第一篇:燃气发电机组故障停机案例及典型问题
燃气发电机组故障停机案例及典型问题汇编
电力生产经营部 二〇一一年七月
前
言
“前事不忘,后事之师”,“避免故障停机是经济运行最有效的措施”。为了使集团新建燃气发电企业从源头上消除安全隐患,在役燃气发电企业更加安全、稳定、经济运行,电力生产经营部收集、整理了集团在役燃气机组投运以来发生的故障停机及燃气机组设计、制造、安装、调试、运行中发现的问题等资料,并汇编成册。燃气发电企业相关人员学习时要提高认识,做到举一反三,采取针对性措施,避免类似事件的发生,确保机组安全、经济、稳定运行。
《燃气发电机组故障停机案例及典型问题汇编》(简称《汇编》)共收集了故障停机案例42个,在这些案例中,天然气调压站系统引起故障停机15例,占总数的35.7%;燃机系统引起的故障停机11例,占总数的26.2%;发电机及电源系统引起的故障停机7例,占总数的16.7%;汽机系统引起的故障停机5例,占总数的11.9%;余热锅炉系统引起的故障停机4例,占总数的9.5%,其中3起故障停机都与运行人员的操作有一定的关系。《汇编》中还收集了1例人身轻伤案例和在役燃气轮机组在设计、制造、安装、调试、运行中发现的典型问题49例。
《汇编》为集团内部学习资料,在收集、整理、汇编过程中得到了京阳热电和京丰燃气的大力支持和帮助,在此表示衷心的感谢!
不妥之处,敬请批评指正。
电力生产经营部 二〇一一年七月
I
目
录
第一章 燃机系统
案例1:#7叶片通道温差大自动停机..................................................................................................1 案例2:燃烧器压力波动高高#1燃机跳机..........................................................................................3 案例3:模式切换时振动大燃机停运...................................................................................................5 案例4:#1燃机88TK-2故障停机处理................................................................................................9 案例5:#1燃机燃烧器压力波动大停机............................................................................................14 案例6:#
2、#3机因人为误动停机....................................................................................................25 案例7:#1燃机燃烧不稳停机............................................................................................................28 案例8:#1燃机燃烧器压力波动大停机............................................................................................31 案例9:#2燃机伺服阀故障停机........................................................................................................36 案例10:#1燃机燃烧器压力波动大跳机。......................................................................................42 案例11: #2燃机天然气泄漏停机处理............................................................................................48
第二章 汽机系统
案例12:#1燃机低压排汽温度高停机............................................................................................51 案例13:汽机EH油泄漏#
2、3机停运.............................................................................................53 案例14:右侧中压主汽门泄漏停机...................................................................................................57 案例15:#1汽机低压与中压排汽温差大保护停机..........................................................................61 案例16:#3汽机卡件故障停机..........................................................................................................67
第三章 发电机及电源系统
II
案例17:#1燃机中性点电流畸变跳机..............................................................................................74 案例18:#3发电机励磁系统故障#
2、#3机停运.............................................................................76 案例19:#1燃机380V电源MCC段失电,事故油压低跳机..........................................................79 案例20:继保动作#
2、3机停运........................................................................................................83 案例21:#2主变差动保护误动#
2、3机停运...................................................................................95 案例22:#2燃机发电机过激磁保护动作跳闸................................................................................104 案例23:#1燃机励磁碳刷故障........................................................................................................106
第四章 余热锅炉系统
案例24: #1燃机高压汽包水位低保护动作停机。......................................................................115 案例25:#2燃机水位保护动作停运................................................................................................118 案例26:燃机高压汽包水位低跳闸(检修期内试运).................................................................121 案例27:#1余热炉高压过热器连接管泄漏....................................................................................125
第五章 天然气增压机系统
案例28:#1燃机增压机变频器快速停机........................................................................................127 案例29:增压站#1高压变端子箱进雨水,重瓦斯保护,停机....................................................129 案例30:#1燃机变频器故障快速停机............................................................................................132 案例31:“燃机燃料供应压力低跳闸”保护动作停机...................................................................134 案例32:#1燃机供气压力低跳闸保护动作停机..........................................................................137 案例33:#1燃机增压机入口管线气动阀跳闸停运........................................................................139 案例34:#1燃机天然气品质不合格跳闸........................................................................................142
III
案例35:#2增压机跳闸#
2、#3机停运...........................................................................................144 案例36:#2增压机跳闸#
2、#3机停运...........................................................................................146 案例37:#1增压机跳闸#
1、#3机停运...........................................................................................148 案例38:#1增压机喘振跳闸#1燃机停运.......................................................................................153 案例39:#2增压机跳闸#
2、3机停运.............................................................................................157 案例40:#2增压机跳闸#2燃机停运...............................................................................................160 案例41:#1增压机跳闸#1燃机停运...............................................................................................164 案例42:#1增压机跳闸#1燃机停运...............................................................................................167
第六章 人身轻伤
案例43:酸液外漏人身轻伤.............................................................................................................173
第七章 典型问题
问题1:#1燃机PM1接管焊口运行中泄漏....................................................................................177 问题2:燃料气PM1、PM4、D5支管控制阀外漏天然气.............................................................178 问题3:GE公司对主辅机的备件使用存在“垄断”嫌疑.............................................................179 问题4:GE公司对主辅机的技术性文件保密.................................................................................180 问题5:燃机发电机氢气纯度低.......................................................................................................181 问题6:燃机发电机励磁系统可控硅多次烧毁。...........................................................................181 问题7:发电机变压器保护装置(GE)DSP采样板故障使保护误动...........................................182 问题8:燃机发电机端部绝缘在运行较短时间内出现磨损情况...................................................183 问题9:燃机罩壳本体配套的立式冷却风机系统运行中振动较大...............................................184
IV
问题10:燃机发电机绝缘在线监测装置(GCM)进出口管路未安装油水分离器.....................185 问题11:燃机冷却风机出口压力开关定值漂移问题.....................................................................185 问题12:燃机透平间危险气体探头零点漂移问题.........................................................................186 问题13:MB-H发电机励侧有105Hz的类椭圆振型(阻尼1.86%)..........................................187 问题14:MB-H发电机励磁装置考虑设计无功补偿环节...............................................................188 问题15:M701F燃机低压厂用负荷(三菱配电段)不符合行标要求.........................................189 问题16:MB-H发电机励磁装置强力时间与行标不符..................................................................189 问题17:发变组配置的GE保护DSP模块硬件存在问题..............................................................190 问题18:施耐德开关Mic6.0A保护控制单元接地保护存在误动风险..........................................191 问题19:进口设备资料及售后服务问题.........................................................................................192 问题20:DCS系统CP配置问题.......................................................................................................192 问题21:控制系统选型问题.............................................................................................................193 问题22:电源系统分配问题.............................................................................................................194 问题23:大联锁调试问题.................................................................................................................194 问题24:设备的单点保护问题.........................................................................................................195 问题25:foxboro I’A serise特性问题.............................................................................................195 问题26:M701F机组闭式水、工业水系统存在的问题................................................................196 问题27:三菱M701F机组TCA风机无备用...................................................................................197 问题28:三菱M701F机组TCA风机空气吸入口无滤网...............................................................198 问题29:高、中压给水泵最小流量阀容易产生漏流.....................................................................198
V
问题30:循环水泵选型方面的问题.................................................................................................199 问题31:凝泵的几点建议.................................................................................................................200 问题32:三菱M701F机组原设计顶轴油系统压力无在线显示....................................................200 问题33: M701F机组控制油、润滑油系统未设计离线滤油机...................................................201 问题34:三菱M701F机组原设计密封油系统真空泵无备用........................................................201 问题35:考虑轴封加热器汽侧设置水位报警.................................................................................202 问题36:余热锅炉烟囱振动剧烈.....................................................................................................203 问题37:冬季烟囱出口结冰.............................................................................................................203 问题38:余热炉内护板脱落问题.....................................................................................................204 问题39:余热炉原设计烟气阻隔板易脱落.....................................................................................205 问题40:低压汽包内件脱落问题.....................................................................................................205 问题41:余热锅炉没有设计底部加热系统.....................................................................................206 问题42:M701F机组BPT偏差大的问题........................................................................................206 问题43:低压主蒸汽参数上升很慢.................................................................................................207 问题44:余热炉吹管过程中高压升压过快.....................................................................................208 问题45:空气入口过滤器差压大导致跳闸.....................................................................................208 问题46:启动初期余热炉汽水品质不合格.....................................................................................209 问题47:冷态启动凝汽器真空大幅下降.........................................................................................210 问题48:温、热态启动中压汽包水位波动大.................................................................................211 问题49:润滑油泵无法实现在线检修.............................................................................................211
VI 燃气发电机组故障停机案例汇编
第一章 燃机系统
案例1:#7叶片通道温差大自动停机
1、经过: 202_年8月3日#1燃机按中调令于8时12分启动,8时24分点火,8时45分并列,8时49分当负荷升至50MW时,因#7叶片通道温度与平均值偏差达到26.44‴,超过了设计的25‴,时间超过30秒,控制室来“BPT温度偏差大”信号,机组自动停机以保护燃机。8月7日8时17分启动,8时53分并列。
2、原因分析:
1)202_年11月份调试期间曾出现#7叶片通道温度高现象,报警值由20‴调到23‴,自动停机值、跳闸值未做改动。其他叶片通道温度报警值维持20‴不变。
2)由于日方技术人员在对BPT温差定值进行调整时,考虑不周,设定值偏低(自动停机BPT温差定值实际是25‴,定值最高可小于40‴)导致自动停机。
3、防范措施: 燃气发电机组故障停机案例汇编
1)在控制系统中,修改燃机负荷35MW-65MW阶段的#1-20BPT温差定值(尤其#7BPT在启动期间报警由原来的23‴提高到30‴,自动停机由原来的25‴提高到33‴,跳闸由原来的30‴提高的35‴)。
2)其他19个BPT温差定值,在燃机负荷35MW-65MW启动期间报警由原来的20‴提高到25‴,自动停机由原来的保持原来的35‴。
25‴提高到30‴,跳闸2 燃气发电机组故障停机案例汇编
案例2:燃烧器压力波动高高#1燃机跳机
1、经过:
202_年10月5日20时14分,#1燃机来“#20燃烧器压力波动传感器异常信息”及“燃烧器压力波动预报警”光字牌。通知维护部检修班人员到场检查,之后此报警频发。23时02分,来“燃烧器压力波动高高跳闸”光字牌(经查为#
6、#7燃烧器压力波动高高),#1燃机跳闸。停机后,技术人员查找压力传感器、信号回路未见异常,经与网局调度协商于6日2时50分#1燃机启动,3 时21分转速3000r/min观察,未见异常,于3时49分机组并列。4时33分“#20燃烧器压力波动传感器异常信息”及“燃烧器压力波动预报警”又发光字牌,机组维持200MW运行。
2、分析及处理:
10月8日申请停机消缺,更换#20燃烧器压力波动传感器一次元件,当时故障排除。但运行5天后“#20燃烧器压力波动传感器异常信息”及“燃烧器压力波动预报警”又发光字牌。因仅在#20燃烧器压力波动传感器出现异常报警,且未发生灭火现象,机组在200MW长时间运行,此报警信号为误发,由于此信号报警屏蔽后不影响机组正常运行,且机组运行中无法处理,决定暂时将#20燃烧器压力波动传感器信号屏蔽,燃气发电机组故障停机案例汇编
待燃机C检时彻底检查处理。燃气发电机组故障停机案例汇编
案例3:模式切换时振动大燃机停运
1、故障经过
202_年10月23日,#
1、#3机组运行,#1燃机负荷100MW,#3汽机负荷65MW,总负荷165MW; AGC退出;#2燃机备用。
10月23日23:50,#1燃机拖#3汽机性能试验结束,GE调试人员进行了最后一次燃烧调整后,通知安全运行人员机组可以投入协调控制及AGC运行。并告知运行人员,#1燃机燃烧模式的切换点降负荷时为100MW左右,升负荷时为115MW到120MW。
10月24日00:00,由于AGC总负荷指令为180MW,此时#1燃机负荷达到110MW,燃烧模式由先导预混(PPM)模式切向预混(PM)模式。由于燃机在先导预混模式下,烟囱会有黄烟冒出,值长联系网调,接网调令退AGC及协调将燃机负荷升至120MW,00:08在燃机负荷升至115MW后,由于#2轴承振动达到21.2 mm/s,超过自动停机保护定值20.8mm/s,#1燃机发自动停机令,主值对#1燃机进行主复位,重新发启动令成功,将#1燃机负荷稳定在90MW。值长将情况通知生产保障部并汇报部门领导。
00:50值长接调度令重新升负荷至130MW,尝试冲过燃烧模式切换点,00:55分,#1燃机负荷升至115MW后由于#2瓦振动达24.5 mm/s,#1燃机再次发自动停机令,主值对#1燃机又进行主复位,重新发启动令 燃气发电机组故障停机案例汇编
成功,将#1燃机负荷稳定在90MW。值长将情况汇报给部门领导。
生产保障部热工人员联系厂家GE人员,GE人员通知热工人员将燃烧模式切换点的燃烧基准温度由2280℉改为2290℉,告知运行人员在此切换点可减小振动,冲过切换点。
10月24日06:54,经生产保障部热工人员更改燃烧模式切换点的燃烧基准温度后,运行主值人员再次升负荷冲燃烧模式切换点时,#1燃机#2轴承振动达26.84mm/s,超过了燃机振动保护跳机值25.4mm/s跳机。
2、故障后检查情况及原因分析
燃烧模式切换时,由于GE厂家TA对切换点选择不当,造成燃机内流体波动大,#1燃机发生振动,振动超过燃机跳机保护动作值跳机,联跳#3汽机。
#1燃机在性能试验开始前#1燃机燃烧模式切换设定点(由PPM模式切换至PM模式)为2260℉,模式切换正常;在10月23日性能试验完成后,GE公司进行了火焰筒DLN调整,由GE的现场TA将此设定值改为2280℉,并将FXKSG1、FXKSG2、FXTG1、FXTG2、FXKG1ST、FXKG2ST、FXKG3ST等相关参数也进行了修改,更改时间为202_年10月23日晚10时。
10月24日GE厂家TA再次将燃烧模式切换(由PPM模式切换至PM模式)温度设定值改为2290℉,燃机于早晨6:54进行燃烧模式切换时因轴承振动大跳机。
我方要求GE公司查清跳机原因并做出解释,GE公司解释此次燃烧 燃气发电机组故障停机案例汇编
调整参数修改为GE公司技术部门下发的定值,可能与现场机组情况不能完全匹配,并决定由 GE公司现场TA将#1燃机燃烧模式切换(由PPM切换至PM)温度设定值改回性能试验前稳定运行时的设定值2260℉,由于DLN设备已经拆除,GE公司TA并未对其它模式切换相关参数做相应的修改。
由于燃烧调整由GE厂家全部负责并进行技术封锁,需要专业的设备和软件,故由于燃烧调整参数设定问题引起的振动我厂无法查出其产生原因,需要GE厂家TA再次用DLN设备进行燃烧调整并解决;我公司正在与GE公司进行交涉,令其尽快派相关人员和设备来我公司解决燃烧模式切换引起振动大问题。
3、暴露问题
1)GE厂家技术服务人员技术把关不严,针对燃机模式切换的调整考虑不周。
2)生产保障部热工人员对设备的管理薄弱,对厂家的调整试验,参数修改没有进一步进行分析。
3)运行人员在2次燃机因为振动大触发自动停机程序的情况下,仍然进行第三次强行通过燃烧模式切换点,暴露出运行把关不严的问题。
4)运行人员在机组非计划停运后,下意识地直接将机组转入计划检修,没有及时汇报上级部门,没有认真履行事故处理程序。
4、采取措施 燃气发电机组故障停机案例汇编
1)对GE厂家的技术服务,生产保障部热工人员要紧密跟踪,尽快提高技术技能,加强分析和处理故障能力。
2)安全运行部加强管理,提高运行人员的故障处理能力,严格执行事故处理和汇报程序。燃气发电机组故障停机案例汇编
案例4:#1燃机88TK-2故障停机处理
1、故障经过
202_年1月23日,机组二拖一运行,AGC投入,总负荷650MW,#
1、#2燃机负荷均为230MW,汽机负荷190MW,供热量1200GJ/h。
1月23日14时00分,监盘人员发现#1燃机MARKⅥ界面发报警(排气框架风机风压低),EXH FRAME OR #2 BRG COOLING TRBL-UNLOAD(排气框架或#2轴承区冷却风机故障)”,立即派人至就地检查该风机并点击MARKⅥ风机界面“#2 LEAD”和主复位按钮,该风机仍无法启动。通知生产保障部热工、电气、机务专业,汇报蒋总,汇报部门。
14:01,#1燃机开始自动减负荷,运行人员手动退出AGC,降低热网负荷,机组维持低负荷运行。15:06,负荷3MW,调度通知停机,15:09 #1燃机停机。
2、故障后检查情况及原因分析
202_年1月23日14时,电气人员到现场后检查,发现#1燃机88TK-2风机电机停运,开关就地报 “接地保护”动作。将电机本体动力电缆接线拆开后,测量电机本体绝缘,三相对地为0.1兆欧,手动盘电机风扇可以盘动。拆出风机后,风机叶轮本体扇叶端部有不规则坑状损坏,电机本体驱动端轴承小盖及挡油环明显过热且有缺损。将电机送至电机检 燃气发电机组故障停机案例汇编
修厂家解体检修。
202_年1月20日,#1燃机88TK-1风机电机因振动大停运检修,将电机送至电机检修厂家解体检修,修复周期4天,截至1月23日未修复。
风机叶轮拆下后,发现电机本体驱动端轴承小盖及挡油环处明显损坏;将挡油环及甩油环拆下后,发现轴承保持架粉碎,滚珠过热变形,轴承外环与电机大盖之间有摩擦,轴承内挡油环与转子轴明显摩擦,转子轴被内挡油环啃出环状沟道。电机非驱动端未见任何异常。将电机转子抽出后,发现定子端部有一处短路放电痕迹,端部线圈明显过热痕迹。定子铁芯有轻微扫膛现象。电机非驱动端定子端部未见任何异常。图片如下:
轴承小盖及挡油环明显过热且有缺损 燃气发电机组故障停机案例汇编
轴承保持架粉碎
转子轴被内挡油环啃出环状沟道 燃气发电机组故障停机案例汇编
定子端部有一处短路放电痕迹,伴有轻微扫膛现象
从故障现象看,电机驱动端轴承因长期处于高温下工作,导致轴承油脂乳化后流失,轴承处于干涩状态下运行,因摩擦逐渐导致轴承区域明显过热,引发定子端部区域过热,绝缘老化降低,最终定子绕组匝间短路产生高温烧烧损。缺润滑脂是本次故障的直接原因。
综上,本次故障的原因分析如下:
1)电气专业人员设备缺陷管理不到位。88TK-1风机故障后没有修复,在88TK-2风机故障后,备用设备无法投入而跳机。
2)生产各部门在88TK-1风机退备后没有采取好防范措施,没有加强运行风机的检查。
3)电气点检人员对88TK-2风机电机的维护、检查不到位; 燃气发电机组故障停机案例汇编
4)运行巡检人员对88TK-2风机电机的检查不到位;
5)88TK-2风机电机由于设计原因,运行中无法检查、添加油脂,且轴承温度无测点上传到集控室实时监控;
3、暴露问题
1)燃机部分重要辅机设备还存在由于润滑脂检查不方便和温度、电流无法在线监视等原因,检查、维护不到位的情况;
2)电气点检人员、运行巡检人员对设备的维护检查不到位; 3)电气专业人员设备缺陷管理不到位。
4、防范措施
1)生产保障部加强设备缺陷管理,对失去备用的运行设备制定防范措施,加强检查,同时尽快修复被用设备,保证设备安全稳定运行。
2)改造88TK-2风机电机,将加、排油孔引至电机外侧,加装轴承测温元件,上传到集控室监视;
3)对全厂同类型电机,同安装形式电机进行普查,确认设备健康水平,对不能满足运行要求的电机安排检修;
4)利用小修时间对所有同类电机解体检查,更换轴承,补充油脂; 5)对同类型设备,做好备品备件工作,定期进行更换检修; 6)电气专业加强设备管理,认真点检,及时消除缺陷,使备用设备处于良好备用状态。燃气发电机组故障停机案例汇编
案例5:#1燃机燃烧器压力波动大停机
1、事件经过: 202_年3月14日#1燃机带供热运行,机组负荷365MW。9时56分57秒由于雨雪天气,燃机压气机入口空气滤网差压增大,10时08分07秒发出“#19燃烧器HH2频段压力波动越限”报警;10时08分11秒;发出“#
3、#18燃烧器HH2频段加速度越限”报警;10:08:12,发出“燃烧器压力波动大降负荷”信号;10时08分13秒又发出“#
1、#2燃烧器HH2频段压力波动越限”报警;10时08分14秒#1燃机因燃烧器压力波动大跳闸保护动作停机。
2、原因分析:
1)根据三菱公司设计,其燃烧器是通过调整燃料流量和空气流量来控制燃烧状态。其中,扩散燃烧(值班喷嘴)与预混合燃烧(主喷嘴)的燃料比通过值班燃料控制信号(PLCSO)进行控制;进入燃烧器的空气量通过通过燃烧器旁路阀(BYCSO)进行控制。为了抑制燃烧振动增加,保持燃烧器最佳连续运行状态,三菱公司设计了燃烧振动自动调整系统,由自动调整系统(A-CPFM)和燃烧振动检测传感器组成。燃烧振动检测传感器共24个,包括安装于#1-#20燃烧器的压力波动检测传感器和分别安装于#
3、#
8、#
13、#18燃烧器的加速度检测传感器。自动调整系统 燃气发电机组故障停机案例汇编
(A-CPFM)根据燃烧振动检测数据和燃机运行参数,对燃烧器稳定运行区域进行分析,并根据分析结果自动对PLCSO和BYCSO进行修正,从而实现燃烧调整优化。
2)#1燃机控制系统对燃烧器压力波动传感器和加速度传感器检测数据分为9个不同的频段进行分析,分别为LOW(15-40 HZ),MID(55-95 HZ),H1(95-170 HZ),H2(170-290 HZ),H3(290-500 HZ),HH1(500-202_ HZ),HH2(202_-2800 HZ),HH3(2800-3800 HZ),HH4(4000-4750 HZ)。在不同频段针对燃烧器压力波动传感器和加速度传感器,分别设臵了调整、预报警、降负荷、跳闸限值,其中,调整功能由A-CPFM系统完成;预报警、降负荷、跳闸功能由燃机控制系统实现。当24个传感器中任意2个检测数值超过降负荷限值时,触发燃机降负荷;当24个传感器中任意2个检测数值超过跳闸限值时,燃烧器压力波动大跳闸保护动作。此次燃机跳闸即是由于#
1、#
2、#19压力波动传感器HH2频段检测数值均超过跳闸限值引起。
3)根据三菱公司对燃机跳闸前后运行数据进行的分析,在燃烧器压力波动HH2频段数值出现越限报警时,H1频段数值也出现异常升高。此外,由于3月14日降雪天气的影响,压气机入口空气滤网差压在原有基础上出现异常增大,最高达到1.6KPa。压气机入口空气滤网差压增大,说明进入燃机的空气流量减少。在空气流量减少的情况下,燃机运行区域非常接近燃烧器压力波动H1和HH2频段越限报警区域。由于我公司燃 燃气发电机组故障停机案例汇编
机日计划出力曲线为10时00分从360MW升到370MW,由北京市调AGC自动控制。燃机负荷上升燃料阀打开,此时要求进口空气量同时增大,以满足合适的燃空比,由于压气机入口空气滤网差压大造成进入燃机的空气流量减少,造成燃烧不稳定,引起燃烧振动。燃烧振动出现后燃机控制系统ACPFM已动作进行调整。而且当振动值达到报警值时RUNBACK功能也启动,但是由于振动值升高太快,调节系统的调节发挥调作用前,燃烧振动达到跳机值,导致燃机因燃烧器压力波动越限跳闸。
图1:机组负荷指令 燃气发电机组故障停机案例汇编
图2:燃烧自动调整系统调节记录 燃气发电机组故障停机案例汇编
图3:先导燃料阀控制参数调整记录
燃气发电机组故障停机案例汇编
图4:燃机旁路阀控制参数调整记录 燃气发电机组故障停机案例汇编
图5:燃烧振动报警记录
图6:机组跳闸报警记录 燃气发电机组故障停机案例汇编
图7:机组跳闸时运行工况分析图 燃气发电机组故障停机案例汇编
4)空气滤芯为纸质材料,纸纤维遇潮膨胀使得过滤器差压升高。遇雨雪天气(尤其是小雨雪),空气湿度大时空滤器差压升高,雨雪停止,空气湿度降低,差压会快速下降。
在用的入口空气过滤器滤芯是202_年10月更换,由于进入冬季供热后机组长周期高负荷运行,空气滤芯差压上升较快。而且今冬北京大雾及雨雪天气较多,对纸质空气滤芯来说是恶劣运行工况。由于机组在供热季必须连续运行,而空气滤芯又不能在机组运行中更换,针对今冬空气滤芯差压升高的现象,为保证机组连续高负荷运行,满足供热需求,燃气发电机组故障停机案例汇编
我公司主要开展了以下几个方面的工作以缓解差压上升的趋势:①多次进行在线人工清理,并在清理后增加一层包面,减少灰尘进入空气滤芯②连续投入反吹系统,减少灰尘在滤芯上的积累③在空气进气口外侧搭设防雨雪棚,减少进入空气过滤器的雨雪量。
3、事故处理及防范措施
1)机组跳闸后,立即启动公司的两台启动炉,一方面向热网系统供蒸汽,使热网系统能够低温运行,另一方面为燃气提供轴封蒸汽,维持凝汽器真空,为燃机的随时启动做准备。
2)立即进行机组运行数据的分析工作,通过数据分析我公司认为是由于空气滤网差压大,在机组涨负荷过程中由于空气量不足造成燃烧振动,机组跳闸。同时将数据发送到三菱公司高砂总部,要求三菱公司立即进行数据的分析。三菱公司也十分重视,由于是周末,三菱公司领导亲自指示技术人员加班进行分析。3月15日凌晨4时,日方提供初步分析结果,和我公司分析结果一致,确认燃机本体及燃烧器正常,机组跳闸就是由于空滤器差压大,涨负荷时空气量不足造成燃烧不稳,出现燃烧振动,并表示3月15日早再组织专家进行进一步分析确认。
3)机组跳闸后,我公司立即组织人员连续作业,进行空气过滤器的更换,至3月15日早7时完成滤芯的更换工作。并计划在压气机空气入口原有单级滤网基础上,增加粗滤,以减小恶劣天气情况下对滤网差压的影响。燃气发电机组故障停机案例汇编
4)三菱公司3月15日上午10时提交了最终分析结果,确认燃机本体机燃烧器正常,跳闸原因确认为空气流量不足造成。得到答复后,我公司立即向北京市调进行汇报沟通,市调同意机组再次并网。机组于3月15日13时30分启动,15时30分并网,并网后机组运行正常。由于机组跳闸时(机组在高负荷工况),机组的自动燃烧控制系统已进行调节,调节参数已改变,因此机组启动后需在高负荷段进行燃烧调整,重新对调节参数进行确认、优化,以保证燃烧稳定。三菱公司的燃烧调整专家16日到达公司,经过和北京市调申请,市调安排3月17日0时开始燃烧调整,3月17日16时30分完成燃烧调整工作。
5)对于雨雪天气情况下空气滤芯差压升高,而且不能在线更换滤芯,影响机组长周期连续运行的问题,我公司已进行技术论证,已多次和燃机入口空气系统的设计制造商美国唐纳森公司(三菱公司的分包商)进行技术交流,确定了技术方案,计划在进气系统的入口加装PE材质的初滤系统。加装的初滤系统能过滤大部分灰尘和雨雪,大量减少进入后面纸质空滤灰尘和雨雪,由于初滤不是纸质材料可以在线进行水清洗。这样一方面可以有效控制空气系统差压,确保机组安全运行,另一方面能极大延长空气滤芯的使用寿命,经济较好。此项目我公司基本和唐纳森公司达成意向,计划于202_年9-10月份安装并投入使用,保证202_年---202_年供热季的安全运行。燃气发电机组故障停机案例汇编
案例6:#
2、#3机因人为误动停机
1、故障经过:
202_年5月11日,#
2、3机组纯凝工况运行,总负荷366MW,#2燃机负荷244MW,#3汽机负荷122MW;#1燃机停运。
20:35,#2燃机做完燃烧调整试验,进入baseload(基本负荷)开始性能试验。20:50,生产保障部热工人员XX联系运行人员做停运的#1燃机PM4清吹阀传动试验。20:53,XX得到运行值长XX许可后,进入工程师站,误将运行中的#2燃机PM4清吹阀作了传动试验。20:54,#2燃机PM4清吹阀故障报警,保护动作跳#2燃机,联跳#3汽机。
机组跳闸后,值长立即通知相关人员到场,汇报调度,并要求运行人员立即对各系统进行检查:汽机各主汽门关闭,转速下降,交流润滑油泵,顶轴油泵联启正常,汽机惰走正常;#2燃机油系统运行正常,惰走正常。运行人员启动启动锅炉,辅汽系统投入正常。
21:20 #1燃机盘车投入。21:50 #3汽机盘车投入。
2、故障后处理情况:
由于故障原因明显,生产各部门准备重新起机,22:00运行值长向调度申请起机。5月12日00:16,调度令#
2、#3机组启动。机组于
525 燃气发电机组故障停机案例汇编
月12日01:08并网。
3、事故原因分析:
(1)事故的原因
生产保障部热工人员XX,未履行工作票程序,无工作内容、操作和安全措施纪录,未进行危险点分析,工作疏忽,误将运行中的#2燃机PM4清吹阀关闭,2燃机PM4清吹阀故障报警,保护动作跳#2燃机,联跳#3汽机,是本次故障的主要原因。
生产保障部热工专业管理松懈,未严格工程师站管理制度,检修人员在无监护的情况下单人操作,是本次故障的管理原因。
(2)事故暴露出来的问题:
1)工作票制度的执行存在管理漏洞。
2)生产保障部热工人员责任心不强,麻痹大意,发生误操作。3)生产保障部热工人员夜间工作时,执行工作票制度不规范。4)生产保障部热工专业未执行双人操作规定,工程师站管理制度执行不严格。
5)发电部值长XX不严格执行工作票制度。
6)安全监察部对公司安全生产制度执行的监督松懈。
4、防范措施:
1)公司各生产部门严格执行各项安全生产管理制度,各部门负责人加强对生产人员执行安全生产管理制度的管理、检查和考核。燃气发电机组故障停机案例汇编
2)公司各生产部门加强安全教育,提高责任心,认真监盘,精心操作。
3)生产保障部严格执行《电子间、工程师站管理制度》和《生产现场计算机使用和管理制度》,操作时双人进行,一人操作,一人监护。同时对电气PC间、电子间、GIS间、继电保护间加强出入管理,严格执行出入登记制度。
4)生产人员值班时要保持良好的精神状态,操作时精神要高度集中。5)利用安全活动月,各部门切实开展反习惯性违章的学习活动。6)安全监察部加强检查监督,督促各部门严格执行公司安全生产制度。燃气发电机组故障停机案例汇编
案例7:#1燃机燃烧不稳停机
1、事故经过:
202_年5月13日00:50,#
1、2燃机拖#3汽机以“二拖一”方式运行,#1燃机负荷110MW,#2燃机负荷195MW,#3汽机负荷200MW,总负荷505MW。00:51按调度曲线将总负荷降至450MW,运行人员将#1燃机负荷降至90MW,根据燃机特点,#1燃机燃烧模式自动由预混燃烧模式(PM1+PM4喷嘴运行)切至亚先导模式(PM1+PM4+D5喷嘴运行)。00:52 #1燃机报“High exhaust temperature spread trip”(排气分散度高跳闸),#1燃机灭火,#1发电机解列,#
2、3机组继续以“一拖一”方式运行正常。
2、事故后处理情况:
#1机组于5月14日22:18并网。
3、事故原因分析:
(1)事故原因分析
我公司专业人员和GE公司现场工程师立即到现场进行检查和分析。通过对#1燃机跳闸信号和机组当前运行状态的分析得出结论,此次机组跳闸事故的原因是由于#1燃机在降负荷过程中,燃机由于自身特性,当运行负荷低于90 MW时,燃烧模式自动切换,由预混模式进入亚先导预 燃气发电机组故障停机案例汇编
混燃烧模式后,由于#
2、3燃烧筒(总共18个燃烧筒)在燃烧切换后未能够有效稳燃,导致#
2、3燃烧筒灭火,致使在燃烧模式切换完成后燃机排气温度#
15、#
16、#
17、#
18、#19这五个测点温度不升反降(900-1100华氏度),相比于其他26支排气温度(1200-1300华氏度)较低,最终导致#1燃机因排气分散度高而保护动作跳闸。
机组保护动作情况分析:
1)最高排气温差TTXSP1(此时由#18排气温度引起:268.492‴)大于允许排气温差TTXSPL(268.155)
2)次高排气温差TTXSP2(此时由#17排气温度引起:263.764‴)大于0.8倍的TTXSPL(约为214.524‴)
3)延时2s后#1燃机于00:52:03跳机。机组当时运行状态满足附件中保护动作条件1(2)针对事故原因的检查和试验
我公司专业技术人员查清楚事故原因后,立即与GE公司亚特兰大总部技术人员进行了联系,通过其燃烧专家远程检查分析后,确定了上述机组跳闸原因,并针对性的提出了机组现场检查的项目和要求,我公司立即组织技术人员按照其要求安排检查,具体检查项目如下:
1)检查#16到#19号排气热电偶的状态; 2)检查#1、2、3、4联焰管是否泄露;
3)检查燃机清吹阀,燃烧调整阀动作情况,重新进行逻辑传动; 燃气发电机组故障停机案例汇编
按照其要求进行以上检查后,均未发现异常。我公司立即联系美国GE总部技术人员,经对方技术人员再次确认和分析后,GE方确认其之前燃烧调整的定值在燃烧切换过程中存在部分参数配比不合理的问题,故要求对我公司机组重新进行机组燃烧切换点的燃烧调整工作,5月14日#1机组启动并网后在燃烧模式切换点进行两次切换试验,切换正常。
虽然#1燃机再次启动并燃烧模式切换正常,但我公司专业人员已采集近期#1燃机模式切换和5月13日#1燃机故障跳机时模式切换的报警、参数、趋势图继续分析原因,并联系GE人员,要求GE给出5月13日#
2、3燃烧筒灭火的具体原因。
(3)事故暴露出来的问题:
1)GE进行燃烧调整时参数配比不合理。
2)生产保障部热工人员对燃机燃烧调整的有关技术问题未掌握。
4、防范措施:
1)公司对GE今后的工作要求GE提供正式工作方案和安全措施。2)生产保障部热工人员对尽快熟悉燃机燃烧调整的技术问题。3)生产保障部加强部门专业人员对GE设备的结构、性能和维护的培训。燃气发电机组故障停机案例汇编
案例8:#1燃机燃烧器压力波动大停机
1、事件经过: 202_年6月8日上午,#1燃机机组带250MW负荷正常运行。10:05根据调度命令,机组开始升负荷,负荷目标值355MW。10:10:36机组负荷升至314 MW时,TCS发出“#
1、#
2、#
3、#4燃烧器HH2频段越限报警;
10:10:36 TCS发出“燃烧器压力波动大降负荷”信号; 10:10:37 #1燃机因燃烧器压力波动大跳闸保护动作停机。
2、原因分析:
1)根据三菱公司设计,M701F燃烧器是通过调整燃料流量和空气流量来控制燃烧状态。其中,扩散燃烧(值班喷嘴)与预混合燃烧(主喷嘴)的燃料比通过值班燃料控制信号(PLCSO)进行控制;进入燃烧器的空气量通过燃烧器旁路阀(BYCSO)进行控制。为了抑制燃烧振动增加,保持燃烧器最佳连续运行状态,三菱公司设计了燃烧振动自动调整系统,由自动调整系统(A-CPFM)和燃烧振动检测传感器组成。燃烧振动检测传感器共24个,包括20个安装于#1-#20燃烧器的压力波动检测传感器和4个分别安装于#
3、#
8、#
13、#18燃烧器的加速度检测传感器。自动调整系统(A-CPFM)根据燃烧振动检测数据和燃机运行参数,对燃烧器
燃气发电机组故障停机案例汇编
稳定运行区域进行分析,并根据分析结果自动对PLCSO和BYCSO进行修正,从而实现燃烧调整优化。
2)#1燃机控制系统对燃烧器压力波动传感器和加速度传感器检测数据分为9个不同的频段进行分析,分别为LOW(15-40 HZ),MID(55-95 HZ),H1(95-170 HZ),H2(170-290 HZ),H3(290-500 HZ),HH1(500-202_ HZ),HH2(202_-2800 HZ),HH3(2800-3800 HZ),HH4(4000-4750 HZ)。在不同频段针对燃烧器压力波动传感器和加速度传感器,分别设臵了调整、预报警、降负荷、跳闸限值,其中,调整功能由A-CPFM系统完成;预报警、降负荷、跳闸功能由燃机控制系统实现。当24个传感器中任意2个检测数值超过降负荷限值时,触发燃机降负荷;当24个传感器中任意2个检测数值超过跳闸限值时,燃烧器压力波动大跳闸保护动作。此次燃机跳闸即是由于#
1、#
2、#
3、#4压力波动传感器HH2频段检测数值均超过跳闸限值引起。
3)机组跳机后,公司立即组织技术人员开展对机组运行数据的分析工作和设备状态的确认工作,同时将相关数据发送给三菱高砂。燃料数据报告表明燃料组分甲烷含量96.31%,低位发热量为36.17MJ/M3,较以往稍高;运行曲线表明机组运行时空气燃料调整系统动作正常,振动出现后燃机控制系统(ACPFM)立即动作进行调整,振动值达到报警值时RUNBACK功能随后启动,但是由于振动值升高太快,调节系统尚未完全发挥作用,燃烧振动达到跳机定值,导致燃机因燃烧器压力波动越限。
燃气发电机组故障停机案例汇编
现场又对燃烧器压力波动传感器和加速度传感器进行了检测,正常;同时检查汽机燃机状态,确认无异常。当夜三菱回复意见认为:运行数据并未反映出燃机性能存在明显异常状况,判断可能由于燃气组分存在瞬时性、大幅度变动;或者燃气温度、进气温度发生较大变化,从而导致HH2频段振动的发生领域接近运行点,造成跳机。认为机组可再次启动、并网运行,但为了安全起见,建议运行时将GT负荷控制在195MW以下,同时尽早对燃机实施燃烧调整。
3、处理经过:
1)机组跳机后,公司迅速将启动炉启动,保证汽机轴封系统供汽,维持凝汽器真空,为燃机的随时启动做准备。
2)进行原因分析、设备检查确认具备开机条件后,当夜联系市调准备开机,经调度同意机组于6月9日12:25分并网。
3)经和三菱公司沟通,机组于6月13日白天进行了燃烧调整,三菱TA现场收集了运行相关数据,待汇总研判后出具最终报告。
附件1:机组跳闸时运行工况分析图
燃气发电机组故障停机案例汇编
燃气发电机组故障停机案例汇编
附件2:机组跳闸报警记录
燃气发电机组故障停机案例汇编
案例9:#2燃机伺服阀故障停机
1、事故经过:
202_年7月4日,机组二拖一纯凝工况运行,AGC投入,总负荷580MW,其中#1燃机负荷180MW,#2燃机负荷180MW,#3汽机负荷220MW。#2燃机速比阀前压力P1:32.07Kg/cm2,速比阀前压力P2: 29.83Kg/cm2,IGV开度51%。
14时18分,#2燃机跳闸,跳闸首出原因为: EXHAUST OVER TEMPERATURE TRIP排气温度高跳闸
#2燃机跳闸后,运行人员立即该报告相关人员到场处理并按照正常操作程序进行停机操作,并维持#
1、3机组维持稳定运行。此时#
1、3机一拖一稳定运行,总负荷269MW,#1燃机负荷170MW,#3汽机负荷99MW。
2、事故后处理情况:
相关人员到场后,经检查历史曲线发现14时18分08秒平均排气温度到达1240.44华氏度,超过保护动作值1240华氏度,保护正确动作。从历史趋势分析,14时18分05秒,#2燃机IGV导叶在指令未变化情况下关小,此时IGV指令增大,指令与反馈偏差不断增大,平均排气温度迅速上升,14时18分08秒,IGV指令74%,IGV反馈57%,排气温度越
燃气发电机组故障停机案例汇编
过跳闸值,机组跳闸。从以上过程来看,IGV阀的失控是导致排气温度上升的直接原因。从IGV伺服阀电流曲线发现,14时17分44秒开始IGV伺服阀电流异常波动,至18分05秒伺服阀电流失去。初步认为燃机压气机进口可变导叶伺服阀故障引起IGV开度减小,燃机压气机进风量减少,导致燃机排气温度高,超过设定值而燃机跳闸。见图一
图1 事故跳闸曲线
随后,集团电力生产经营部专业主管、GE公司维护项目代表、京阳热电有关技术人召开分析会,认为IGV控制伺服阀故障。
对IGV控制伺服阀卡件及电缆检查,无异常。
IGV控制伺服阀传动试验,IGV伺服阀电流仍有波动。曲线见图二。
燃气发电机组故障停机案例汇编
图2 跳闸后IGV伺服阀传动电流曲线
20:50,更换IGV控制伺服阀。
21:00,IGV控制伺服阀传动试验正常。见图三
燃气发电机组故障停机案例汇编
图3 更换IGV伺服阀后传动电流曲线
23:10向调度请示启机,23:46机组启动,IGV工作正常,0:56,机组并网。
3、事故原因分析:
(1)事故原因分析
通过与伺服阀制造商的沟通,并结合已采集到的数据信息进行分析,可能的原因主要如下:
1)伺服阀阀体内喷嘴或节流孔堵塞,导致控制油油路不通,伺服阀控制失灵;
2)伺服阀阀球或阀芯阀套磨损量偏大,引起伺服阀偏臵电流的波动,39 燃气发电机组故障停机案例汇编
伺服阀控制失灵。
针对以上情况,检查了最近几个月#2燃机润滑油的油务监督报表,报表显示在此期间,燃机润滑油的油质始终合格。另外,燃机控制油的来源取自润滑油供油母管,经过液压油泵加压后供给各液压控制阀,在液压油泵出口和各液压控制阀供油管上均配臵有高精度的过滤器,即供给伺服阀的液压油油质优于油务监督的结果,满足伺服阀对油质的要求。
按照伺服阀制造商的要求:每两年应进行清洗检测的定期工作。此次故障的伺服阀是202_年4月检修期间,更换到#2燃机IGV执行机构上的全新的伺服阀,截止到事故前,投入运行一年,未到定期清洗检测期。
伺服阀于202_年7月5日送上海MOOG控制有限公司检测,结果为内部磨损,属偶发故障。正式检测报告近期提供。
经调研同类燃机电厂IGV伺服阀情况,故障率均很低。可基本确定故障为产品质量偶发故障。
3)事故暴露出来的问题: 设备管理存在不足。
4、防范措施:
为了吸取教训,避免事故再次发生,将从以下几个方面进行总结,并认真执行各项防范措施:
1)严格按照伺服阀制造商的建议,定期清洗检测伺服阀,保证伺服
燃气发电机组故障停机案例汇编
阀良好的工作性能。
2)充分调研并吸取同类型燃机电厂在伺服阀检修方面的经验,将伺服阀的检修纳入到燃机小修的标准项目。
3)深入学习并掌握伺服阀的工作原理和结构,提高事故分析和解决问题的能力。
4)保证伺服阀备件合理的库存数量,将关键设备的伺服阀备件作为事故备件储存。
做好滤油工作,防止油质恶化,做好油务监督。
燃气发电机组故障停机案例汇编
案例10:#1燃机燃烧器压力波动大跳机。
1、事件经过
12月4日晚,热网抽汽调节阀出现控制指令与阀位反馈偏差较大现象(最大16%),经分析认为伺服阀油门卡涩或油路堵塞,从而造成阀门无法动作到位。由于燃机运行过程中无法更换伺服阀,现场采取调整执行器油缸弹簧和修改阀门最小开度逻辑限制,使热网抽汽调节阀控制指令与阀位反馈偏差的现象有所缓解,没有根本解决;若伺服阀异常情况恶化,则会导致热网抽汽调节阀无法朝关闭方向继续动作,热网抽汽流量也无法增加,进而影响燃机和热网系统正常运行。为解决这一问题,通过和江南阀门厂技术人员进行讨论后,确认热网抽汽调节阀电控部分PLC的控制逻辑为:阀门的控制指令和反馈在PLC内部进行偏差比较并放大后,输出驱动伺服阀动作;通过修改PLC逻辑增大PLC输出,在目前控制指令和阀位反馈存在偏差的情况下,可以增加阀门进油量,进而使阀门可以继续跟随指令进一步关小,从而达到缩小指令和反馈偏差的目的。
12月9日下午,江南阀门厂技术人员携上位机组态软件到厂后,对PLC逻辑修改方案进行讨论:决定通过修改PLC内部伺服逻辑中的比例放大系数来增加PLC的输出电压,并且江南阀门厂技术人员认为修改可
燃气发电机组故障停机案例汇编
在线进行。
202_年12月9日17时04分运行值班人员发出热工工作票一张,工作内容内容为#1燃机中压排汽压力调节阀控制回路逻辑修改。当时燃机带电负荷350MW,抽汽量约117t/H,机组AGC投入。18时18分,热网抽汽降至80t/H。因热工人员无法完成在线下载,经领导批准离线下载,运行值班人员并将热网抽汽降至50t/H,并按热工人员要求将热网抽汽调节阀解列为手动调整。
在热网抽汽流量降低至50t/h并与运行人员共同确认安全措施都已做到位后,于19时03分14秒开始进行PLC逻辑修改离线下载,19时03分24秒离线下载完成,随后热网抽汽调节阀动作出现大幅波动,导致热网抽汽量和中压缸排汽压力也出现较大波动。19时03分41秒,发出“中压缸排汽压力高” 报警;19时04分08秒,发出“中压缸排汽压力低” 报警;19时04分50秒,陆续发出“#
2、#
3、#
7、#8燃烧器H1频段压力波动越限”预报警和报警;19时04分51秒,触发“燃烧器压力波动大降负荷”信号;19时04分54秒,#1燃机因燃烧器压力波动大跳闸保护动作,#1燃机跳机。
2、故障原因分析
通过对燃机停机前后趋势曲线进行分析,19时03分14秒开始进行离线下载,此时控制指令为28.31%,阀位反馈为35.7%;19时03分24秒离线下载完成,此时阀位反馈为39.91%,此后阀门开始关闭,最低关
第二篇:典型燃气事故案例
典型燃气事故案例汇编典型燃气事故案例汇编
(1)、202_年12月12日下午3时,长春市东天街滨河西路205栋居民楼地下长春市室天然气总阀门铜芯脱落,导致天然气泄漏发生爆炸,3人死亡,26人受伤,7层建筑不同程度受损。
(2)、202_年2月12日,沈阳张龙在本单位值班,当其熟睡后,室外地下管道煤气泄漏渗透至值班室内,致张龙煤气中毒昏谜8月余。经8月余的治疗后恢复记意,此期间共花去医疗费18万余元。经调查,是因煤气管线埋深不够,载重卡车压裂煤气管道造成的。卡车司机已逃逸,受害人向煤气公司索赔400余万元,法院判煤气公司承担无过锗责任。
(3)、202_年1月27日6时40分左右,山东章丘市山东章丘市明珠小区北区山东章丘市29号楼一单元(章丘市人民医院宿舍)发生管道煤气爆炸事件,整个单元大部分被炸掉,全单元10户居民除个别人外,皆被掩埋在炸碎的打砖石之下,造成重大伤亡和财产损失。目前已死亡5人,受伤多人。
(4)、202_年2月15日晨,哈尔滨市平房区东北轻合哈尔滨市金加工厂家属区601、602栋楼发生室外煤气泄漏事故,造成29人中毒,其中一人死亡。初步断定为季节性土层变化导致地下次高压煤气管线断裂,产生漏气并从暖气沟窜入楼内,造成中毒事故。
(5)、广安市天然气公司在202_发生二起事故,一起是一安装工人酒后上班,在施工中从近20米的高处摔下,不治身亡,损失12万余元。另起是因管材本体质量问题致天然气泄漏后窜至20余米外的下水道内,某装修工在施工中引燃天然气严重烧伤3人,其中一人因医治无效死亡,已发生费用37万余元。
(6)、202_年4月12日6时,北京市海淀区二里沟国家测绘局宿舍楼北京市海淀区三单元二楼发生爆炸,三人在事故中受伤。查其原因,是因用户擅自改动天然气管道所致。
(7)、1999年11月29日,上海市某弄1号三搂的曹女士及女儿王某因煤气中毒身亡;几天后,曹的丈夫也因煤气中毒较2深,抢救无效死亡。查其原因:将应装明线的管子装在墙体内部,变成了暗线。至事发之日已有数十年,煤气管道受到墙体石灰腐蚀造成裂缝,并使煤气泄漏扩散到王家。用户索赔100万元。
(8)、202_年10月10日早晨7时18分,南充市涪江路市广电局内一领导住宅南充市楼。一位副局长家因户内天然气泄漏,在厨房内用火时产生爆燃,一人烧伤住进医院,厨房门和厨房吊顶被掀翻。分析原因,责任完全在用户,是因装修房屋时用户违反四川省燃气管理条例,擅自拆安天然气管线所致。
(9)、202_年8月13日上午10时,遂宁市天德土木建筑公司在油房街开挖路遂宁市面铺设下水管道时,野蛮施工,不慎将天然气主输气干管挖破,致10万市民不能用上3天然气。同年8月19日凌晨,上海市某区域燃气管道自然断裂(该管道埋深2米余),致区域停气,影响用户8000余户,至次日晚恢复供气。
(10)202_年11月17日晨6时左右,杭州发生一起因空混气DN200低压管泄漏引起的爆炸事故。爆炸现场为凤起路和刀茅巷路的交接路段。事故造成了位于爆炸路段的凤起苑、中大凤栖花园和兴和公寓3个小区约1652户住户停气,百余窨井盖冲天而起。
(11)、广州市白云区石岗东街出租屋发生一起惊人命案,一对年轻男女赤身裸体死在卫生间内,警方初步断定是煤气中毒导致。家用燃气热水器使用频繁,要注意规范安装、保障安全。根据现场所见,该豪华型家用燃气快速热水器虽然显示产品合格,但在这样狭小的空间内明显安装不当。
(12)202_年12月23日,重庆市开县高桥镇的东北气矿16号井发生特大井喷事故,井内喷射出的大量含有剧毒硫化氢的天然气四处弥漫,造成243人中毒死亡,2142人入院治疗、65000人被紧急疏散安置。此次灾难造成的直接经济损失高达6400余万元。
(13)202_年1月28日,珠海市发现一起怀疑煤气中毒事件:居住在珠海吉大莲花山小区
一出租房的一对年轻男女,在窄小的浴室内一同淋浴时,由于浴室内门窗紧闭,两人长时间在浴室内洗澡,一氧化碳在浴室内逐渐聚集起来,于是发生煤气中毒事件,当两人被邻居发现时,已经身亡。
(14)四川泸州市纳溪区丙灵路15号居民楼旁发生一起州市气体爆炸事故。事故已造成5人死亡,1人重伤,34人轻伤。经有关专家现场勘察,基本排除人为物品爆炸可能。初步判定属可燃气体爆炸,现场看有气源两种可能,一是天然气沿管道裂隙泄漏;二是下水道内沼气聚集,电器、烟头以及雷击等原因形成火源。
(15)、202_年8月3日下午5时左右,广州广州地铁广州五号线施工单位在黄埔区港湾路和大沙东路交接处下钻勘察时,不小心把煤气管道钻破,造成煤气泄漏,泄漏的煤气很快到达爆炸极限,附近数万人被紧急疏散,半个小时后险情排除。
(16)202_年08月02日,巴拉圭首都亚松森郊外的一个超市1日中午因为煤气泄漏发生大火,造成至少一层楼坍塌至少274人遇难者,伤者达数百人。目击者说,在大火吞噬超市前他们听到剧烈爆炸声,随后一层店铺的楼面崩塌并陷入地下车库。由于煤气罐连续发生爆炸,火势越烧越猛,整栋30米高的建筑有坍塌的危险。为了预防未付款的顾客离开,购物中心内许多房门处于关闭状态,导致逃生通道不畅。等警方和消防人7员赶到打开房门时,一切都太晚了。
(17)、202_年8月1日13时30分,地下商场煤气管道发生大面积泄漏,空气中煤气浓度已接近爆炸临界点,一旦有明火或电火后果将不堪设想,百余名民警紧急疏散商场内的万余名顾客和业主。据现场指挥人员介绍,经过勘察可以初步判断,煤气管道泄漏是因为近几年地面土质下沉,造成管道受力不均以至于被撕裂。
(18)、1995年1月3日,山东省9济南市和平路杂技团附近的电缆沟突然发生大面积爆炸,造成2公里路段的人行道和部份路面破坏,7辆过路汽车被砸损坏,伤亡61人(其中死亡12人),爆炸原因系中压煤气管道破裂,煤气泄漏进入电缆沟扩散,遇明火发生爆炸。
(19)、1995年4月28日,韩国第三大城市大邱市由于施工中挖断天然气管道,发生强烈爆炸,造成109人死亡,200多人受伤。100多辆汽车被毁;
(20)、1995年1月19日,北京市人民大会堂西侧路边燃气阀门井盖被汽车压翻,井盖将阀门砸坏,造成燃气泄漏,遇过往汽车打火引起火灾,造成不良的政治影响。
(21)、1984年11月19日,墨墨西哥惨案墨西哥西哥市一液化石油气储配站泄漏发生强烈爆炸,死亡500多人,伤7000多人,30000多人无家可归。
第三篇:风力发电机组故障排除
广州绿欣风力发电机提供更多绿色环保服务请登录查询
风力发电机组故障排除
伴随着风机种类和数量的增加,新机组的不断投运,旧机组的不断老化,风机的日常运行维护也是越来越重要。现在就风机的运行维护作一下探讨。
一.运行风力发电机组的控制系统是采用工业微处理器进行控制,一般都由多个CPU并列运行,其自身的抗干扰能力强,并且通过通信线路与计算机相连,可进行 远程控制,这大大降低了运行的工作量。所以风机的运行工作就是进行远程故障排除和运行数据统计分析及故障原因分析。
1.远程故障排除风机的大部分故障都可以进行远程复位控制和自动复位控制。风机的运行和电网质量好坏是息息相关的,为了进行双向保护,风机设置了多重保护 故障,如电网电压高、低,电网频率高、低等,这些故障是可自动复位的。由于风能的不可控制性,所以过风速的极限值也可自动复位。还有温度的限定值也可自动 复位,如发电机温度高,齿轮箱温度高、低,环境温度低等。风机的过负荷故障也是可自动复位的。除了自动复位的故障以外,其它可远程复位控制故障引起的原因 有以下几种:
(1)风机控制器误报故障;
(2)各检测传感器误动作;
(3)控制器认为风机运行不可靠。
2.运行数据统计分析对风电场设备在运行中发生的情况进行详细的统计分析是风电场管理的一项重要内容。通过运行数据的统计分析,可对运行维护工作进行考核 量化,也可对风电场的设计,风资源的评估,设备选型提供有效的理论依据。每个月的发电量统计报表,是运行工作的重要内容之一,其真实可靠性直接和经济效益 挂钩。其主要内容有:风机的月发电量,场用电量,风机的设备正常工作时间,故障时间,标准利用小时,电网停电,故障时间等。风机的功率曲线数据统计与分 析,可对风机在提高出力和提高风能利用率上提供实践依据。例如,在对国产化风机的功率曲线分析后,我们对后三台风机的安装角进行了调节,降低了高风速区的 出力,提高了低风速区的利用率,减少了过发故障和发电机温度过高故障,提高了设备的可利用率。通过对风况数据的统计和分析,我们掌握了各型风机随季节变化 的出力规律,并以此可制定合理的定期维护工作时间表,以减少风资源的浪费。
3.故障原因分析我们通过对风机各种故障深入的分析,可以减少排除故障的时间或防止多发性故障的发生次数,减少停机时间,提高设备完好率和可利用率。如对 150kW风机偏航电机过负荷这一故障的分析,我们得知有以下多种原因导致该故障的发生,首先机械上有电机输出轴及键块磨损导致过负荷,偏航滑靴间隙的变 化引起过负荷,偏航大齿盘断齿发生偏航电机过负荷,在电气上引起过负荷的原因有软偏模块损坏,软偏触发板损坏,偏航接触器损坏,偏航电磁刹车工作不正常 等。又如,在对Jacobs系列风机控制电压消失故障分析中,我们采用排除实验法,将安全链当中有可能引起该故障的测量信号元件用信号继电器和短接线进行 电路改造,最终将故障原因定位在过速压力开关的整定上,将该故障的发生次数减少,提高了设备使用率,减少了闸垫的更换次数,降低了运行成本。
二.维护风力发电机是集电气、机械、空气动力学等各学科于一体的综合产品,各部分紧密联系,息息相关。风力机维护的好坏直接影响到发电量的多少和经济效益 的高低;风力机本身性能的好坏,也要通过维护检修来保持,维护工作及时有效可以发现故障隐患,减少故障的发生,提高风机效率。风机维护可分为定期检修和日 常排故维护两种方式。
1.风机的定期检修维护定期的维护保养可以让设备保持最佳期的状态,并延长风机的使用寿命。定期检修维护工作的主要内容有:风机联接件之间的螺栓力矩检查(包括电气连接),各传动部件之间的润滑和各项功能测试。风机在正常运行中时,各联接部件的螺栓长期运行在各种振动的合力当中,极易使其松动,为了不使其 在松动后导致局部螺栓受力不
广州绿欣风力发电机提供更多绿色环保服务请登录查询
均被剪切,我们必须定期对其进行螺栓力矩的检查。在环境温度低于-5℃时,应使其力矩下降到额定力矩的80进行紧固,并在温度 高于-5℃后进行复查。我们一般对螺栓的紧固检查都安排在无风或风小的夏季,以避开风机的高出力季节。风机的润滑系统主要有稀油润滑(或称矿物油润滑)和 干油润滑(或称润滑脂润滑)两种方式。风机的齿轮箱和偏航减速齿轮箱采用的是稀油润滑方式,其维护方法是补加和采样化验,若化验结果表明该润滑油已无法再 使用,则进行更换。干油润滑部件有发电机轴承,偏航轴承,偏航齿等。这些部件由于运行温度较高,极易变质,导致轴承磨损,定期维护时,必须每次都对其进行 补加。另外,发电机轴承的补加剂量一定要按要求数量加入,不可过多,防止太多后挤入电机绕组,使电机烧坏。定期维护的功能测试主要有过速测试,紧急停机测 试,液压系统各元件定值测试,振动开关测试,扭缆开关测试。还可以对控制器的极限定值进行一些常规测试。定期维护除以上三大项以外,还要检查液压油位,各 传感器有无损坏,传感器的电源是否可靠工作,闸片及闸盘的磨损情况等方面。
第四篇:电力机车典型故障案例-4
1、电力机车SS3机车II端(成端)司机室学习司机侧的侧窗玻璃坏。通知技术科,技术科安排成都检修人员在江油将I端侧窗玻璃取下装至II端,I端侧窗用纸板封闭
2、电力机车SS4(1)机车B节空转灯长亮,已将电子柜倒B组运行;
(2)机车监控显示器显示制动缸压力为20kpa,运行中语音提示“注意弛缓”,告知检查机车缓解情况,司机说:缓解后制动缸压力为0,闸瓦与车轮有间隙,但是监控显示器仍然显示制动缸压力为20kpa。告知:对监控装置进行关机操作,看是否能恢复正常,司机说:关机操作后该现象仍然存在。维持运行,机车入库后更换第3轴速度传感器后,故障消除。电务值班干部说上车试验一切正常,制动缸压力估计为误报,且与监控装置没有关系。
3、电力机车HXD3C机班两张IC卡输入监控时,监控IC卡指示灯亮,但按压设定键输入,均显示IC卡异常无法输入。司机换端输入、监控关机后再输入均无效。通知驻点指导司机重新在安康派班室写一张卡带到车站交司机后,输入机车监控装置正常。
4、电力机车HXD3C机车走行部制动指示器上空气制动显示牌错误显示,在机车缓解后,显示牌仍显示制动“红牌”。司机检查制动器夹钳有间隙,有活动量,制动盘温度正常。告知维持运行,运行途中加强检查。18:04分,追踪询问司机,司机说:机车运行正常,显示牌错误显示制动“红牌”的故障现象依然存在。
5、电力 SS4机车B节车大闸运转位时排风不止,制动区时正常,学习司机去检查确定故障点为,B节车中继阀的总风遮断阀处漏风严重,问如何处理。
指导意见:报告行调,请求处理时间,将A节车的中继阀的总风遮断阀胶垫与B节车的故障胶垫互换,作业安全方面注意关闭157#、114#塞门。
去电话询问处理情况。司机说行调不同意,走不了就报机破。立即给出处理意见,用改刀将胶垫捅回去或找铁丝捆扎,维持运行。
去电话询问处理结果,司机说,按照上述方法漏风基本上堵住了,已经报告行调。
第五篇:爱立信基站典型故障处理案例[定稿]
爱立信基站典型故障处理案例
案例1:对基站进行IDB的配置总是无法完成,提示为时间超时。当对基站进行IDB数据的配置时,因为TRU与DXU软件版本不一致,或BSC下载软件的同时进行DXU数据配置而产生冲突,或第一次IDB配置电源电压类型错误,或短时间内频繁的对DXU进行IDB配置等原因,偶尔可能导致再进行IDB的数据配置时,出现提示为时间超时而无法完成的现象。导致DXU同机架内部的通信上存在异常现象,出现类似机架掉死的现象,更换DXU无效。
解决的办法是,将DXU(或新的DXU)放到同基站的其它机架上,或另外的基站上,仅对DXU加电,按照存在问题的机架配置进行IDB的重新配置,完成后再安装到存在问题的机架上,不必再重新配置,对DXU等各模块加电重起,即可解决问题。
案例2:RBS200基站工作不稳定,经常退服。基站各部件的稳定工作离不开稳定的时钟信号,而基站的时钟信号是从PCM传输中提取的,爱立信的基站不提供外部时钟输入的端口, RBS200基站是爱立信早期推出的GSM基站产品,这些基站设备是基于采用传统的PDH传输组网方式而设计的,并不非常适用于SDH传输组网方式,这就会导致RBS200基站在和某些厂家的SDH传输设备配合使用时,导致基站工作不稳定,频繁出现时钟同步的告警,经常退服,严重影响了基站的正常运行。
解决办法有两种:一种是将RBS200基站使用的SDH传输更换为PDH传输;另一种是将RBS200基站设备更换为RBS2000基站设备,因为RBS2000对同步要求较RBS200低,能够很好同SDH传输配合工作。
案例3:开始时,马厂湖基站有部分TS总是无法正常工作,且不固定在某个载频上,更换TRU、DXU无效,对基站的数据进行拆掉重新加载后仍无效,后来整个基站所有的TS均无法正常工作,基站硬件、传输、数据等均不存在问题。点检查了基站的所有硬件均不存在故障现象,对怀疑有问题的TRU、DXU进行了更换;对传输进行了环路测量,也未发现传输电路存在质量问题;检查小区、基站的定义数据也都正常。怀疑基站的数据存在掉死的现象,但没有确凿的证据。尝试用另外一种方法进行故障的定位。从BSC的ETC传输接口处,即ETRBLT板子2M接口处将马厂湖基站的传输DIP=97同另外一个类似配置的基站装载机厂的传输DIP=98直接进行互换,也就是说互相用对方基站的数据来开通基站。互换后发现,马厂湖基站的数据在装载机厂基站上仍然存在同样的问题,而装载机厂基站的数据在马厂湖基站上却能正常工作。这就可以说明,马厂湖基站的硬件、传输均不存在问题,基站数据确实存在掉死的现象。
在确认马厂湖基站的数据存在掉死的情况后,重新定义了新的TG数据,来替换原先存在掉死现象的TG数据,整个基站恢复正常运行。
对上述基站数据掉死的解决办法还有一种是进行BSC的重新启动,因为需要在晚上进行,因此可能会导致基站退服的时间较长。
案例4:中国银行基站第2小区对应的机架为2个CDU C,4个载频配置,总是在4个载频全部开起来后,又很快全部退服,现象为第1、2个TRU状态为TX not enabled,第3、4个TRU为Fault灯和Operational灯同时亮。每次对DXU进行复位,总是出现上述的同样现象,整个小区无法正常运行。
因为第3、4个TRU总是出现故障现象,将这两个TRU更换,仍然出现同样的故障现象;更换第3、4个TRU对应的第2个CDU C,仍然出现同样的故障现象。将第3、4个TRU放到第5、6个TRU的位置上,将第2个CDU放到第3个CDU的位置,这样载频的位置为第1、2、5、6,甩开TRU第3、4位置不使用,整个小区正常运行,不再出现上述故障现象。
根据以上处理过程进行分析,应该是第2个CDU C对应的CDU BUS总线或第3、4个TRU对应的背板存在问题,导致第2个CDU C不能正常工作,不仅导致第3、4个TRU不能正常工作,而且导致整个小区不能正常工作。
将第2个CDU C对应的CDU BUS总线拆下来,更换一新的CDU BUS总线后,故障解决,确认是第2个CDU C对应的CDU BUS总线存在问题。下图是CDU BUS的连接示意图:
还有一种解决办法,就是将CDU C更换为CDU C+,并且使用Y cable,按照如下图连接:
这样就可以不再使用第2个CDU C对应的有问题的CDU BUS总线,就不会出现整个小区开不起来的现象。
案例5:沂水城东基站A小区扩容一个机架,由6载频扩容为8载频。在打开跳频的情况下,A小区所有8个载频的时隙全部正常工作后很快陆续全部退服,同时出现1A级的XBus Fault告警,但告警很快又消失。对基站A小区复位或闭解CF,仍然是同样的故障现象。将A小区的跳频关掉后可以正常运行。
针对出现的XBus Fault告警,重点检查了新增扩的机架TRU和DXU背板跳点设置,CDU BUS的连接情况,均未发现异常,更换DXU也不能解决问题。考虑到当时是在上午忙时,此小区承担的话务量很高,有可能是因为A小区重起时接入用户太多导致负荷过高而不能以跳频方式正常运行,设置A小区参数CB=YES禁止待机时手机接入,设置A小区为Layer=3小区限制其它小区手机用户向A小区切换,这样的参数设置曾经解决过类似大容量小区在打开跳频的情况下忙时重起困难的问题,但仍不能解决沂水城东A小区的问题。
怀疑新增扩的2个TRU虽然状态显示正常,但仍然可能存在问题,导致XBbus工作异常。由于A小区的主架的6个TRU和副架的2个TRU间已多次互相倒换位置来排除TRU的问题,已经不能分清哪2个TRU是新增扩的。于是将A小区的所有8个载频全部替换,问题解决。总结:某个存在故障的TRU可以导致其背板连接的总线工作异常,在这个案例中,导致了XBus工作异常,小区不能打开跳频,但是此TRU的状态显示完全正常。解决办法是替换怀疑有问题的TRU,尤其是新增扩的TRU,不要采取在有问题的小区内互相倒换的方式,因为存在故障的TRU无论在那个位置均可以导致同样的故障现象。应该用其它小区或新带来得TRU替换。
还有一个例子也是存在故障的TRU导致其背板连接的总线工作异常的情况:某小区新扩一个机架,载频由6个扩容到7个,但是每次启站时总是很快出现驻波比过高的基站告警,所有载频全部退服,故障原因是新扩的TRU(在新扩的副架上)存在问题,虽然表面状态均很正常,但是把它插到机框内加电后,就会干扰背板总线的正常工作,导致出现整个小区驻波比过高的问题产生。
案例6:付庄基站为3个RBS2202机架级联、4/4/4配置,故障现象为B小区退服,复位后B小区恢复正常,但几小时后又再次退服,基站不存在任何告警。如此反复,B小区工作状态很不稳定。
因为是在基站运行中出现的故障,所以首先怀疑是B小区DXU出现故障,但是更换后仍无法解决。检查B小区的射频电缆、PCM传输电缆、CDU总线均无异常。通过OMT软件监测付庄基站3个机架DXU的PCM连接状态均正常。考虑到B小区是级联A小区的,即PCM传输电缆从A小区DXU的G.703-2端口连接到B小区DXU的G.703-1端口,这段传输通路是否存在问题?更换这段通路上的所有传输电缆,仍不能解决问题。再向前考虑一步,是不是A小区DXU的G.703-2端口存在问题,虽然没有故障状态显示?更换A小区的DXU,重新配置IDB数据后,问题解决。
总结:针对多机架级联的基站,第2、3小区退服的情况,要考虑前一级级联的小区所在的机架是否存在DXU故障、PCM传输电缆接错、IDB数据中未定义PCM级联等情况。
案例7:某个基站第2小区有3个时隙LMO状态为0800,复位和更换载频后无效。
检查基站的定义数据,发现第2小区对应的TG-139,在定义半永久连接关系时,将RBLT-1309与DCP 28连接是错误的,导致DCP 28相对应的4个TS时隙,无法正常工作。应该是RBLT-1308与DCP 28连接,正确修改后,故障解除。类似的故障现象可能还有如下的故障原因:(1)某个基站第2小区4个时隙LMO状态为0800复位和更换载频无效:用DTIDP指令检查DIP的定义数据,发现MODE=1是错误的。RBS200基站的DIP定义为MODE=1,即传输的第16时隙仅用于传信令,不用于传话音。而此基站为RBS2000基站,正确的定义是MODE=0,如果定义为MODE=1,会导致DCP 16,即传输的第16时隙不能正常使用,出现上述的故障现象,或者导致用户占用时出现单通现象。
(2)某个基站第3小区2个时隙LMO状态为0800,复位无效: 第3小区的2个时隙的故障原因是在定义基站数据时,MO CF的参数SIG=UNCONC错误,因为所有的TRX的SIG=CONC,导致TG分配的DCP不够用。将MO CF的参数该为SIG=CONC,故障消除。
案例8:某个新建基站传输状态正常,硬件也不存在问题,但基站开不起来 基站数据定义看起来不存在问题,其它检查也做了很多,但基站仍然不能开起来。重点检查基站DIP所连接的SNT的DEVICE数据定义,会发现RBLT的状态不对,为MBL闭掉的状态,试图解闭,可能还会发现未完全定义,再用EXDAI、EXDUI指令进行补充定义,解闭此SNT所带的RBLT,再重新LOAD基站数据后问题解决。对新建基站开不起来的情况,还有BSC侧MO=RXOCF的TEI值与基站OMT软件定义的不一致,导致基站无法同BSC建立联系。此种情况较多的出现在级联基站上,重新定义,使基站的TEI值同BSC侧定义的TEI值一致便可解决问题。
案例9:盲校基站存在瞬断现象,导致信道完好率虽然很接近但达不到100%,同时基站传输设备也出现传输瞬断的现象。
检查基站硬件设备,及传输设备均未发现异常,更换DXU也无法解决问题。在基站上进行故障处理时,发现老式的爱立信开关电源存在模块损坏的情况,但仍能正常工作。经过长时间现场观察,发现交流电压不稳定,忽高忽低,当电压过高时,开关电源的过压保护器便跳脱保护,爱立信开关电源所有的模块处在过压保护的状态,同时传输设备瞬间复位,导致基站瞬断。此时就发现了交流电压过高可能是导致盲校基站瞬断的原因。经过分析,老式的爱立信开关电源对交流电电压波动范围的适应性较差,当电压过高超出其限定值时,开关电源的所有模块出现瞬间的保护而导致其直流输出电压异常,从而导致传输设备因直流供电不能满足要求而瞬间复位,导致爱立信基站瞬间退服。
将老式的爱立信开关电源更换为能适应宽范围交流电压波动的新式开关电源,问题解决,盲校基站再也未出现瞬断的现象。这样的情况也存在于其它部分型号的、对交流电压波动适应性差的老式开关电源上。
案例10:柳行头基站为九期新建全向2载频基站,传输环路状态正常,不存在滑码、误码等传输质量差的情况,基站硬件状态正常,不存在任何告警,但将传输头子接到DXU的G.703-1接口后,BSC侧传输状态显示WO正常状态,但是DXU黑灯,所有的指示灯均不亮。从BSC侧观察是CF无法Load成功,导致此基站开不起来。
首先全面检查基站硬件、传输设备、传输电缆等均没有发现问题,检查柳行头基站数据、小区数据定义也没有发现问题,更换DXU也不能解决问题。
从BSC的ETC传输接口处将柳行头基站的传输同另外一个相同配置且正在运行的松峰基站传输互换,不必改动任何数据,也就是说互相用对方基站的数据来开通。柳行头基站的数据在松峰基站上运行正常,而松峰基站的数据却无法在柳行头基站上运行,这就可以说明柳行头基站的数据不存在错误、掉死等异常情况,而从BSC到柳行头基站的传输通路上存在问题,也可能是基站硬件存在问题(这已排除)。
这样重点怀疑从BSC到柳行头基站的传输通路上存在问题,需要仔细检查,传输维护人员从BSC往基站方向一段一段进行检查,果然发现在北园传输机房处柳行头基站的传输跳线存在问题,120欧姆4根信号传输线中的一根与配线端子处在似接触非接触的状态,重新卡接后,柳行头基站CF软件load成功,基站顺利开通,问题解决。
需要注意的是,基站电路环路时是通的,并不能代表基站电路完全不存在问题,因为还存在类似上述传输信号线接触不好、远端告警等一些特殊的传输故障现象。
案例11:邮政局基站C小区扩容到主、副架共12个载频,但是最多只能开起来10个载频,总有2个载频无论如何也开不起来,并且这2个开不起来的载频位置不固定,状态表现为仅Tx not enable灯亮。基站不存在告警。更换相应的载频无效。仔细观察开不起来的2个载频的故障现象,发现总是某一个CU上的2个载频同时出现开不起来的现象,虽然这个CU也不是固定的。将12个载频中的某两个位于同一个CU上的载频TRX闭掉,其它10个载频均能正常工作。
根据以上现象,考虑到爱立信基站载频相互间发射部分TX和接收部分RX存在“借用现象”,即载频A的RX(可能载频A的TX存在问题)和载频B的TX可以组成一个完整的正常工作的“载频”,而载频A的状态可能为正常运行状态,而载频B的状态为仅Tx not enable灯亮。
进一步从BSC上观察邮政局基站C小区各MO的工作状态,发现最后2个载频的TX-11&&-12工作状态开始时总是NOOP,过一段时间之后状态变为FAIL,但是考虑到最后2个载频的TX发射部分可以借用另外2个载频的TX发射部分,即存在TX的“借用现象”,因此状态仍有可能是正常运行的。导致TX状态为FAIL的原因有发射通路上的CDU存在问题,连接的天线驻波比过大,TX定义的连接小区错误,TRU的发射部分存在故障等原因。经过排查,重点怀疑是最后2个载频,即TRX-11&&-12对应连接的CU存在问题,虽然此CU的运行状态正常,无故障灯指示。更换此CU后,邮政局C小区的12个载频全部开起来,问题解决。这种类型的故障处理,不要被基站各硬件的运行状态显示所迷惑,可能状态是正常的,但是也有可能存在问题,就像上面所讲的CU的故障现象。
案例12:TX无法正常工作,基站告警为CDU output power limits exceeds 九期工程中,在开通西梁王基站(S2,2,2)时,发现虽然基站本测过程中,各MO 状态正常,均无告警,但是在开站时,当TX打开后, B小区CDU的Fault 红灯亮,,小区不能工作。我们通过OMT查寻告警,监测到SO CF 2A:9 :CDU output power limits exceeds。首先我们怀疑天馈系统有问题,用驻波比测试仪测得DTF值1.08,SWR值1.19,均为正常值。随后更换了CDU及TRU后故障仍未排除。最后我们根据TX的原理,输出功率由前向及反向功率的比较得出的(Reference RBS2202),于是检查对应的Pref,Pfwd馈线,发现标签贴反,导致反向功率总大于前向功率,更改后故障消除。
案例13:基站存在SO CF 2A: Timing bus fault告警,TRU无法工作。建工大厦基站(S6,6,6,)在扩为(S8,6,6)时,A小区扩容的副柜TRU状态不对,TRU的Fault在自检后长亮。此时B,C小区已正常。用B,C小区的机柜带A小区的副柜无问题,从而证明A小区的副柜本身无问题。通过OMT查寻告警,监测到SO CF 2A: Timing bus fault。更换C5 BUS线后故障仍未排除,于是判定故障点应在A小区机柜本身之内。根据OMT读出告警,判断故障为机柜内 BUS问题,更换后状态正常,A小区正常工作。
案例14:PSU的排障方法
下面是满配置的PSU与ECU的光纤连接示意图: 在基站出现同PSU相关的告警后,到基站上观察PSU的状态,可能有如下两种情况:第一种是PSU亮红灯或不亮灯,第二种是PSU面板状态正常但可能存在故障。针对第一种情况,首先检查PSU的-48V直流(PSU-48)或230交流(PSU 230)输入是否正常,可能存在输入开关跳脱或熔丝熔断的情况,如果排除上述情况,那么很可能是亮红灯或不亮灯的PSU存在故障,进行更换确认。对更换后的新PSU,应该先加-48V直流或230交流输入(下面的接头),再连接直流输出接头(上面的接头),否则容易导致新加的PSU因为直流电流倒灌的原因而再次损坏。针对第二种情况,使用逐个排除的方法来找出存在故障但面板显示正常的PSU。满配置的PSU数量一共是4个,与ECU通过光纤串联在一起,形成一个环路。首先甩开左边第1个PSU,将剩下的3个PSU同ECU通过光纤串形连接,再观察基站的PSU相关告警是否消除,如果消除,则说明左边第1个PSU存在故障,进行更换;如果故障仍未消除,可将左边第2个PSU单独甩开,将剩下的3个PSU同ECU通过光纤串形连接,需注意的是从左边第1个PSU直接连接到第3个PSU的光纤需要换成长一点的光纤,再观察基站的PSU相关告警是否消除,以此类推,逐个排查PSU。除了上述方法,类似的,还可采用每个PSU单独同ECU串形连接,再观察基站告警是否消除的方法,逐一进行排查。还有一点需要说明的是,基站对PSU的识别并不是完全根据PSU的安装位置,例如最左边的PSU被识别为PSU-0,向右依次为PSU-
1、PSU-
2、PSU-3,实际上并不是这样的。基站识别PSU是通过光纤环路来识别的,不在这个环上的PSU将不被识别,同时针对这个不在环上的PSU基站也不会产生告警。光纤环路连接最左边的PSU被识别为PSU-0,然后依据光纤环路上的连接,向右依次识别为PSU-
1、PSU-2等,例如PSU-0,它的实际安装位置可能是从最左边数第3个PSU。
有一个故障现象是某个PSU的架顶-48V输入接口因短路损坏严重,不能再使用,并且基站存在相应告警。消除告警的办法是在PSU与ECU的光纤环路中,甩开这个损坏严重的架顶-48V输入接口对应的PSU,再从IDB数据中删除多余的PSU(损坏的接口对应的)即可消除告警。