材料进行机—电能量转换的能力反映,它与机—电效率是完全不同的两个概念。它与材料的压电常数、介电常数和弹性常数等参数有关,因此,机电耦合常数是一个比较综合性的参数。(3)弹性系数

根据压电效应,压电陶瓷在交变电场作用下,会产生交变伸长和收缩,从而形成与激励电场频率(信号频率)相一致的受迫振动。对于具有一定形状、大小和被覆工作电极的压电陶瓷称为压电陶瓷振子(简称振子)。实际上,振子谐振时的形变是很小的,一般可以看作是弹性形变。反映材料在弹性形变范围内应力与应变之间的参数为弹性系数。

压电陶瓷材料是一个弹性体,它服从胡克定律:在弹性限度范围内,应力与应变成正比。当数值为T的应力(单位为Pa)加于压电陶瓷片上时,所产生的应变S为S=sT、T=cS式中s为弹性柔顺系数,单位m2/N,c为刚性刚度系数,单位Pa。

2、压电陶瓷的制备过程

I、生产中广泛采用的压电陶瓷工艺,主要包括以下步骤:配料混合预烧粉碎成型排胶烧结被电极极化测试,如图2所示。

(1)配料、球磨混合

原料选用纯度高、细度小和活性大的粉料,根据配方或分子式选择所用原料,并按原料纯度进行修正计算,然后进行原料的称量。按化学配比配料以后,使用行星式球磨机将各种配料混合均匀。实验室常采用的是水平方向转动球磨方式,震动球磨是另一种常用的球磨方法,此外还有气流粉碎法等混合方法。(2)预烧、粉碎、成型、排胶和烧结 混合球磨后的原料进行预烧。预烧是使原料间发生固相化学反应以生成所需产物的过程,预烧过程中应注意温度和保温时间的选择。将预烧反应后的材料使用行星式球磨机粉碎。成型的方法主要有四种;轧膜成型、流延成型、干压成型和静水压成型。轧膜成型适用于薄片元件;流延成型适合于更薄的元件,膜厚可以小于10 m;干压成型适合于块状元件;静水压成型适合于异形或块状元件。除了静水压成型外,其他成型方法都需要有粘合剂,粘合剂一般占原料重量的3%左右。成型以后需要排胶。粘合剂的作用只是利于成型,但它是一种还原性强的物质,成型后应将其排出以免影响烧结质量。烧结是将坯体加热到足够高的温度,使陶瓷坯体发生体积收缩、密度提高和强度增大的过程。烧结过程的机制是组成该物质的原子的扩散运动。烧结的推动力是颗粒或者晶粒的表面能,烧结过程主要是表面能降低的过程。晶粒尺寸是借助于原子扩散来实现的。(3)被电极、极化、测量

烧结后的样品要被电极,可选用的电极材料有银、铜、金.铂等,形成电极层的方法有真空蒸发、化学沉积等多种。压电陶瓷中广泛采用的是,在烧结后的样品涂上银浆,在空气中烧制电极。为了防止空气在高压下电离、击穿,极化一般是在硅油中进行。为了获得优良的压电性能,需要选择合适的电场强度,适当的极化温度。极化样品放置24小时后,用压电常数测量仪测量d33,用高频阻抗分析仪(Agilent4294A等)测量介电常数、介电损耗、谐振频率等。

II溅射法(sp ut tering)是利用高速运动的荷能离子把靶材上的原子(或分子)轰击下来沉积在基片(加热或不加热)上形成薄膜的方法,采用射频磁控溅射能进一步增加电子的行程,加强电离和离子轰击效果,从而能有效提高溅射效率及薄膜的均匀性。

III、脉冲激光沉积(PLD)是80年代后期发展起来的新型薄膜制备技术。相对于其它薄膜制备技术, PLD具有沉积速度快、靶材和薄膜成分一致、生长过程中可原位引入多种气体、烧蚀物粒子能量高、容易制备多层膜及异质结、工艺简单、灵活性大、可制备的薄膜种类多、可用激光对薄膜进行多种处理等优点

IV、sol-gel法是通过将含有一定离子配比的金属醇盐和其它有机或无机金属盐溶于共同的溶液中,通过水解和聚合形成均匀的前驱体———溶胶,再经提拉、旋转涂覆、喷涂或电沉积法等将前驱体溶胶均匀地涂覆在基片上,然后烘干除去有机物,最后退火处理得到具有一定晶相结构的无铅压电陶瓷薄膜。

3、压电陶瓷的应用

近年来,随着宇航、电子、计算机、激光、微声和能源等新技术的发展,对各类材料器件提出了更高的性能要求,压电陶瓷作为一种新型功能材料,在日常生活中,作为压电元件广泛应用于传感器、气体点火器、报警器、音响设备、超声清洗、医疗诊断及通信等装置中。它的重要应用大致分为压电振子和压电换能器两大类。前者主要利用振子本身的谐振特性,要求压电、介电、弹性等性能稳定,机械品质因数高。后者主要是将一种能量形式转换成另一种能量形式,要求机电耦合系数和品质因数高。压电陶瓷的主要应用领域如下表所示: 应用领域

主要用途举例

电源

压电变压器 雷达、电视显像管、阴极射线管、盖克计数管、激光管和电子复印机等高压电源和压电点火装置

信号源

标准信号信号源

振荡器、压电音叉、压电音片等用作精密仪器中的时间和频率标准信号源

信号转换

电声换能器

拾声器、送话器、受话器、扬声器、蜂鸣器等声频范围的电声器件

超声换能器

超声切割、焊接、清洗、搅拌、乳化及超声显示等频率高于20Hz的超声器件

发射与接收

超声换能器

探测地质构造、油井固实程度、无损探伤和测厚、催化反应、超声衍射、疾病诊断等各种工业用的超声器件

水声换能器

水下导航定位、通信和探测的声呐、超声探测、鱼群探测和传声器等

信号处理

滤波器

通信广播中所用各种分立滤波器和复合滤波器,如彩电中频率波器;雷达、自控和计算机系统所用带通滤波器、脉冲滤波器等

放大器

声表面波信号放大器以及振荡器、混频器、衰减器、隔离器等

表面波导

声表面波传输线

4、结束语

压电陶瓷是一种重要的功能材料,具有优异的压电、介电和光电等电学性能,被广泛地应用于电子、航空航天、生物等高技术领域。近年来,各国都在积极研究和开发新的压电功能陶瓷,研究的重点大都是从老材料中发掘新效应,开拓新应用;从控制材料组织和结构入手,寻找新的压电材料。特别值得重视的是随着材料技术和工艺的发展,目前国际上对压电材料的应用研究十分活跃,许多新的压电器件,包括过去认为是难以实现的器材也被研制出来了。随着对材料的组成、制备工艺及结构的不断深入研究,更加新颖的压电器件将不断的映现出来。

【参考文献】

[1]张沛霖,钟维烈.压电材料与器件物理[M].济南t山东科学技术出版社.1994. [2]陆雷、肖定全、田建华、朱建国.无铅压电陶瓷薄膜的制备及应用研究.[3]张雷、沈建新.压电陶瓷制备方法的研究进展.硅酸盐通报.[4]肖定全.关于无铅压电陶瓷及其应用的几个问题.电子元件与材料.202_.材料合成与制备方法论文 压电陶瓷的制备与应用 院系:物理与电子工程学院 专业:材料物理 姓名:李鹏洋

第二篇:压电陶瓷制作工艺

2.2陶瓷样品的制备 2.2.1陶瓷样品的制备流程

将以上初始原料按照化学计量比称量后放在红外烘箱内干燥,装入密封的球磨罐中,对于含有Na2CO3试剂的系列样品,采用无水乙醇为球磨介质,其他系列样品则以蒸馏水为球磨介质球磨四小时。将所得浆料和玛瑙磨球分离后烘干,而后装入氧化铝坩锅,按照不同体系采用不同预合成制度对于样品进行预合成。陶瓷粉料的预合成过程是一种化学反应进行的过程。这种化学反应不是在熔融状态下进行的,而是在比熔点低的温度下,利用固体颗粒间的扩散来完成的固相反应。对体系(1)和(2)采用590℃×1h+710℃×1h+820℃×1h的预合成制度 [44];由于体系(3)是高层数的铋层状结构,其合成需要较高的能量方能实现,故采用以的速率升至850~900℃的高温,之后保温2小时。将预合成完的粉料手工研磨成200目左右的细粉,以质量比为5~8%加入聚乙烯醇(PVA)粘合剂造粒后并取120~150目粒径的粉料,在单向压力机上以16.3MPa的压力压制成直径为10毫米,厚度在0.8~1.8毫米范围内的圆片坯体。经过550℃保温1小时排胶后在大气环境下对坯体进行烧结。影响陶瓷烧结的因素主要有锻烧温度、保温时间和升温速率等。锻烧温度对成瓷的质量极为重要,它直接影响到陶瓷的致密度和晶体生长。烧结过程中致密度的提高主要是靠离子扩散来进行。离子扩散的速度由扩散系数η决定。扩散系数是温度的函数,即

其中η0是与材料的性质和颗粒大小有关的常数,β是与活化能有关的常数。由公式可以看出,当温度升高时,扩散系数增大,烧结过程加快;但温度过高,超过烧结温度的上限,则由于出现过多的液相,可能发生粘连,或由于挥发使密度下降,性能恶化,也会容易造成陶瓷发生较大的变形。烧结温度对晶粒生长也有很大影响,随着温度的升高,晶粒生长的速度加快,所以温度过高也会使陶瓷由于晶粒生长过大而变脆,强度减弱。保温时间、升温速率等对成瓷质量也有影响。

根据他人的报道及我们的初步探索,对于(1)体系在960~1160℃;(2)体系在1100~1160℃烧结2小时以制备致密陶瓷;(3)体系在960~1140℃范围内烧结。在初期摸索烧结工艺时,没有采用任何特殊的方法来防止Bi挥发,烧结后陶瓷片色泽呈淡黄与明黄相间,样品的强度差、成瓷性不好。因此,后期在烧结时采用Bi2O3粉料提供Bi气氛及埋烧的方法以防止Bi元素挥发,制备致密的陶瓷材料。

在铋层状陶瓷的制备过程中,由于Bi2O3在高温下挥发,在材料中容易形成Bi空位,随后产生氧空位,从而影响材料的漏电流和抗疲劳性能。为补充材料制备过程中损失的Bi元素,一般在烧结过程中,在承烧板(锆板)上烧结样品附近的某一区域内放入原料质量比为5~10%的Bi2O3原料形成Bi气氛,以保证晶粒正常生长。Bi2O3的熔点只有824℃,在烧结过程中当温度高于熔点时,会形成液相。液相的形成有助于烧结初期快速提高密度,但是最终会得到一个比较低的密度,这是由于液相的原因形成了孔隙,而这些孔隙又是烧结中难以消除的。因此适量添加Bi2O3粉料形成Bi气氛将对铋层状陶瓷的烧结行为产生很大的影响。

在烧结过程中,为尽量减少Bi2O3的挥发,采用图2.1所示的埋粉法烧结。埋烧法 是在高温锻烧时用三氧化二铝作为埋粉将要烧结的预合成好的陶瓷坯体夹中间。

图2.1埋烧法示意图

Fig.2.1.Schematic diagram of the sintering process

图2.2固相反应法的工艺流程图

Fig.2.2 Schematic representation for the process of the preparation 由于高层数的铋层状陶瓷难以形成,因此我们精确控制坯体烧结时的升温速率:在900℃以前分别以10℃/min快速升温,此后分别以8℃/min和5℃/min升至所需烧结温度,并在烧结温度下保温2~2.5小时。将所制备的样品用320~800目的砂纸打磨成0.5mm厚度的陶瓷圆片,并在上下表面分别镀上电极,两边镀上不同直径大小银电极的目的为了防止边缘漏电效应。固相反应法制备铋层状陶瓷的具体工艺流程如图2.2。16

4.3.2极化工艺对压电性能的影响

经人工极化处理以后,压电陶瓷的电畴按极化电场方向取向排列,这个取向的程度愈高,材料的压电活性就愈强。对于晶格结构很完整的材料,要使它的电畴作90°转动就比较困难。因而极化以后的效果,或者说对极化强度的贡献,主要是来自极化时作180°反转的那些畴。在这种情况下,材料的压电性能就比较难于充分地发掘出来。如果能够设法使一些晶胞的结构发生畸变,这样在人工极化处理时就有利于晶胞自发极化的转向,即有利于电畴的反转,压电活性也就会有所提高。[7] 铁电陶瓷要经人工极化处理后,才具有压电性。要使铁电陶瓷得到高程度的极化,充分发挥其潜在的压电性能。合理地选择极化条件。即选择极化电场、极化温度和极化时间这三个因素彼此又互有关系。

理论上,当外界电场超过矫顽场强时,应该可以使大部分电畴转向而完成极化。但实验表明,在这样的电场作用下,维持很长时间,虽然可以得到一定的极化性质,却不能说压电特性己得到充分的发挥。为了把压电特性充分发掘出来,必须加电场至饱和场强,它的数值远比矫顽场强高(约3一4倍)。因此,矫顽场强是极化时选择场强的下限,饱和场强则可以认为是极化时选择场强的上限。不论是矫顽场强和饱和场强,都随温度升高而降低。

温度升高使畴运动更容易进行。显然,如果在较高的温度下进行人工极化,效果可以更好些。

在实际选择极化电场时,有时会受到击穿的限制,就是说,未到达饱和场强,样品即被击穿。击穿场强与配方有关,还受样品中存在气孔、裂缝及成分不均匀等因素影响。击穿场强与样品的厚度也有关系。当外加电场超过矫顽场后,极化的建立是突变的,但压电性尚不能立即充分地发挥出来,必须保持相当长的时间后,才能得到一定程度的极化性能。极化时间长短,对不同的材料也不一样,与极化电场、极化温度也有关系。在同样的极化电场和极化时间下,极化温度愈高,则电畴愈易趋于定向排列,极化效果较好。这可以作如下理解:第一,结晶的各向异性随温度升高而降低。第二,提高温度可使电滞回线变窄,矫顽场变小,实际上也就是使畴运动更容易进行。第三,提高温度还可以减少空间电荷对畴运动的阻碍作用,使材料极化更充分。实际选择极化温度时,都是以温度高一些为好,但是如前所述,在提高极化温度时,经常遇到的问题是电阻率太小,漏电严重,甚至导致电击穿【8】。

另外涂银方式对极化效果也有很大影响,由于试片的边缘比较疏松,缺陷较多,很容易造成边缘击穿,本文选择避开边缘的中心涂银方式,可以提高试片的极化电压,使材料的压电性能充分发挥出来。

综合考虑各方面因素,实际试验过程中一般选择的极化条件为:160~170°,4000—6000V/mm,30min。将样品上银浆,极化,放置一天测其压电常数d33电滞回线。对于有些极化后性能较差的制品可利用压电体电滞回线的特性, 进行“ 反向极化”给予弥补。反向极化就是把已极化过的制品反方向极化一次反向极化电压略高于头一次极化的电压。经过反向极化其, 值大约可提高以内, 有些也可达。

第三篇:压电陶瓷扬声器常见问题及解决措施

压电扬声器认识误区

低音不足:压电陶瓷扬声器特点在于中高频段表现出色,表现在听感上就会出现高频成分凸出,而将低频掩盖掉,听感上就会感觉没有低音;在无腔体的状态下,动圈喇叭的低音表现也不是很好,而且动圈喇叭在极限使用时受腔体影响,音量也有比较大的损失。

额定功率: 压电喇叭为容性器件,是不以额定功率作为考量的,在应用中是以耐压值作为考量依据的。压电音频功放也是以输出电压(Vp-p)表示输出大小。

压电喇叭腔体: 腔体对任何电声器件都是有辅助作用的,压电喇叭也需要腔体,只是对腔体的依赖性没有动圈喇叭大;压电喇叭在小腔体下S.P.L不会有很明显的降低;当然,如果空间允许,音腔做大一些,音量、音效都会更好一些。

功放分类:数码产品使用的小功放其实只有两类:CLASS-AB和CLASS-D;其他的如K类、G类、H类都是在AB类和D类的基础上增加一个升压电路,达到增大功放输出功率的目的。常见设计问题解决

1)声音小

喇叭不良造成 > 措施:更换喇叭

结构问题(如音腔设计不合理、泄露孔过多、声短路、出音孔开孔率过小等)导致声音小 > 措施: 通过调整腔体、出音孔开孔面积等方式解决。

电路问题,又分两种情况:a,输入信号过小导致;b,功放电路工作不正常导致 > 措施:通过实际分析解决,主要从几个方面考虑:a.输入信号大小;b.IC焊接是否ok;c.电路参数是否正常.2)杂音

结构共振杂音,这种是发生最多的。

措施:要找到产生杂音的“元凶”,然后通过固定、隔离等方法解决。

音源本身问题导致的杂音.> 措施: 更换音源解决。

喇叭不良出现杂音。> 措施: 更换喇叭。

电路干扰(底噪、高频干扰等)引起的杂音.措施: 通过调整电路(增加滤波器件)进行吸收,如果干扰或底噪比较严重,无法通过外围电路进行解决,则需告知客户进行改板,优化layout来解决。

3)破音

音源失真引起。措施:降低音源增益或更换音源。

功放失真引起。措施:有两种可能:

a.功放输出过大,这种问题在客户端出现最多,有很多客户为增大音量,将软件增益调的很大,导致功放输出过大,通过调整增益解决。

b.功放工作不正常导致输出失真,需查找问题解决。

喇叭不良引起。措施:更换喇叭解决

4)功放发热

由于压电扬声器所用的功放集成了DC-DC,功放效率会降低,特别是中高频段,热损耗加大,功放会有发热现象(芯片商在着手改善).现时解决办法:对中高频段进行衰减,降低功放在中高频段的功率输出; layout时在PA周围加大地线进行散热;PA电路部分加屏蔽罩也有利于散热。

发热现象在手机中比较常见,持续长时间播放音乐就会出现发热现象,通过调整可以控制在客户可接受范围。

5)功放上电啪啪声

功放上电出现啪啪声的问题,在功放电路上是很常见的问题,很难彻底解决,目前解决这种问题的方法主要以调整功放上电和使能脚上电的时序来解决,上电时序:codec静音——功放上电——使能脚打开,通过这样的时序调整一般都可以解决啪啪声问题。

6)播放音乐时出现闪屏、水波纹

闪屏问题主要由于供电不足引起;水波纹主要由于干扰引起。

解决办法:功放供电和屏供电不要用同一个LDO端口,避免大电流时屏供电不足引起闪屏;

水波纹主要通过滤波、加大地线分布面积等方法解决。案例综合

客户A,现象:喇叭声音很小。检查电路:功放输出很小,检查分析 后是因为电容和电感用错料,更换后正常。

客户B,调试时音量很小,检查后是因为codec输出的信号为左右声道信号,而客户将左右声道信号按照差分输入方式接入,导致功放输出很小,将输入方式改为单端输入后问题解决。

客户C,样机杂音严重,经查找是因为后壳上与电池盖连接的金属弹片振动敲击电池盖产生杂音,点胶固定后问题解决。

第四篇:压电传感器原理及其应用

压电传感器原理及其应用

摘要:压电式传感器,作为传感器的一种,它具有自己鲜明的特点。而且除了一些自然界中的晶体材料外,我们还有人工材料压电陶瓷。它们的应用也十分的广泛,在声学、医学、力学、宇航、振动测量、机械冲击都有不错的涉及。

关键字: 压电传感器

压电原理

应用

压电现象是100多年前居里兄弟研究石英时发现的。居里兄弟在研究热电性与晶体对称,发现正负电荷,而且电荷密度与压力大小成正比。居里兄弟所报道的这些晶体就有后来广为研究的铁电体酒石酸钾钠(罗息盐)。1881年,应用热力学原理预言了逆压电效应,即电场可以引起与之成正比的应变。很快这一预言被居了里兄弟用实验所证实了。自发现压电效应以来,这种类型的压电传感器就广泛应用于各个领域。经过多年的发展,压电传感器的材料、结构设计和工艺都有了很大的进步。而这些对改善传感器的性能起到了至关重要的作用。

一. 压电传感器的工作原理

1.压电原理

一些离子型晶体的电介质(如石英、酒石酸钾钠、钛酸钡等)不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。即:在这些电介质的一定方向上施加机械力而产生变形时,就会引起它内部正负电荷中心相对转移而产生电的极化,从而导致其两个相对表面(极化面)上出现符号相反的束缚电荷,且其电位移D(在MKS单位制中即电荷密度σ)与外应力张量T成正比;当外力消失,又恢复不带电原状;当外力变向,电荷极性随之而变。这种现象称为正压电效应,或简称压电效应。

基于压电效应人们研究出一种可以自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。2.压电材料

在自然界中,大多数的材料都具有压电效应,但是十分微弱。随着人们对压电材料的不断研究与发现,压电材料性能得以大大的提高。新型压电材料的研制成功极大地推动了压电传感器的进步。从最开始的石英到BaTi03压电陶瓷,错钦酸铅(PZT)压电陶瓷,再到压电聚合物如聚偏二氟乙烯(PVDF)等新型压电材料。单晶技术的进展培育了许多实用化的压电材料,薄膜工艺的进展为压电器件的平面化、集成化创造了条件。压电材料的这一系列进步为设计大量高性能的压电元件提供了技术保障。

二. 压电传感器的应用及发展

1.压电式测力传感器

压电式测力传感器是利用压电元件直接实现力-电转换的传感器,在拉、压场合,通常较多采用双片或多片石英晶体作为压电元件。其刚度大,测量范围宽,线性及稳定性高,动态特性好。当采用大时间常数的电荷放大器时,可测量准静态力。按测力状态分,有单向、双向和三向传感器,它们在结构上基本一样。例如压电式单向测力传感器。该传感器适用于机床动态切削力的测量。主体包括绝缘套.基座.电极.石英晶片.上盖。绝缘套用来绝缘和定位。基座内外底面对其中心线的垂直度、上盖及晶片、电极的上下底面的平行度与表面光洁度都有极严格的要求,否则会使横向灵敏度增加或使片子因应力集中而过早破碎。为提高绝缘阻抗,传感器装配前要经过多次净化(包括超声波清洗),然后在超净工作环境下进行装配,加盖之后用电子束封焊。2.压电式加速度传感器

压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。

电荷输出压电加速度传感器,采用剪切和中心压缩结构形式。其原理利用压电晶体的电荷输出与所受的力成正比,而所受的力在敏感质量一定的情况下与加速度值成正比。在一定条件下,压电晶体受力后产生的电荷量与所感受到的加速度值成正比。

国内在压电加速度传感器方面的研究起步较晚,且结构设计和工艺水平落后于国外。目前国内压电传感器的主要结构是中心压缩型,较好的高冲击压电加速度传感器(中心压缩型)样机的主要技术指标为:最大冲击加速度100,000g,最高频响8kHz。在压电加速度传感器的研制方面,北戴河亿柏传感器技术研究所和西安204所做得较好。3.压电传感器用于报警装置

玻璃破碎报警装置它利用压电元件对振动敏感的特性来感知玻璃受撞击和破碎时产生的振动波。传感器把振动波转换成电压输出,输出电压经放大、滤波、比较等处理后提供给报警系统。玻璃破碎时会发出几千赫兹至几十千赫兹的振动,使用时将高分子压电薄膜传感器粘贴在玻璃上,感受这一振动,然后通过电缆和报警电路相连,将压电信号传送给集中报警系统。为了提高报警器的灵敏度,信号经放大后,再经带通滤波器进行滤波,要求它对选定的频谱通带的衰减要小,而频带外衰减要尽量大。玻璃振动的波长在音频和超声波的范围内,这就使滤波器成为电路中的关键。只有当传感器输出信号高于设定的阈值时,才会输出报警信号,驱动报警执行机构工作。玻璃破碎报警器可广泛用于文物保管、贵重商品保管及其他商品柜台保管等场合 4.压电陶瓷应用

压电陶瓷具有极高的灵敏度,压电高压发生器利用正压效应可以把振动转换成电能,还可以获得高电压输出。这种获得高电压的方法可以用来做引燃装置,如给汽车火花塞、煤气灶、打火机、炮弹的引爆压电雷管等点火。

压电传感器发展迅速,当今世界各国压力传感器的研究领域也十分广泛。归纳起来主要有以下几个趋势。(1)小型化。小型化会带来很多好处,重量轻、体积小、分辨率高,便于安装 在很小的地方对周围器件影响小,也利于微型仪器、仪表的配套使用。(2)集成化。压力传感器已经越 来越多的与其它测量用传感器集成以形成测量 和控制系统,集成系统在过 程控制和工厂自动化中可以提高操作速度和效率。(3)智能化。由于集成化的出现,在集成电 路中可添加一些微处理器,使得传 感器具有自动补偿、通讯、自诊断、逻辑判断等功能。(4)系统化。单一化产品在市场上没有大的竞争力。市场风云突变,一旦失去 市场,发展则停滞不前,经济效益差,资金浪费大,产品成本高。(5)标准化。传感器的设计与制造已经形成了一定的行业标准。如 IEC、ISO 国际标准,美国的 ANSIC、ANSC、MIL-T 和 ASTME 标准,日本 JIS 标准,法国 DIN 标准。

三、总结

压电式传感器,作为传感器的一种,它具有自己鲜明的特点。而且除了一些自然界中的晶体材料外,我们还有人工材料压电陶瓷。它们的应用也十分的广泛,在声学、医学、力学、宇航、振动测量、机械冲击都有不错的涉及。

但是,压电传感器在拥有众多优点的同时,也存在着许多缺点,展望今后的研究重点,可能会有以下几个方面:(1)从研究的成果来看,理论研究离工程实用还有一定的差距,工程实用化方面研究也相当薄弱,具体表现在理论及仿真研究较多,而实验验证相对较少,研究对象以简单的梁板结构较多,对复杂结构的研究还相当欠缺。(2)压电元件非线性特性的研究。由于压电材料的极化特性,压电系统只能在一定范围内满足近似的线性要求,并容易受外界多种环境的影响。非线性特性的存在使压电元件重复性差、检测精度低,瞬态位置响应速度慢,可控性变差,成为压电元件进一步工程应用的主要障碍之一。为减小这种非线性特性所造成的不良影响,更好地发挥压电元件的性能,国内外很多科研机构从压电元件非线性特性形成机理、外环及内环非线性特性及控制方法等方面开展了相关研究。(3)压电材料的压电特性有待于进一步提高,这使得压电材料的应用受到极大限制。各国学者正在努力开发,一旦找到一种优异的压电材料,将会取代传统的、笨重的机电换能设备,如电动机、马达等。到那时,压电研究将会全方位地发展,甚至可能影响到我们生活的各个方面。我相信随着科技的发展,人工材料会制作的更加完美,压电式传感器会更加适合人们的要求。压电式传感器和科技将会互相推动互相发展。

第五篇:超导材料应用与制备概况

超导材料制备与应用概述

摘要:新型超导材料一直是人类追求的目标。本文主要从超导材料的性质,制备,应用等方面探索超导材料科学的发展概况。随着高温超导材料制备方法的不断成熟,超导材料将越来越多的应用于尖端技术中去,超导材料的应用将给电工技术带来质的飞跃,因此,超导材料技术有着重大的应用发展潜力,可解决未来能源,交通,医疗和国防事业中的重要问题。

关键词:超导材料 强电应用 弱电应用 超导制备 1.引言

1911年荷兰科学家onnes发现纯水银在4.2K附近电阻突然消失,接着发现其他一些金属也有这样的现象,随着人们在Pb和其它材料中也发现这种性质:在满足临界条件(临界温度Tc,临界电流Ic,临界磁场Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。只是直流电情况下才有零电阻现象,这一现象的发现开拓了一个崭新的物理领域。

超导材料具有1)零电阻性2)完全抗磁效应3)Josephson效应。这些性质的研究与应用使得超导材料的性能不断优化,实现超导临界温度也越来越高。一旦室温超导达到实用化、工业化,将对现代科学技术产生深远的影响。

2.超导材料主要制备技术

控制和操纵有序结晶需要充分了解原子尺度的超导相性能。有序、高质量晶体的超导转变温度较高 ,晶体质量往往强烈依赖于合成技术和条件。目前,常用作制备超导材料的技术主要有: 2.1.1单晶生长技术

新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。溶液生长的优点就是其多功能性和生长速度 ,可制备出高纯净度和镶嵌式样品。但是 ,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。浮动熔区法常用来制备大尺寸的样品 ,但局限于已知的材料。这种技术是近几年出现的一些超导氧化物单晶生长的主要技术。这种技术使La2-xSr xCuO4晶体生长得到改善 ,允许对从未掺杂到高度掺杂各种情况下的细微结构和磁性性能进行细致研究。在T1Ba 2Ca2Cu3O9+d 和Bi2Sr2CaCu2O8中 ,有可能削弱无序的影响从而提高临界转变温度。最近汞基化合物在晶体生长尺寸上取得的进展 ,使晶体尺寸较先前的纪录高出了几个数量级。但应该指出的是即使是高 Tc的化合物 ,利用溶液生长技术也可制备出高纯度的YBCO等单晶。

2.1.2高质量薄膜技术

目前 ,薄膜超导体技术包括活性分子束外延(MBE)、溅射、化学气相沉积和脉冲激光沉积等。MBE能制造出足以与单个晶体性能相媲美的外延超导薄膜。在晶格匹配的单晶衬底上生长的外延高温超导薄膜 ,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势 ,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。

在过去的 20年里 ,多种高温超导薄膜生长技术快速发展。有些技术已经适用于其它超导体的制备。目前所使用主要方法有溅射和激光烧蚀(脉冲激光沉积)。类似分子束外延这种先进薄膜生长技术也已经发展得很好。臭氧或氧原子用来实现超高真空条件下的充分氧化。这使得生长的单晶薄膜的性能已接近乃至超过块状晶体。如 LSCO单晶薄膜的 T =51.5 K,比块状晶体(Tc <40 K)要高 ,外延应力是产生这种强化现象的部分原因。

3.超导材料制备的新探索

发现新型超导体最直接的方法是研究相空间并实施一系列系统探索来发现新的化合物 ,可通过鉴别成分空间中有希望的区域和快速检测该区域尽可能多的化合物的方法来实现。通过这样的研究,在 20世纪50到 60年代产出了很多金属间超导体 ,这些超导体还需要在三相或更高相空间中再继续研究。此外 ,继续寻找异常形态的超导材料也是很重要的。3.1先进合成与掺杂技术

3.1.1极端条件下的合成技术

经验上讲 ,超导性常常表现得和结构上的相转变联系紧密;事实上 ,有许多超导体是亚稳态 ,需要在高温高压下合成。此外 ,合成新化合物所需的许多元素具有非常高的挥发性活性和难熔性 如 Li、B、C、Mg、P、S、Se、Te ,而且要在非常特殊的环境下才能成功合成。大尺寸单晶生长技术 ,特别是用于固定中子散射实验的关键材料的合成技术应进一步发展。

3.1.2合成与表征组合技术

对新型超导化合物的系统性组合探索可基于薄膜沉积技术。一种方法是利用掩膜技术制备微小均质区域。利用连续相涂敷法(Continuousphase spread method)以及使用多种源或靶材在衬底上形成不同的薄膜成分。磁场调制光谱(Magnetic Field Modulated Spectroscopy),MFMS ,是一种非常敏感而快速的超导检测技术 ,可用于高产量的表征方法。合成与表征组合技术需要进一步完善,以在更大范围内应用来寻求具有理想性能的新型超导体。3.1.3原子层工程、人造超晶格技术

薄膜沉积技术的迅速发展为化学和材料科学突破体相平衡的限制提供了机遇。拓展相界、获得新亚稳态和微结构、创造多层结构、施加大的面内应力以及获得不同排列体系间的平滑界面都因此成为可能。单晶多层结构使材料具有不同的界面性能 ,不会受到污染物的干扰。在界面处各种电荷移动和自旋态的相互影响会产生新电子结构。与界面原子层工程一样 ,改变相邻绝缘体的组成和结构 ,为利用外延应力和稳定性来调整界面结构的超导性提供了多种可能。3.1.4场效应掺杂和光掺杂技术

化学掺杂是在铜酸盐等化合物超导体中实现金属和超导态所必需的 ,但它的缺点是会同时产生无序状态。这种无序状态不仅使人难以区分内在和外在特性 ,而且实际上还削弱了超导性能。此外 ,在多数情况下化学掺杂量是不可调的 ,每种组成都需要一个单独的样品。场效应掺杂和光掺杂通过外加强电场或强光照射引入电荷载体 ,从而避免了这些弊端。使用这两种掺杂 ,可连续地调节单个样品的掺杂量而不会诱发化学无序状态。这一方法在从配合物中寻找新的超导体方面有很大的潜力。3.2 纳米尺度超导材料

新型超导体的设计和研究面临挑战是难以控制的化学合成工艺参数。最有希望发展的就是可控制的纳米新型高温超导材料。开发新的纳米尺度的高温超导体 ,可增进机械稳定性、耐化学腐蚀性等。虽然这些性能已单独得到证明 ,但把它们全部合成至单一的材料器件或系统中仍是一个巨大的挑战。在高温超导材料中 ,很多基本长度尺寸是处于纳米量级的(如单晶畴)大小、相干长度等 ,因此关于纳米尺寸结构的实验性研究对帮助人们了解微观机制具有相当的重要性。3.3 超导材料制备相关问题

块体样品、单晶方面的关键性公开问题包括:提高各种有机超导、重费密子超导等非常规超导体样品的纯度;了解和消除样品的依赖性;了解和控制缺陷、杂质及无序对样品的影响;改进各类材料的 Jc、Hc2和 Tc以及大尺寸单晶生长问题。要处理好这些问题 ,要改进现有的晶体生长技术并创造新的技术。新的助熔剂、输运剂以及新的温度、温度梯度、成核控制方法将提高人们对样品的大小、品质和可重复性的控制能力。对于各类超导薄膜 ,最基本的问题是衬底表面的制备以及对薄膜生长的影响 ,对这些问题的深入了解将使薄膜沉积条件具有更好的可重复性 ,对薄膜的合成控制更加优良。随着越来越多的超导化合物被引入薄膜材料的范畴 ,人们需要进一步改进薄膜的合成和表征技术。在薄膜的成核、生长和界面方面 ,应实现原子级的控制 ,最终目标是在如绝缘-超导这种多层异质结构中制造出洁净的界面。4.超导材料的应用

4.1强电应用 4.1.1 超导输电电缆

我国电力资源和负荷分布不均,因此长距离、低损耗的输电技术显得十分迫切。超导材料由于其零电阻特性以及比常规导体高得多的载流能力,可以输送极大的电流和功率而没有电功率损耗。超导输电可以达到单回路输送GVA级巨大容量的电力,在短距离、大容量、重负载的传输时,超导输电具有更大的优势。低温超导材料应用时需要液氦作为冷却剂,液氦的价格很高,这就使低温超导电缆丧失了工业化应用的可行性。若使用高温超导材料作为导电线芯制造成超导电缆,就可以在液氮的冷却下无电阻地传送电能。高温超导电缆的出现使超导技术在电力电缆方面的工业应用成为可能。目前,市场上可以得到并可用来制造高温超导电缆的材料主要是银包套铋系多芯高温超导带材,其临界工程电流密度大于10kA/cm2。高温超导电缆以其尺寸较小、损耗低、传输容量大的优势,可用于地下电缆工程改造,以高温超导电缆取代现有的常导电缆,可增加传输容量。高温超导电缆另一重要应用场合是可在比常导电缆较低的运行电压下将巨大的电能传输进入城市负荷中心。由于交流损耗的缘故,利用高温超导材料制备直流电缆比制备交流电缆更具优势。利用超导技术,通过设计实用的直流传输电缆和有效的匹配系统,从而实现高效节能低压大容量直流电力输系统。

图1 CD高温超导电缆示意图

美国是最早发展高温超导电缆技术的国家。1999年底,美国outhwire公司、橡树岭国家试验室、美国能源部和IGC公司联合开发研制了长度为30m、三相、12.5kV/1.26kA的冷绝缘高温超导电缆,并于202_年在电网试运行,向高温超导技术实用化迈出了坚实的一步。目前,世界上报道的能制备百米量级长度的超导电缆仅有日本和美国。在欧洲如法国、瑞典的电力公司有十米量级的超导电缆计划。

4.1.2超导变压器

超导变压器一般都采用与常规变压器一样的铁芯结构,仅高、低压绕组采用超导绕组。超导绕组置于非金属低温容器中,以减少涡流损耗。变压器铁芯一般仍处在室温条件下。超导变压器具有损耗低、体积小,效率高(可达99%以上)、极限单机容量大、长时过载能力强(可达到额定功率的2倍左右)等优点。同时由于采用高阻值的基底材料,因此具有一定的限制故障电流作用。一般而言,超导变压器的重量(铁芯和导线)仅为常规变压器的40%甚至更小,特别是当变压器的容量超过300MVA时,这种优越性将更为明显。图2为美国Waukesha公司在1997年就研制了1MVA的超导变压器结构示意图。

图 2超导变压器结构示意图 4.1.3超导储能

人类对电力网总输出功率的要求是不平衡的。即使一天之内 ,也不均匀。利用超导体 ,可制成高效储能设备。由于超导体可以达到非常高的能量密度 ,可以无损耗贮存巨大的电能。这种装置把输电网络中用电低峰时多余的电力储存起来 ,在用电高峰时释放出来 ,解决用电不平衡的矛盾。美国已设计出一种大型超导储能系统 ,可储存5000 兆瓦小时的巨大电能 ,充放电功率为 1000 兆瓦 ,转换时间为几分之一秒 ,效率达 98 %,它可直接与电力网相连接 ,根据电力供应和用电负荷情况从线圈内输出 ,不必经过能量转换过程。

图3 超导储能器一次系统简图

4.1.4超导电机

在大型发电机或电动机中 ,一旦由超导体取代铜材则可望实现电阻损耗极小的大功率传输。在高强度磁场下 ,超导体的电流密度超过铜的电流密度 ,这表明超导电机单机输出功率可以大大增加。在同样的电机输出功率下 ,电机重量可以大大下降。美国率先制成 3000 马力的超导电机 ,我国科学家在20 世纪 80 年代末已经制成了超导发电机的模型实验机。

图4 两种发电机尺寸的比较

4.1.5超导故障限流器

超导故障电流限制器(简称SFCL)主要是利用超导体在一定条件下发生的超导态/正常态转变,快速而有效地限制电力系统中短路故障电流的一种电力设备。该设想是在上世纪70年代提出的,到1983年法国阿尔斯通公司研制出交流金属系超导线后,各研究机构才开始着手开发SFCL产品。现已有中压级样品挂网运行,国外乐观估计可望在10年或更长的时间内开始投入市场。

图5感应屏蔽型超导故障电流限制器原理图

用超导材料制成的限流器有许多优点:1)它的动作时间快,大约几十微妙;2)减少故障电流,可将故障电流限制在系统额定电流两倍左右,比常规断路器开断电流小一个数量级;3)低的额定损耗;4)可靠性高 ,它是一类“永久的超保险丝”;5)结构简单 ,价格低廉。4.2弱电应用

4.2.1无损检测

无损检测是一种应用范围很广的探测技术 ,其工作方式有;超声探测、X光探测及涡流检测技术等。SQUID 无损检测技术在此基础上

发展起来。SQUID 磁强计的磁场灵敏度已优于100ft ,完全可以用于无损检测。由于 SQUID 能在大的均匀场中探测到场的微小变化 ,增加了探测的深度 ,提高了分辨率 ,能对多层合金导体材料的内部缺陷和腐蚀进行探测和确定 ,这是其他探测手段所无法办到的。工业上用于探测导体材料的缺陷、内部的腐蚀等 ,军事上可能于水雷和水下潜艇等的探测。4.2.2超导微波器件在移动通信中的应用

移动通信业蓬勃发展的同时 ,也带来了严重的信号干扰 ,频率资源紧张 ,系统容量不足 ,数据传输速率受限制等诸多难题。高温超导移动通信子系统在这一背景下应运而生 ,它由高温超导滤波器、低噪声前置放大器以及微型制冷机组成。高温超导子系统给移动通信系统带来的好处可以归纳为以下几个方面: 1)提高了基站接收机的抗干扰的能力;2)可以充分利用频率资源 ,扩大基站能量;3)减少了输入信号的损耗 ,提高了基站系统的灵敏度 ,从而扩大了基站的覆盖面积;4)改善通话质量 ,提高数据传输速度;5)超导基站子系统带来了绿色的通信网络。

4.2.3超导探测器

用超导体检测红外辐射 ,已设计制造了各种样式的高 TC超导红外探测器。与传统的半导体探测比较 ,高 TC超导探测器在大于 20微米的长波探测中将为优良的接受器件 ,填充了电磁波谱中远红外至毫来波段的空白。此外 ,它还具高集成密度、低功率、高成品率、低价格等优点。这一技术将在天文探测、光谱研究、远红外激光接收和军事光学等领域有广泛应用。4.2.4超导计算机

超导器件在计算机中运用 ,将具有许多明显的优点: 1)器件的开关速度快;2)低功率;3)输出电压在毫伏数量级 ,而输出电流大于控制线内的电流 ,信号检测方便。同时 ,体积更小 ,成本更低;另外,信号准确无畸变。

5.超导磁体

由于能无电损耗地提供大体积的稳定强磁场 ,超导磁体成为低温超导应用的主要方向 ,经过四十年的持续努力 ,按照实际需求设计、研制、建造 15 万高斯以内 ,不同磁场形态与各种体积的低温超导磁体技术已经成熟 ,有关导线与磁体的产业已经形成。低温超导磁体应用的一个重大障碍在于要创造与维持液氦温度(118~412K)的工作环境 ,需要有相应的低温制冷装备与运行维护工作。图6 制冷装备相对投资与运行温度的关系曲线

高临界温度超导体的出现使人们看到了提高运行温度的可能性 ,从而激发了发展高临界温度超导磁体的积极性。发展高临界温度超导磁体的主要问题在于迄今已能生产的铋系实用导线的强磁场下的性能在高运行温度下还难于与低温超导线相比及价格高 ,图 7示出了铋系实用导线在不同温度与磁场下的临界电流 性 能 曲 线 , 77K、0 T 时临界电流密度I ≈50kA/cm2。由图6可见 ,在 77K时 ,最高仅能产生10-1 特斯拉的超导磁场 ,当要求磁场高于 1 特斯拉时 ,运行温度需低于20~50K,从图 6所示制冷装备投资看仍有着重要意义 ,前述的超导同步电机激磁绕组就属于此范围。值得注意的还有 ,若运行温度仍保持在4.2K,Bi-2223 导线在近40T强场下仍能保持约100kA/cm2 的临界电流密度 ,从而可用于产生更高的超导强磁场。

图7 Bi-2223实用导线的临界电流性能(B∥带面)5.1 超导悬浮列车

由于超导体具有完全抗磁性,在车厢底部装备的超导线圈,路轨上沿途安放金属环,就构成悬浮列车。当列车启动时,由于金属环切割磁力线,将产生与超导磁场方向相反的感生磁场。根据同性相斥原理,列车受到向上推力而悬浮。超导悬浮列车具有许多的优点:由于它是悬浮于轨道上行驶,导轨与机车间不存在任何实际接触,没有摩擦,时速可达几百公里;磁悬浮列车可靠性大,维修简便,成本低,能源消耗仅是汽车的一半、飞机的四分之一;噪声小,时速达300公里/小时,噪声只有65分贝;以电为动力,沿线不排放废气,无污染,是一种绿色环保的交通工具。

图8 日本研制的磁浮列车用高温超导磁体系统

5.2磁悬浮轴承

高速转动的部位 ,由于摩擦的限制 ,转速无法进一步提高。利用超导体的完全抗磁性可制成悬浮轴承。磁悬浮轴承是采用磁场力将转轴悬浮。由于无接触 ,因而避免了机械磨损 ,降低了能耗 ,减小了噪声 ,具有免维护、高转速、高精度和动力学特性好的优点。磁悬浮轴承可适用于高速离心机、飞轮储能、航空陀螺仪等高速旋转系统。5.3电子束磁透镜

在通常的电子显微镜中 ,磁透镜的线圈是用铜导线制成的 ,场强不大 ,磁场梯度也不高 ,且时间稳定性较差 ,使得分辨率难以进一步提高。运用超导磁透镜后 ,以上缺点得到了克服目前超导电子显微镜的分辨已达到 3 埃 ,可以直接观察晶格结构和遗传物质的结构 ,已成为科学和生产部门强有力的工具。6展望与建议

自从超导材料制备技术不断成熟并逐步产业化生产以来 ,近十年来高临界温度超导应用得到了良好的发展 ,在超导电缆、超导限流器与超导变压器等电力应用方面 ,研制成功多台样机,人类在 21 世纪前期将迅速进入超导应用的新时代。从超导材料的发展历程来看,新的更高转变温度材料的发现及室温超导的实现都有可能。单晶生长及薄膜制造工艺技术也会取得重大突破,但超导材料的基础研究还面临一些挑战。目前超导材料正从研究阶段向产业化发展阶段。随着高温超导材料的开发成功,超导材料将越来越多地应用于尖端技术中,因此超导材料技术有着重大的应用发展潜力,可解决未来能源、交通、医疗和国防事业中的重要问题。

参考资料:

[1]严仲明,董 亮.超导技术在电工领域的应用[J ].电工材料,202_,(2):23-27.[2]严陆光.高临界温度超导应用的进展与展望[J ].电工电能新技术,202_,25(1).[3]宗曦华,张喜泽.超导材料在电力系统中的应用[J ].电线电缆,202_,20(2):98-101.[4]冯瑞华,姜山.超导材料的发展与研究现状[J].低温与超导,202_,35(6):520-526.[5 ]钱廷欣,周雅伟.新型超导材料的研究进展[J ].材料导报,202_,20(2):98-101.[6]张颖,陈浩乾.超导电性及其材料的应用与进展[J].广东化工,202_,35(12):74-77.[7]杨天信 ,谢毅立.我国高温超导技术研究现状[J ].中国电子科学研究院学报,202_,3(2):122-127.[8]杨 勇.超导技术的发展及其在电力系统中的应用[J ].电网技术,202_,25(9):48-50.[9]窦华.超导材料的应用[J].内蒙古电大学刊,202_,(2):55-56.[10]杨公安,蒲永平.超导材料研究进展及其应用[J ].陶 瓷,202_(7):56-59.[ 11]姚文新.超导材料与技术国外发展现状与趋势[J ].产业前沿,202_,(121):25-28.[ 12]K.Inoue,A.Kuchi.A new practical superconductor:rapidly heated and quenched Nb3Ga wire[J ].Physica C,202_,(384):267-273.

相关内容

热门阅读

最新更新

随机推荐