首页 > 文库大全 > 精品范文库 > 5号文库

PVC型材配方设计原理与加工工艺

PVC型材配方设计原理与加工工艺



第一篇:PVC型材配方设计原理与加工工艺

PVC型材配方设计原理与加工工艺(1)

PVC塑料型材配方主要由PVC树脂和助剂组成的,其中助剂按功能又分为:热稳定剂、润滑,剂、加工改性剂、冲击改性剂、填充剂、耐老化剂、着色剂等。在设计PVC配方之前,首先应了解PVC树脂和各种助剂的性能。

原料与助剂

PVC树脂

生产PVC塑料型材的树脂是聚氯乙烯树脂(PVC),聚氯乙烯是由氯乙烯单体聚合而成的聚合物,产量仅次于PE,居第二位。

PVC树脂由于聚合中的分散剂的不同可分为疏松型(XS)和紧密型(Ⅺ)两种。疏松型粒径为0.1—0.2mm,表面不规则,多孔,呈棉花球状,易吸收增塑剂,紧密型粒径为0.1mm以下,表面规则,实心,呈乒乓球状,不易吸收增塑剂,目前使用疏松型的较多。

PVC又可分为普通级(有毒PVC)和卫生级’(无毒PVC)。卫生级要求氯乙烯(VC)含量低于lOXl0-6,可用于食品及医学。合成工艺不同,PVC又可分为悬浮法PVC和乳液法PVC。根据国家标准GB/T5761-93《悬浮法通用型聚氯乙烯树脂检验标准》规定,悬浮法PVC分为PVC-SGl到PVC-SG8Jk种树脂,其中数字越小,聚合度越大,分子量也越大,强度越高,但熔融流动越困难,加工也越困难。具体选择时,做软制品时,一般使用PVC-SGl、PVC-SG2、PVC-SG3型,需要加人大量增塑剂。例如聚氯乙烯膜使用SG-2树脂,加入50~80份的增塑剂。而加工硬制品时,一般不加或很少量加入增塑剂,所以用PVC-SG4、VC-SG5、PVC-SG6、PVC-SG7、PVC-SG8型。如PVC硬管材使用SG-4树脂、塑料门窗型材使用SG-5树脂,硬质透明片使用SG-6树脂、硬质发泡型材使用SG-

7、SG-8树脂。而乳液法PVC糊主要用于人造革、壁纸及地板革和蘸塑制品等。一些PVC树脂厂家出厂的PVC树脂按聚合度(聚合度是单元链节的个数,聚合度乘以链节分子量等于聚合物分子量)分类,如山东齐鲁石化总厂生产的PVC树脂,出厂的产品为SK-700;SK-800;SK—1000;SK—1100;SK-1200等。其SG-5树脂对应的聚合度为1000—1100。PVC树脂的物化性能见第四篇。

PVC粉末为一种白色粉末,密度在1.35—1.45g/cm3之间,表观密度在0.4-0.5g/cm3。视增塑剂含量大小可为软、硬制品,一般增塑剂含量0-5份为硬制品,5-25份为半硬制品,大于25份为软制品。

PVC是一种非结晶、极性的高分子聚合物,软化温度和熔融温度较高,纯PVC一般须在160—210~C时才可塑化加工,由于大分子之间的极性键使PVC显示出硬而脆的性能。而且,PVC分子内含有氯的基团,当温度达到120~C时,纯PVC即开始出现脱HCl反应,会导致PVC热降解。因此,在加工时须加入各种助剂对PVC进行加工改性和冲击改性,使之可以加工成为有用的产品。

PVC树脂主要用于生产各类薄膜(如日用印花膜、工业包装膜、农用大棚膜及热收缩膜等)、各类板、片材(其片材可用于吸塑制品),各类管材(如无毒上水管、建筑穿线管、透明软管等)、各类异型材(如门、窗、装饰板),中空吹瓶(用于化妆品及饮料),电缆、各类注塑制品及人造革、地板革、搪塑玩具等。稳定剂

纯的PVC树脂对热极为敏感,当加热温度达到90Y:以上时,就会发生轻微的热分解反应,当温度升到120C后分解反应加剧,在150C,10分钟,PVC树脂就由原来的白色逐步变为黄色—红色—棕色—黑色。PVC树脂分解过程是由于脱HCL反应引起的一系列连锁反应,最后导致大分子链断裂。防止PVC热分解的热稳定机理是通过如下几方面来实现的。

通过捕捉PVC热分解产生的HCl,防止HCl的催化降解作用。

铅盐类主要按此机理作用,此外还有金属皂类、有机锡类、亚磷酸脂类及环氧类等。·置换活泼的烯丙基氯原子。金属皂类、亚磷酸脂类和有机锡类可按此机理作用。

·与自由基反应,终止自由基的反应。有机锡类和亚磷酸脂按此机理作用。

·与共扼双键加成作用,抑制共扼链的增长。

有机锡类与环氧类按此机理作用。

·分解过氧化物,减少自由基的数目。有机锡和亚磷酸脂按此机理作用。

·钝化有催化脱HCl作用的金属离子。

同一种稳定剂可按几种不同的机理实现热稳定目的。

常用稳定剂品种:

1、铅盐类

铅盐类是PVC最常用的热稳定剂,也是十分有效的热稳定剂,其用量可占PVC热稳定剂的70%以上。

铅盐类稳定剂的优点:热稳定性优良,具有长期热稳定性,电气绝缘性能优良,耐候性好,价格低。

铅盐类稳定剂的缺点:分散性差、毒性大、有初期着色性,难以得到透明制品,也难以得到鲜明色彩的制品,缺乏润滑性,易产生硫污染。

常用的铅盐类稳定剂有:

(1)三盐基硫酸铅

分子式为3PbO.PbSO.H20,代号为TLS,简称三盐,白色粉末,密度6.4g/cm’。三盐基硫酸铅是最常用的稳定剂品种,一般与二盐亚磷酸铅一起并用,因无润滑性而需配人润滑剂。主要用于PVC硬质不透明制品中,用量一般2~7份。

(2)二盐基亚磷酸铅

分子式为2PbO.PbHPO3.H2O,代号为DL,简称二盐,白色粉末,密度为6.1g/cm3。二盐基亚磷酸铅的热稳定性稍低于三盐基硫酸铅,但耐候性能好于三盐基硫酸铅。二盐基亚磷酸铅常与三盐基硫酸铅并用,用量一般为三盐基硫酸铅的1/2。

(3)二盐基硬脂酸铅

代号为DLS,不如三盐基硫酸铅、二盐基亚磷酸铅常用,具有润滑性。常与三盐基硫酸铅、二盐基亚磷酸铅并用,用量为0.5—1.5份。

2、金属皂类

为用量仅次于铅盐的第二大类主稳定剂,其热稳定性虽不如铅盐类,但兼具润滑性。金属皂类可以是脂肪酸(月桂酸、硬脂酸、环烷酸等)的金属(铅、钡、镉、锌、钙等)盐,其中以硬脂酸盐最为常用,其活泼性大小顺序为:Zn盐?Cd盐?Pb盐?Ca盐7.Ba盐。金属皂类一般不单独使用,常常为金属皂类之间或与铅盐及有机锡等并用。除Gd、Pb外都无毒,除Pb、Ca外都透明,无硫化污染,因而广泛用于软质PVC中,如无毒类、透明类制品等。

常用的金属盐类稳定剂有:

(1)硬脂酸锌(ZnSt),无毒且透明,用量大后,易引起“锌烧”制品变黑,常与Ba、Ca皂并用。

(2)硬脂酸镉(CdSt),为一重要的透明稳定剂品种,毒性较大,不耐硫化污染,抑制初期变色能力大,常与Ba皂并用。

(3)硬脂酸铅(PbSt),热稳定性好,可兼做润滑剂。缺点为易析出,透明差,有毒且硫化污染严重,常与Ba、Cd皂并用。

(4)硬脂酸钙(CaSt),加工性能好、热稳定能力较低,无硫化污染,无毒,常与Zn皂并用。

(5)硬脂酸钡(BaSt),无毒,长期热稳定性好,抗硫化污染,透明,常与Pb、Ca皂并用。复合品种常用的有:Ca/Zn(无毒、透明)、Ba/Zn(无毒、透明)、Ba/Cd(有毒、透明)及Ba/Cd/Zn。

3、有机锡类

有机锡类为热稳定剂中最有效的,在透明和无毒制品中应用最广泛的一类,其突出优点为:热稳定性好,透明性好,大多数无毒。缺点为价格高,无润滑性。

有机锡类大部分为液体,只有少数为固体。可以单独使用,也常与金属皂类并用。

有机锡类热稳定剂主要包括含硫有机锡和有机锡羧酸盐两类。

(1)含硫有机锡类:

主要为硫醇有机锡和有机锡硫化物类稳定剂,与Pb、Cd皂并用会产生硫污。含硫有机锡类透明性好。主要品种有:

a、二巯基乙酸异辛酯二正辛基锡(DOTTG),外观为淡黄色液体,热稳定性及透明性极好,无毒,加入量低于2份。

b、二甲基二巯基乙酸异辛酯锡(DMTFG),外观为淡黄澄清液体,为无毒、高效、透明稳定剂,常用于扭结膜及透明膜中。

(2)有机锡羧酸盐:

稳定性不如含硫有机锡,但无硫污染,主要包括脂肪酸锡盐和马来酸锡盐。主要品种有:

a、二月桂酸二正丁基锡(DBTL)淡黄色液体或半固体,润滑性优良,透明性好,但有毒,常与Cd皂并用,用量1-2份;与马来酸锡及硫醇锡并用,用量0。5—1份。

b、二月桂酸二正辛基锡(DOTL),有毒且价高,润滑性优良,常用于硬PVC中,用量小于1.5份。c、马来酸二正丁基锡(DBTM),白色粉末,有毒,无润滑性,常与月桂酸锡并用,不可与金属皂类并用于透明制品中。

4、有机锑类 具有优秀的初期色相和色相保持性,尤其是在低用量时,热稳定性优于有机锡类,特别适于用双螺杆挤出机的PVC配方使用。

有机锑类主要包括硫醇锑盐类、巯基乙酸酯硫醇锑类、巯基羧酸酯锑类及羧酸酯锑类等。国内的锑稳定剂主要以三巯基乙酸异辛酯锑(ST)和以ST为主要成分的复合稳定剂STH—I和STH-Ⅱ两种为主。五硫醇锑为透明液体,可用作透明片、薄膜、透明粒料的热稳定剂。STH-I可以代替京锡C-102,可抑制PVC的初期着色,热稳定性好,制品透明,颜色鲜艳,STH—Ⅱ无毒,主要用于PVC水管等。

5、稀土稳定剂

选材多为稀土氧化物和稀土氯化物为主,其氧化物和氯化物多为镧、铈、镨、钕等轻稀土元素的单一体或混合体。

稀土元素有着相似且异常活泼的化学性质,有着众多的轨道可作为中心离子接受配位体的孤对电子,同时稀土金属离子有较大的离子半径,与无机或有机配位体主要通过静电引力形成离子配键,作为络合物的中心原子,常以d2SP3、d4dP3、f3d5Ssp3等多种杂化形式形成配位数为6—12的络合物。

稀土元素优良的力学性能及其分组原理都与稀土元素的几何性质有关。因为原子和离子的半径是决定晶体的构型、硬度、密度和熔点等物理性质的重要因素,在常温、常压条件下,稀土金属镧、镨、钕呈双六方晶体结构,而铈呈立方晶体密集(面心)结构,当温度、压力变化时,多数稀土金属发生晶型转变。由于镧系收缩,镧系元素的原子半径、原子体积随原子序数增加而减小,密度随原子序数增加而增加,但铈与镧、镨、钕相比,有异常现象。

在镧、铈、镨、钕中,镧的化学性质是最活泼,但三价镧与C1只能生成RECl正络合物,而且此络合物不稳定,而铈、镨这些高价的稀土离子与Cl生成络合物的能力比三价的镧要强,它们与Cl配体能生成稳定的负络离子,因此,在稀土热稳定剂的选材上要综合镧、铈、镨、钕的各自优点,在不同的应用范围,用其高纯单一体、混合体或合理搭配。

稀土离子为典型的硬阳离子,即不易极化变形的离子,它们与金属硬碱的配位原子,如氧的络合能力很强。稀土化合物对CaC03的偶联作用,由于稀土离子和PVC链的氯离子之间存在强配位相互作用,有利于剪切力的传递从而使稀土化合物能有效地加速PVC的凝胶化,即可促进PVC塑化,又可起到加工助剂ACR的作用。同时,稀土金属离子与CPE中的C1配位,可使CPE更加发挥其增韧改性的作用。这些效能发挥的充分与否、平衡与否,与稀土复合物中的复配助剂有着相当大的关系,复合物中的润滑体系、加工改性体系都至关重要,因此复配工艺的好坏直接影响着稀土多功能复合稳定剂的效能。性能优良的稀土稳定剂应具有以下功能:

(1)优异的热稳定性能

静态动态热稳定性,均与京锡8831相当,好于铅盐及金属皂类,是铅盐的三倍及Ba/Zn复合稳定剂的4倍。可复配成为无毒、透明的,还可部分代替有机锡类稳定剂而广泛应用。稀土稳定剂的作用机理为捕捉HCl和置换烯丙基氯原子,与环氧类的辅助稳定剂具有较好的协同作用。

(2)偶联作用

具有优良的偶联作用,与铅盐相比,与PVC有很好的相容作用,对于PVC-CaCO,体系偶联作用较好,有利于PVC塑料门窗异型材强度的提高。用稀土稳定剂加工的PVC型材的焊角强度比铅盐稳定剂的PVC型材焊角强度要高,原料价格也高一些。

(3)增韧作用

与PVC树脂和增韧剂CPE的良好的相容性以及与CaCO3,的偶联作用,使PVC树脂在加工中塑化均匀,塑化温度低,型材的耐冲击性能较好。

稀土稳定剂无润滑作用,应与润滑剂一起加入,目前我国生产的稀土复合稳定剂是将稀土、热稳定剂和润滑剂复配而成的,加入量一般为4-6份。

6、复合铅盐稳定剂

铅盐稳定剂价格低廉,热稳定性好,一直被广泛使用,但铅盐的粉末细小,配料和混合中,其粉尘被人吸入会造成铅中毒,为此,科技人员又研究出一种新型的复合铅盐热稳定剂。这种复合助剂采用了共生反应技术将三盐、二盐和金属皂在反应体系内以初生态的晶粒尺寸和各种润滑剂进行混合,以保证热稳定剂在PVC体系中的充分分散,同时由于与润滑剂共熔融形成颗粒状,也避免了因铅粉尘造成的中毒。复合铅盐稳定剂包容了加工所需要的热稳定剂组份和润滑剂组份,被称作为全包装热稳定剂。它具有以下的优点:

(1)复合热稳定剂的各种组份在其生产过程中可得到充分混合,大幅度改善了与树脂混合分散的均匀性。

(2)配方混合时,简化了计量次数,减少了计量差错的概率及由此所带来的损失。

(3)简便了辅料的供应和贮备,有利于生产、质量管理。

(4)提供了无尘生产产品的可能性,改善了生产条件。

总之,复合热稳定剂有利于规模生产,为铅盐热稳定剂的发展提供了新的方向。复合铅盐稳定剂一个重要指标是铅的含量,目前所生产的复合铅盐稳定剂含铅量一般为20%-60%;在PVC塑料门窗型材生产上的用量为3.5—6份。表2是一些PVC型材生产用的复合铅盐稳定剂的牌号和用量。

7、主要的辅助热稳定剂品种

辅助垫稳定剂本身不具有热稳定作用,只有与主稳定剂一起并用,才会产生热稳定效果,并促进主稳定剂的稳定效果。辅助热稳定剂一般不含金属,因此也称为非金属热稳定剂。

辅助热稳定剂的主要品种有:

(1)亚磷酸酯类。是一重要的辅助热稳定剂,与Ba/Cd、Ba/Zn复合稳定剂及Ca/Zn复合稳定剂等有协同作用,主要用于软质PVC透明配方中,用量为0.1—1份。

(2)环氧化合物类,与金属皂类有协同作用,与有机锡类稀土稳定剂并用效果好,用量为2-5份,常用的品种为环氧大豆油、环氧脂。

(3)多元醇类,主要有季戊四醇、木糖醇、甘露醇等,可与Ca/Zn复合稳定剂并用。

润滑剂

润滑剂的作用是降低物料之间及物料和加工设备表面的摩擦力,从而降低熔体的流动阻力,降低熔体粘度,提高熔体的流动性,避免熔体与设备的粘附,提高制品表面的光洁度等。

根据不同成型方法,其润滑作用侧重不同:

压延成型,防止熔料粘辊;

注射成型,提高流动,提高脱模性;

挤出成型,提高流动,提高口模分离性;

压制及层压成型,利于压板与制品分离。

润滑剂的分类:

·按润滑剂成份分类,主要有饱和烃和卤代烃类、脂肪酸类、脂肪酸酯类、脂肪族酯胺类、金属皂类、脂肪醇和多元醇类等。

·按润滑剂的作用分类,分为内,外润滑剂。

其主要区分是依其与树脂的相容性大小。内润滑剂与树脂亲和力大,其作用是降低分子间的作用力;外润滑剂与树脂的亲和力小,其作用是降低树脂与金属表面之间的摩擦。

内外润滑剂之分只是相对而言,并无严格划分标准。在极性不同的树脂中,内、外润滑剂的作用有可能发生变化。例如硬脂酸醇、硬脂酸酰胺、硬脂酸丁酯及硬脂酸单甘油酯对极性树脂(如PVC及PA)而言,起内润滑作用;但对于非极性树脂(如PE、PP),则显示外润滑作用。相反,高分子石蜡等与极性树脂相容性差,如在极性PVC中用做外润滑剂,而在PE、PP等非极性树脂中则为内润滑剂。

在不同加工温度下,内、外润滑剂的作用也会发生变化,如硬脂酸和硬脂醇用于PVC压延成型初期,由于加工温度低,与PVC相容性差,主要起外润滑作用;当温度升高后,与PVC相容性增大,则转起内润滑剂作用。

按润滑剂的组成可分为:饱和烃类、金属皂类、脂肪族酰胺、脂肪酸类、脂肪酸酯类及脂肪醇类。

1、饱和烃类

饱和烃类按极性可分为非极性烃(如聚乙烯蜡和聚丙烯蜡)、极性烃(如氯化石蜡、氧化聚乙烯等)。饱和烃类按分子量大小可分为;液体石蜡(C16-C21)、固体石蜡(C26-C32)微晶石蜡(C32-C70)及低分子量聚乙烯(分子量1000—10000)等,主要用于PVC无毒外润滑剂。

(1)液体石蜡:俗称白油,为无色透明液体,可用作PVC的透明性外润滑剂,用量为0.5份左右,用量大会严重影响焊角强度。

(2)固体石蜡,又称为天然石蜡,白色固体,可用作pvc的外润滑剂,用量为0.1—1.0份,用量太大会影响透明度。

(3)微晶石蜡,又称为高熔点石蜡,外观为白色或淡黄色固体,因结晶微细而称为微晶石蜡。润滑效果和热稳定性好于其他石蜡。在PVC中用量较小,一般为0.1-0.3份。

(4)低分子量聚乙烯,又称聚乙烯蜡,外观为白色或淡黄色固体粉末,透明性差,可用于PVC挤出和压延加工外润滑剂,用量一般为0.5份以下。

(5)氧化聚乙烯蜡,为聚乙烯蜡部分氧化产物,外观为白色粉末。有优良的内、外润滑作用,透明性好,价格低,用量在0.2-1.0份。

(6)氯化石蜡,与PVC相容性好,透明性差,与其他润滑剂并用效果好,用量0.5份以下为宜。

2、金属皂类

既是优良的热稳定剂,又是一种润滑剂,其内、外润滑作用兼有,不同品种侧重稍有不同,润滑性以硬脂酸钙、硬脂酸铅为最好。

3、脂肪族酸胺

包括单脂肪酸酰胺和双脂肪酰胺两大类,单脂肪酸胺主要呈内润滑作用,主要品种包括乙基双硬脂酰胺、N,N·亚乙基双蓖麻醇酸酰胺等。

4、脂肪酸类

如硬脂酸,是仅次于金属皂类而广泛应用的润滑剂,可用于PVC,用量少时,起内润滑作用;用量大时,起外润滑作用。硬脂酸的加入量低于0.5份。

5、脂肪酸酯类

(1)硬脂酸丁酯,外观为无色或淡黄色油状液体,在PVC中以内润滑为主兼具外润滑作用,用量0.5—1.5份。

(2)单硬脂酸甘油酯,代号GMS,外观为白色蜡状固体,为PVC优良内润滑剂,对透明性影响小,加入量低于1.5份,可与硬脂酸并用。

(3)酯蜡和皂化蜡,主要指以褐煤蜡为主要原料、经漂白等工序制成的后序产品。漂白蜡有S蜡和L蜡,皂化蜡有0蜡和OP蜡。主要用于HPVC,用量0.1-0.3份。

6、脂肪醇类

硬脂醇,外观为白色细珠状物,起内润滑作用,透明好,在PVC中用量0.2-0.5份。还可用于PS中。如季戊四醇,作为PVC高温润滑剂,用量0.2-0.5份。加工改性助剂

1、加工助剂的作用原理

由于PVC熔体延展性差,易导致熔体破碎;PVC熔体松弛慢,易导致制品表面粗糙、无光泽及鲨鱼皮等。因此,PVC加工时往往需要加人加工助剂,以改善其熔体上述缺陷。

加工助剂为可以改善树脂加工性能的助剂,其主要作用方式有三种:促进树脂熔融、改善熔体流变性能及赋予润滑功能。

·促进树脂熔融:PVC树脂在加热的状态下,在一定的剪切力作用下熔化时,加工改性剂首先熔融并粘附在PVC树脂微粒表面,它与树脂的相容性和它的高分子量,使PVC粘度及摩擦增加,从而有效地将剪切应力和热传递给整个PVC树脂,加速PVC熔融。

·改善熔体流变性能:PVC熔体具有强度差、延展性差及熔体破裂等缺点,而加工改性剂可改善熔体上述流变性。其作用机理为:增加PVC熔体的粘弹性,从而改善离模膨胀和提高熔体强度等。

·赋予润滑性:加工改性剂与PVC相容部分首先熔融,起到促进熔融作用;而与PVC不相容部分则向熔融树脂体系外迁移,从而改善脱模性。

2、常用加工改性剂一ACR

ACR为甲基丙烯酸甲酯和丙烯酸酯、苯乙烯等单体的共聚物。除可用做加工助剂外,还可用做冲击改性剂。我.国的ACR可分为ACR201、ACR301和ACR401、ACR402几种,国外的牌号有:K120N、K125、K175、P530、P501、P551、P700、PAl00等。表2—1-3是国内外ACR加工助剂牌号对照。表3国内外ACR加工助剂牌号对照。

ACR加工改性剂的重要作用是促进PVC的塑化,缩短塑化时间,提高熔体塑化的均匀性,降低塑花温度。表4是用BLANBENDE塑度仪测得的ACR对塑化时间、温度等的影响情况。

在PVC塑料门窗型材中一般使用ACR201或ACR401,用量为1.5-3份。冲击改性剂

高分子材料改性的一个重要内容是改善其耐冲击性能,PVC树脂是一个极性非结晶性高聚物,分子之间有较强的作用力,是一个坚硬而脆的材料;抗冲击强度较低。加人冲击改性剂后,冲击改性剂的弹性体粒子可以降低总的银纹引发应力,并利用粒子自身的变形和剪切带,阻止银纹扩大和增长,吸收掉传人材料体内的冲击能,从而达到抗冲击的目的。改性剂的颗粒很小,以利于增加单位重量或单位体积中改性剂的数量,使其有效体积份数提高,从而增强了分散应力的能力。目前应用比较广泛的为有机抗冲击改性剂。

按有机抗冲击改性剂的分子内部结构,可将其分为如下几类。

1、预定弹性体(PDE)型冲击改性剂,它属于核一壳结构的聚合物,其核为软状弹性体,赋予制品较高的抗冲击性能,壳为具有高玻璃化温度的聚合物,主要功能是使改性剂微粒子之间相互隔离,形成可以自由流动的组分颗粒,促进其在聚合物中均匀分散,增强改性剂与聚合物之间相互作用和相容性。此类结构的改性剂有:MBS、ACR、MABS和MACR等,这些都是优良的冲击改性剂。

2、非预定弹性体型(NPDE)冲击改性剂,它属于网状聚合物,其改性机理是以溶剂化作用(增塑作用)机理对塑料进行改性。因此,NPDE必须形成一个包覆树脂的网状结构,它与树脂不是十分好的相容体。此类结构的改性剂有:CPE、EVA。

3、过度型冲击改性剂,其结构介于两种结构之间,如ABS。用于PVC树脂的具体品种有:

(1)氯化聚乙烯(CPE)是利用HDPE在水相中进行悬浮氯化的粉状产物,随着氯化程度的增加使原来结晶的HDPE逐渐成为非结晶的弹性体。作为增韧剂使用的C?E,含C1量一般为25-45%。CPE来源广,价格低,除具有增韧作用外,还具有耐寒性、耐候性、耐燃性及耐化学药品性。目前在我国CPE是占主导地位的冲击改性剂,尤其在PVC管材和型材生产中,大多数工厂使用CPE。加入量一般为5—15份。CPE可以同其它增韧剂协同使用,如橡胶类、EVA等,效果更好,但橡胶类的助剂不耐老化。

(2)ACR为甲基丙烯酸甲酯、丙烯酸酯等单体的共聚物,ACR为近年来开发的最好的冲击改性剂,它可使材料的抗冲击强度增大几十倍。ACR属于核壳结构的冲击改性剂,甲基丙烯酸甲酯—丙烯酸乙酯高聚物组成的外壳,以丙烯酸丁酯类交联形成的橡胶弹性体为核的链段分布于颗粒内层。尤其适用于户外使用的PVC塑料制品的冲击改性,在PVC塑料门窗型材使用ACR作为冲击改性剂与其它改性剂相比具有加工性能好,表面光洁,耐老化好,焊角强度高的特点,但价格比CPE,高1/3左右。国外常用的牌号如K-355,一般用量6—10份。目前国内生产ACR冲击改性剂的厂家较少,使用厂家也较少。

(3)MBS是甲基丙烯酸甲酯、丁二烯及苯乙烯三种单体的共聚物。MBS的溶度参数为94-9.5之间,与PVC的溶度参数接近,因此同PVC时相容性较好,它的最大特点是:加入PVC后可以制成透明的产品。一般在PVC中加人10-17份,可将PVC的冲击强度提高6—15倍,但MBS的加入量大于30份时,PVC冲击强度反而下降。MBS本身具有良好的冲击性能,透明性好,透光率可达90%以上,且在改善冲击性同时,对树脂的其他性能,如拉伸强度、断裂伸长率等影响很小。MBS价格较高,常同其他冲击改性剂,如EAV、CPE、SBS等并用。MBS耐热性不好,耐候性差,不适于做户外长期使用制品,一般不用做塑料门窗型材生产的冲击改性剂使用。

(4)SBS为苯乙烯、丁二烯、苯乙烯三元嵌段共聚物,也称为热塑性丁苯橡胶,属于热塑性弹性体,其结构可分为星型和线型两种。SBS中苯乙烯与丁二烯的比例主要为30/70、40/60、28/72、48/52几种。主要用做HDPE、PP、PS的冲击改性剂,其加入量5—15份。SBS主要作用是改善其低温耐冲击性。SBS耐候性差,不适于做户外长期使用制品。

(5)ABS为苯乙烯(40%-50%)、丁二烯(25%—30%)、丙烯腈(25%-30%)三元共聚物,主要用做工程塑料,也用做PVC冲击改性,对低温冲击改性效果也很好。ABS加入量达到50份时,PVC的冲击强度可与纯ABS相当。ABS的加入量一般为5—20份,ABS的耐候性差,不适于长期户外使用制品,一般不用做塑料门窗型材生产的冲击改性剂使用。(6)EVA是乙烯和醋酸乙烯酸的共聚物,醋酸乙烯酯的引入改变了聚乙烯的结晶性,醋酸乙烯酯含量大量差,而且EVA与PVC折光率不同,难以得到透明制品,因此,常将EVA与其它抗冲击树脂并用。EVA添加量为10份以下。

4、橡胶类抗冲击改性剂

是性能优良的增韧剂,主要品种有:乙丙橡胶(EPR)、三元乙丙橡胶(EPDM)、丁腈橡胶(NBR)及丁苯橡胶、天然橡胶、顺丁橡胶、氯丁橡胶、聚异丁烯、丁二烯橡胶等,其中EPR、EPDM、NBR三种最常用,其是改善低温耐冲击性优越,但都不耐老化,塑料门窗型材一般不使用这类冲击改性剂。

常用的其它助剂

1、光稳定剂

PVC制品多数暴露在阳光和其它各种光线下,根据制品应用环境添加一定量的光稳定剂可防止和延缓其分解和老化,延制品使用寿命。

光稳定剂大体可以分为四类:

(1)光屏蔽剂。如钛白和碳黑,可以阻挡紫外线进入型材的内部,以阻止聚合物的光降解进行。如加入2%的碳黑的LDPE片材其耐老化程度比不加碳黑的LDPE片材提高20倍。钛白对型材的耐老化程度有较大的提高,钛白应使用金红石型的,在PVC塑料门窗型材中的使用量在3-6份。

(2)紫外线吸收剂。可以强烈吸收280-400nm的紫外线,转换成可见光或热量。常用的有UV—

531、UV-

327、UV-

326、UV-p等产品,用量一般为0.1-0.5%。但价格较高。

(3)淬灭剂。主要是消灭受激发的聚合物分子的能量,使之回到基态。具体品种为镍、钴络合物,品种有光稳定剂202_、光稳定剂1084等。一般与其它光稳定剂配合使用,用量0.1-0.5%。

(4)自由基捕捉剂。是一种高效的光稳定剂,它捕捉光降解分解出的自由基,终止降解反应的进行。一般使用在LDPE农膜中。品种主要有:光稳定剂GW-540、GW—

544、CW-

310、BW—10LD、光稳定剂744、光稳定剂622、光稳定剂944等,用量0.02-0.5%。

2、填料

使用填料的主要目的是占据空间以降低成本,当然,一些填料也赋予材料一些特殊的性能,如阻燃、导电、导热、刚性等。

填料的主要指标为:白度、粒径、颗粒形状和颗粒表面活性。

其主要品种有:

(1)碳酸盐类主要为重质碳酸钙、轻质碳酸钙和活性碳酸钙。一般在PVC塑料型材使用的是活性轻质碳酸钙,粒径为300目—700目。

(2)炭黑如天然气槽黑、混气槽黑、高耐磨炉黑、热裂法炭黑、乙炔炭黑等。主要作用橡胶的补强,有些品种亦作填充剂,如用于导电和防静电高分子材料制品中。

(3)硫酸盐类有硫酸钡、硫酸钙、锌钡白(立德粉)等,主要作填充剂,也有着色作用,硫酸钡可减少X光透过度。

(4)金属氧化物如氧化铝、氧化铁、氧化锰、氧化锌、氧化锑、氧化镁、氧化铁、磁粉等,作填充剂和着色剂。

(5)金属粉如铝、青铜、锌、铜、铅等粉末,作装饰用和改善导热性。在塑料型材生产中有时用铜粉、铝粉生产仿铝窗的型材。

(6)含硅化合物陶土中最常使用的为高岭土,作填充剂。硬质陶土有补强作用。滑石粉作填充剂。

(7)纤维类如玻璃纤维、硼纤维、碳纤维等,作增强剂。

第二篇:型材配方采用绿色环保设计

型材配方采用绿色环保设计,耐老化性能卓越,主要原材料和辅料均采用国际定点企业和国际上专业从事多年的生产企业。各项性能符合GB8814-202_标准要求。

所有主型材采用三腔、四腔或五腔以上的结构,具有优良的阻声传递性,良好的保温、隔热性,以及方便的排水性。而框、梃钢衬腔的放大便于使用大截面的钢材,提高整窗的抗风压强度。

塑钢型材是指PVC型材。隔音性好、气密性好、耐老化、不腐蚀、水密性好、耐冲击、防火性好、保温性好。塑钢门窗即外观为工程塑料聚录乙烯(PVC)型钢衬以增加强度的门窗。在成型之前需要加入钛白粉、紫外线吸收剂、加工改性剂、抗冲改性剂、内外润滑剂和填料。具有铝合金门窗的外观美,又具备钢窗的强度。

第三篇:PVC型材生产中常见问题分析

来源于 :注塑塑料网http:// http://

PVC型材生产中常见问题分析

系统控制是确保PVC型材质量长期稳定的关键,它包含“配方质量、工艺质量、外观质量、理化指标”等4个项目,前两项是後两项的前提和基础,也是质量管制和技术管理的重中之重。

树脂与助剂混合的均匀程度及混合料表观密度的大小都会对PVC冲击强度产生较大影响。PVC加工温度有一定的范围,温度过高,PVC易分解;温度过 低,PVC塑化不充分,各种组分分散不均还会导致脆性增大。主机转速反映挤出机对PVC的剪切作用,转速过大,剪切力增大,会降低制品的低温性能和焊角强 度。成型压力高有利於提高型材的力学性能,尤其是低温冲击强度。型材成型冷却作用是将拉伸的大分子链及时冷却定型,达到制品要求。缓慢的冷却可以使大分子 链有足够的时间舒展,这样内应力小,可减轻制品的翘曲、弯曲和收缩,从而提高制品的冲击强度和焊接角破坏力。

配方

讨论配方不能脱离原料。配方的好坏并不完全取决於组分的配比,在很大程度上取决於原料的内在性能和质量。同是复合稳定剂,由於内部组分不同,会因为与其他 原料不协调而影响型材质量。所以,讨论配方时,一定是确定了每一种原材料型号和厂家之後,才有实际意义。笔者所在的新疆天业建材公司,一直使用自产的 PVC树脂,CPE使用潍坊亚星化学股份有限公司的产品,钛白粉使用杜邦公司(DuPont)的产品,因此,本文只讨论复合稳定剂和增量剂。复合稳定剂是PVC加工中最重要的一类助剂,对PVC型材的所有指标都产生影响。复合稳定剂起稳定和润滑两种作用。稳定作用是阻止PVC分子在加工和使用 过程中降解,从而保证PVC型材能够具备门窗所要求的力学性能;内外润滑剂的搭配影响流动性和粘度,进而影响PVC型材的冷冲击性、焊角强度、尺寸变化 率、加热後状态和表面光洁度。

目前,面对原材料全面涨价的市场行情,降低配方成本是很多厂家不约而同的选择,而降低配方成本主要有两个途径:使用价格较低的原料,比如使用价格较低的稳 定剂、改性剂等;使用增量剂,常用的就是价格较低的碳酸钙。碳酸钙除了增量降低成本外,还具有稳定尺寸的作用;但随着碳酸钙用量的加大,型材的内在指标明 显下降。

混料设备

混配料是PVC型材生产中的重要一环。混料过程不仅是各组分间机械混合,更是各组分间相互摩擦、碰撞,物料不断升温、逐步凝胶化的过程,所以干混料的质量 直接影响PVC型材的物理性能和化学性能。国外专家认为,好的混料机可以弥补塑化差的挤出机,但即使是最好的挤出机也不能弥补混料机的不足,可

见混料机的 重要性。在混料机内,物料在短时间内靠自摩擦由常温升至120℃,日积月累,对混料机的磨损是很大的。

根据经验,在原材料、配方、设备、工艺不变的情况下,在一根长6m的型材上取样,型材的冷却冲击试验结果却相差很大:8个试样完好无损,1个试样有小裂 纹,1个试样出现破洞。经过排查,确定是物料混合不均匀,用量较小的助剂分散不好造成的局部缺陷。更换热混搅拌桨後,此问题得以解决。混料机磨损的直观表 现是混料时噪音大、刺耳,混料时间延长,由一般的8-10min延长至15min以上。

经过长时间的观察对比,得到PVC颗粒的最大密度和最大程度的凝胶化,热混温度应控制在115℃左右,混料时间每次在8-10min,加料量为混料机容积 的60%左右,这样的效果是较理想的。冬季时,可将混料机转速调高一些;夏季时,宜将混料机转速调低一些。通过这样的调整,可保证工作效率,控制好混料时 间。要得到满意的PVC物料塑化质量,螺杆、机筒的加工精度及装配精度也是很重要的因素。高的装配精度配合优化的挤出工艺,才能较好地保证PVC型材质 量。因此,要定期检测螺杆、机筒的轴向间隙和径向间隙,不符合规定时要及时调整。

挤出过程常见问题

降解

PVC是热敏性塑料,光稳定性也很差,在热和光的作用下,很容易发生脱HCl反应,即通常说的降解。降解的结果是塑料制品强度下降、变色、出黑线,严重时导致制品失去使用价值。影响PVC降解的因素有聚合物结构、聚合物质量、稳定体系、成型温度等方面。

根据经验,PVC型材发黄大多是因为口模处出现糊料,其原因是口模流道不合理或流道内局部抛光不好,存在滞料区。而PVC型材出黄线大多是机筒内出现糊 料,其原因主要是筛板(或过渡套)之间有死角,物料流动不畅。黄线在PVC型材上呈纵向直线,则滞料是在口模出口处;若黄线不直,则主要是在过渡套。配方 和原料不变时也出现黄线,则应主要从机械结构上找原因,找到发生分解的起始点并加以排除。如从机械结构上找不到原因,则应考虑是配方或工艺方面存在问题。避免降解的措施有以下几个方面:

(1)严格控制原材料的技术指标,要使用合格的原料;

(2)制定合理的成型工艺条件,在该条件下PVC物料不易降解;

(3)成型设备和模具应结构良好,要消除设备与物料接触面可能存在的死角或缝隙;流道应为流线型,长短适宜;应改善加热装置,提高温度显示装置的灵敏度及冷却系统的效率。

弯曲变形

PVC型材弯曲变形是挤出过程中常见的问题,其原因有:口模出料不均匀;冷却定型时,物料冷却不充分,後收缩量不一致;设备与其他因素。

挤出机全线的同心度和水平度是解决PVC型材弯曲变形的前提条件,因此,每当更换模具时都应对挤出机、口模、定型模、水箱等的同心度和水平度进行校正。其 中,保证口模出料均匀是解决PVC型材弯曲的关键,开机前应认真装配口模,各部位间隙要一致,若开机时发现口模出料不均,应依据型坯弯曲变形方向,对应调 整口模温度,如调整无效,则应适当提高物料的塑化度。进行辅助调整调节定型模的真空度和冷却系统是解决PVC型材变形的必要手段,应加大型材承受拉伸应力一侧的冷却水量;采用机械偏移中心的方法调整,即一边 生产,一边调整定型模中间的定位螺栓,依据型材弯曲方向进行反向微量调整(采用该法时应慎重,且调整量不宜过大)。注重模具的保养是很好的预防措施,应密 切关注模具的工作质量,根据实际情况随时对模具进行维护和保养。

通过采取以上措施可消除型材弯曲变形,确保挤出机稳定、正常地生产出高质量的PVC型材。

低温冲击强度

影响PVC型材低温冲击强度的因素有配方、型材断面结构、模具、塑化度、测试条件等。

(1)配方

目前广泛选用CPE作为冲击改性剂,其中含氯质量分数为36%的CPE对PVC的改性效果最好,用量一般在8-12质量份,结晶度和玻璃化温度均较低,具有良好的弹性及与PVC的相容性。

(2)型材断面结构

高质量的PVC型材具有好的断面结构。通常情况下,小断面的结构优於大断面的结构,断面上内筋的位置设置要适宜。增加内筋厚度,在内筋与壁连接处采用圆弧过渡,都有助於提高低温冲击强度。

(3)模具

模具对低温冲击强度的影响主要体现在熔体压力和冷却时的应力控制上。一旦配方确定,熔体压力主要与口模有关。从口模出来的型材经过不同的冷却方式,会产生 不同的应力分布。应力集中的地方PVC型材的低温冲击强度就差。PVC型材受到急冷时易产生大的应力,因此定型模冷却水流道布置非常关键,水温一般控制在 14℃-16℃,采用缓冷方式有利於提高PVC型材的低温冲击强度。

保证模具的最佳状态,定期清理口模,避免因长时间连续生产而让杂质堵塞口模,造成出料减少,支撑筋过薄,影响低温冲击强度。定期清理定型模可保证定型模足够的定型真空度和水流量,以保证型材生产过程中被充分冷却,减少缺陷,降低内应力。

(4)塑化度

大量研究和测试结果表明,PVC型材低温冲击强度的最佳值是在塑化度为60%-70%时得到的。经验表明,“高温低转速”和“低温高转速”能得到同样的塑 化度。但在生产中首选低温高转速,因为低温时既可降低加热耗电量,高速时又能提高生产效率,并且双螺杆挤出机高速挤出时剪切作用很明显。

(5)测试条件

GB/T8814-202_中对低温冲击试验有严格的规定,如型材长度、落锤质量、锤头半径、试样冷冻条件、测试环境等,为了使试验结果准确,要严格遵守上述规定。

其中:“落锤冲击在试样中心位置上”应理解为“使落锤冲击在试样的型腔中心位置”,这样的检测结果更有现实意义。

改善低温冲击性能的措施如下:

1.严格检查用料质量,密切注意口模出料和真空口的物料状态,口模出料处应颜色一致,有一定光泽度,出料均匀,用手捏时要有较好的弹性,主机真空口物料呈“豆腐渣”状态,初步塑化时不能发光,主机电流、机头压力等参数应平稳。

2.规范工艺控制,保证塑化效果。温度控制应为“盆”式工艺,从挤出机一区到机头的加热温度变化应为“盆”型,机筒三、四区温度稍低,使物料由“外热内冷”逐步变为“内外平衡”,保证物料受热均匀。在配方不变的情况下,挤出工艺不要有大的变化。

笔者曾经有过这样的经历:正常生产时80框外观光滑细腻,低温冲击试验结果为10个试样破损1个;在清理模具後再生产时,因未按以前工艺挤出,造成外观不 光滑,棱边有小波浪,低温冲击试验结果为10个试样破损6个。这验证了配方不变时,“有好外观就有好内在”的经验。

第四篇:法兰盘工艺设计与数控加工

上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

摘要

本课题完成法兰盘工艺设计与数控加工。法兰盘是使管子与管子相互连接的零件,连接于管端。法兰上有孔眼,两个法兰盘之间,加上法兰垫,用螺栓紧固在一起,完成了连接。

本次设计主要完成以下设计内容:法兰盘的零件图纸与技术要求分析、零件二维图绘制及三维建模;制定数控加工工艺卡片文件;零件的夹具设计并进行夹具图二维图绘制;对零件进行加工仿真。根据锻件的形状特点、零件尺寸及精度,选定合适的机床设备以及夹具设计,通过准确的计算并查阅设计手册,确定了法兰盘的尺寸及精度,在材料的选取及技术要求上也作出了详细说明,并在结合理论知识的基础上,借助于计算机辅助软件绘制了各部分零件及装配体的工程图,以保障法兰盘的加工制造。

在夹具的设计过程中,主要以可换圆柱销、可换菱形销、定位心轴和支承钉来定位,靠六角厚螺母来夹紧。首先在数控车床上,完成零件的外圆及端面加工;再在数控铣床上,完成零件端面上6-Φ11沉孔及3-Φ5孔的加工;最后采用专用夹具以Φ16孔以及6-Φ11沉孔其中两孔定位进行外圆上Φ10孔的加工。

关键字:法兰盘,数控加工工艺,数控编程,夹具设计,仿真加工

上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

法兰盘工艺设计与数控加工

姓名 学号

0 引言

0.1 概述

本课题起源于装配制造业法兰盘工艺设计与数控技术,通过此次毕业设计,可以初步掌握对中等复杂零件进行数控加工工艺规程的编制,学会查阅有关资料,能合理编制数控加工过程卡片、数控加工工序卡片、数控加工刀具卡片、数控编程等工艺文件,能合理的确定加工工序的定位与夹紧方案。

能使用AutoCAD正确绘制机械零件的二维图形,能通过使用UGNX7.0软件对零件进行三维图的绘制,可以提高结构设计能力及建模能力。

编写符合要求的设计说明书,并正确绘制有关图表。在毕业设计工作中,学会综合运用多学科的理论知识与实际操作技能,分析与解决设计任务书中的相关问题。在毕业设计中,综合运用数控加工刀具和数控工艺、工装夹具的设计等专业知识来分析与解决毕业设计中的相关问题。

依据技术课题任务,进行资料的调研、收集、加工与整理和正确使用工具书;掌握有关工程设计的程序、方法与技术规范;掌握实验、测试等科学研究的基本方法;以及与解决工程实际问题的能力。0.2 本设计的主要工作内容

本次对于法兰盘工艺设计及数控加工的主要任务是:(1)分析零件图纸与技术要求; 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

(2)三维建模。根据零件二维视图建立三维视图;

(3)制定机械加工工艺文件。根据产品技术资料、生产条件与生产纲领,制定零件机械加工工艺规程,编写工艺规程卡片;

(4)夹具设计。绘制工件夹具图;

(5)编制数控加工程序、仿真加工与课题制作

(6)工件检验。选用合理的测量工具与设备检验工件的加工质量。在这整个过程中,综合运用多学科的理论、知识与技能,分析与解决实际相关问题。零件分析

1.1 零件图分析

图1.1所示为法兰盘零件二维图,其结构形状较复杂,中批量生产1000件。图1.2为零件的三维图。

图1.1 法兰盘零件二维图 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

图1.2 法兰盘三维图

该零件材料为45钢,毛坯为锻件,主要应用于装配管子,起管子的连接及固定作用,为中批量生产类型产品。该零件为由外圆、内圆、沉孔、内孔、倒斜角等表面组成,加工表面较多且都为平面及各种孔,因此适合采用加工中心加工。1.2 技术要求分析(1)结构分析

零件由外圆、内圆、沉孔、内孔、倒斜角等构成。(2)尺寸精度分析

加工精度是指零件在加工后的几何参数的实际值和理论值符合的程度。尺寸精度是指实际尺寸变化所达到的标准公差的等级范围。

如图1.1所示,加工要求较高的尺寸列出如下表格,如表1.1所示。上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

(3)形位公差分析

加工后的零件不仅有尺寸误差,构成零件几何特征的点、线、面的实际形状或相互位置与理想几何体规定的形状和相互位置还不可避免地存在差异,这种状上的差异就是形状误差,而相互位置的差异就是位置误差,统称为形位误差。(4)毛坯加工余量分析

工件粗加工的余量为0.8,半精加工为0.5,精加工为0.2。(5)粗糙度分析

表面粗糙度,是指加工后的零件表面上具有的较小间距和微小峰谷所组成的微观几何形状特征,一般是由所采取的加工方法和(或)其他因素形成的。表面粗糙度高度参数有3种:轮廓算术平均偏差Ra,微观不平度十点高度Rz以及轮廓最大高度Ry。

该零件主要由外圆、内圆、沉孔及内孔组成,具体表示为φ55外圆、φ52外圆、φ90外圆、6-φ11沉孔、3-φ5内孔、φ10内孔、φ32内圆、φ16内圆。粗糙度皆为Ra3.2。

表1.1尺寸精度

结构 Φ10mm的孔 Φ11mm的沉孔 C1.5mm倒角 Φ5mm内孔

尺寸 Φ10mm Φ11mm 1.5mm×45°

Φ5mm

形状 孔 沉孔 倒角 内孔

位置 Φ90mm圆柱面 Φ90mm圆柱面 Φ32mm圆柱面内侧 Φ10mm圆柱面 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工 零件的数控加工工艺设计

2.1 选定毛坯

根据零件的加工前尺寸及考虑夹具方案的设计,选择的毛坯材料牌号为45钢,毛坯种类为锻件,毛坯外形尺寸为Φ95mm×45mm。如图1.3所示。

图1.3 法兰盘加工前三维图

2.2 选择定位基准

选择定位基准时,首先是从保证工件加工精度要求出发的,因此,选择定位基准时先选择粗基准,再选择精基准。2.2.1 粗基准的选择:

按照粗基准的选择原则,为保证不加工表面和加工表面的位置要求,应选择不加工表面为粗基准,故在加工Φ16mm内圆、Φ90外圆及Φ55外 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

圆时,选择Φ95mm毛坯外圆作为粗基准。2.2.2 精基准的选择:

按照精基准的选择原则,为符合基准重合原则以及基准统一原则,故在加工Φ52外圆、Φ90外圆、Φ32内圆、Φ10内孔、6-Φ11沉孔及3-Φ5内孔时,选择Φ55外圆及Φ16内圆作为精基准。2.3 工艺路线的设计

(1)工艺路线的设计

为保证几何形状、尺寸精度、位置精度及各项技术要求,必须判定合理的工艺路线。

由于生产纲领为成批生产,所以XH714立式加工中心配以专用的工、夹、量具,并考虑工序集中,以提高生产率和减少机床数量,使生产成本下降。

针对零件图样确定零件的加工工序为: 工序一:(Φ95毛坯外圆定位)1)粗车外圆及端面。

2)精车外圆至尺寸要求,留总厚余量2mm。3)钻Φ16孔中心孔。4)粗钻扩Φ16孔。

5)精钻扩Φ16孔至尺寸要求。6)倒圆角R2。

工序二:(Φ55圆柱面定位)1)粗车外圆及端面。

2)精车外圆及端面至尺寸要求。3)钻Φ32孔中心孔。上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

4)粗钻铰锪Φ32孔。

5)精钻铰锪Φ32孔至尺寸要求。6)倒角C1.5。

工序三:(Φ16孔及工件下平面定位)1)钻6-Φ11沉孔及3-Φ5内孔中心孔。2)粗钻铰6-Φ11沉孔及3-Φ5内孔。

3)精钻铰6-Φ11沉孔及3-Φ5内孔至尺寸要求。工序四:(Φ16孔及工件上平面定位)1)钻Φ10孔中心孔。2)粗铰Φ10孔。

3)精铰Φ10孔至尺寸要求。4)所有面去锐边毛刺。2.4 确定切削用量和工时定额

切削用量包括背吃刀量、进给速度或进给量、主轴转速或切削速度(用于恒线速切削)。其具体步骤是:先选取背吃刀量,其次确定进给速度,最后确定切削速度。(参考资料《数控加工工艺及设备》)

工时定额包括基本时间、辅助时间、地点工作服务时间、休息和自然需要时间以及准备终结时间。2.4.1 背吃刀量ap的确定

根据零件图样知工件表面粗糙度要求为全部3.2,故分为粗车、半精车、精车三步进行。

因此选择粗车的背吃刀量为3.5mm,半精车的背吃刀量取1.5mm,精 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

车时背吃刀量取0.35mm。2.4.2 进给量f的确定

由文献[10]表2.4-73,选择粗车时:fz=0.20mm/z;精车时:fz=0.5mm/z

2.4.3 切削速度vc的确定

由文献[10]表3.1-74,选择粗车时:主轴转速n=900r/min;精车时:主轴转速n=1000r/min。

因此,相应的切削速度分别为: 粗铣时:vc精铣时:vcdn1000169001000m/min45.2m/min

dn10002010001000m/min62.8m/min2.4.4 工时定额的确定

根据夹具的设计,下面计算工序四中Φ10mm孔的时间定额。(1)基本时间 由文献[8]得,钻孔的计算公式为: T基本式中:L1 L2D2cotKy(1~2);

LL1L2nf

1~4,钻盲孔时,L2=0;

L=17,L2=0,f=0.3,n=1000;

因此 L1102cot11821.57.5

所以 T基本177.500.310000.082min

(2)辅助时间 文献[8]确定

开停车 0.015min 升降钻杆 0.015min 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

主轴运转 0.02min 清除铁屑 0.04min 卡尺测量 0.10min 装卸工件时间由文献[8]取1min

所以辅助时间

T辅助=(0.015+0.015+0.02+0.04+0.10+1)min=1.19min(3)地点工作服务时间 由文献[8]确定

取3%,则T服务(T基本T辅助)(0.0821.19)3%min0.03815min(4)休息和自然需要时间 由文献[8]确定

取3%,则T休息(T基本T辅助)(0.0821.19)3%min0.03815min(5)准备终结时间 由文献[8],部分时间确定

简单件 26min 深度定位 0.3min 升降钻杆 6min 由设计给定1000件,则

T准终/n(260.36)/1000min0.0323min

(6)单件时间

T总T基本T辅助T休息T服务T准终 (0.0821.190.038150.038150.0323)min

1.381min(7)单件计算时间

T单件 T总T准终/n(1.3810.0323)min1.4129min10

上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

2.5 各工序的设备、刀具、量具的设计

(1)选择NC加工机床

根据2.3 工艺路线的设计的工序安排,由于零件的复杂性及加工部位多,故选择立式加工中心。加工内容有:车外圆、钻孔、铰孔及倒角等,所需刀具不超过20把。选用立式加工中心即可满足上述要求。

本设计选用FANUC 18i-MateMC系统XH714立式数控加工中心,如图1所示。

图1 XH714立式数控加工中心

(2)机床主要技术参数

工作台面积(长×宽)900×400 mm 工作台左右行程(X向)630 mm 工作台前后行程(Y向)400 mm 主轴上、下行程(Z向)500 mm 工作台最大承重 600 kg 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

主轴端面至工作台面距离 250—760 mm 主轴锥孔 MAS403 BT40 刀库容量 ≥12 把 刀具最大尺寸 φ100×250 mm 主轴最高转速 8000 rpm 进给速度 5-8000 mm/min 快速移动速度 20000 mm/min 主电机功率 7.5/11KW 定位精度 X:0.016 mm,Y、Z:0.014 mm全程 重复定位精度 X:0.010 mm,Y、Z:0.008mm全程 进给电机扭矩 FANUC 8 N.m 数控系统 FANUC 0i-MateMC 插补方式 直线插补、圆弧插补(3)机床性能

XH714为纵床身,横工作台,单立柱立式加工中心机床;可以实现X、Y、Z任意坐标移动以及三坐标联动控制;X、Y、Z三坐标轴伺服进给采用交流伺服电机,运动平稳;X、Y、Z三轴采用进口精密滚珠丝杠副,及进口滚珠丝杠专用轴承支承;主轴采用交流伺服调速电机,其额定功率11KW;主轴最高转速为8000rpm。主轴轴承采用高速、高精度主轴轴承,油循环冷却;采用蝶形弹簧夹紧刀具,气压松刀;刀库为20把刀的斗笠式刀库,无机械手换刀。2.6 工艺文件的设计

根据2.3 工艺路线的设计的工序安排,编出机械加工工艺过程卡片 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

及工序卡片。见附表1~3:机械加工工艺过程卡片;附表4~7:数控加工工序卡;附表11~16:数控加工进给路线图。2.7 数控加工刀具卡片的设计

根据2.3 工艺路线的设计的工序安排,编出机械加工刀具卡片。见附表8~10:机械加工刀具卡片。2.8 数控编程

根据2.3 工艺路线的设计的工序安排,编出数控加工程序。见附表17:数控加工程序。法兰盘钻Φ10孔夹具工序工艺装备的设计

3.1 夹具设计方案的设计

根据法兰盘的特点对夹具提出了两个基本要求:一是保证夹具的坐标方向与机床的坐标方向相对固定。二是要能协调法兰盘零件与机床坐标系的尺寸。除此之外,重点考虑以下几点:

1、在成批生产时,才考虑采用专用夹具,并力求结构简单。

2、夹具上个零件部件应不妨碍机床对零件各表面的加工,即夹具要敞开,其定位。夹紧原件不能影响加工中的走刀。

根据课题要求,批量生产1000件法兰盘零件,故需要设计专用夹具进行装夹。

3.1.1 夹具的定位方案的设计

工件定位方案的确定,首先应考虑满足加工要求。按基准重合原则,选用Φ18孔以及工件底平面作为定位基准,定位方案如图3-1所示。

平面机构自由度计算公式为:F3n2PLPH,其中:n 为活动构件,n=N-1,N为构件; 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

PL — 低副;

PH — 高副;

3n2PLPH322300所以:F

即2个支承钉及定位心轴限制工件的x、y方向的转动度以及z方向的移动度,可换圆柱销及可换菱形销限制工件的x、y方向的的移动度以及z方向的转动度。

图3-1 法兰盘的定位方案

3.1.2 夹具的夹紧方案的确定

工件夹紧方案的确定,取工件的Φ55圆柱端面进行夹紧,采用六角厚螺母夹紧机构,如图3-2所示。采用六角厚螺母夹紧机构,在夹具设计过程中,以考虑工件的受力情况,故在Φ55圆柱端面与六角厚螺母之间增加平垫圈,平垫圈在此处起到缓冲、平衡受力及保护端面不受伤害的作用。采用六角厚螺母通过平垫圈将工件在侧面夹紧,其结构紧凑、操作方便。上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

图3-2 法兰盘的夹紧方案

3.1.3 夹具对刀装置方案的确定

因考虑零件的复杂性,故将夹具本次零件加工选择机床对刀点在工件坐标系的Φ95外圆上,这有利于保证精度,减少误差。

采用试切的对刀方法:具体步骤为该零件选择Φ95外圆为编程零点,本次试切首先选择零件的右侧面为试切点,左右拨动主轴,手轮移动X轴,使刀具微碰零件,此时记下X的机械坐标输入到G54或G55的X中,本次试切再选择零件的外圆顶点为试切点,上下拨动主轴,手轮移动Y轴,使刀具微碰零件,此时记下Y的机械坐标输入到G54或G55的Y中,至此,X,Y轴对刀完成;Z轴的对刀,如以工件外圆顶点为0点,将铣刀擦到工件表面,记下此时Z轴的机械坐标,输入到G54或G55中。3.1.4 夹具与机床连接方案的设计

因考虑零件的加工复杂性,本套夹具选择孔系夹具,它的元件以孔定位,螺纹连接,元件定位精度高,夹具的组装简便,刚性好,又便于数控机床编制加工程序。上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

3.2 夹具的结构设计

在选择夹具体的毛坯的结构时,从结构合理性、工艺性、经济性、标准化的可能性以及工厂的具体条件为依据综合考虑。在《机床夹具设计手册》表1-9-1为各种夹具体毛坯结构的特点和应用场合。则选铸造结构,因为其可铸造出复杂的结构形状。抗压强度大,抗振性好。易于加工,但制造周期长,易产生内应力,故应进行时效处理。材料多采用HT15-30或HT20-40。在夹具体上还进行倒角,以便增加夹具的强度及刚度。

3.3 夹具的理论计算 3.3.1 定位误差的分析与计算

本套夹具是定位误差主要是一面两孔定位所产生的,因此只需计算两定位销的定位误差即可。

1)确定定位销中心距及尺寸公差 取Ld13LD130.12mm0.04mm

故两定位销中心距为71±0.02mm 2)确定圆柱销尺寸及公差

取Φ11H8=Φ1

10.0060.017mm 3)参考文献[8]中表4-3选取菱形销的b1及B值

取b1=4mm,B=d-2=(11-2)mm=9mm 4)确定菱形销的直径尺寸及公差

取补偿值:a=Ld+LD=(0.06+0.02)mm=0.08mm,则 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

X2min2ab1D2min20.08412mm0.053mm

所以d2maxD2minX2min(110.053)mm10.947mm 菱形销与孔的配合取h6,其下偏差为-0.011mm,故菱形销直径为

Φ10.947 所以d2max00.011mm=Φ11

0.0530.0640.0530.064mm Φ11

mm 5)计算定位误差

基准位移误差为:

YD1d1X1min[0.027(0.0060.017)(00.006)]mm0.044mm

转角误差为: arctanX1maxX2max2Larctan(0.0270.017)(0.0270.064)271arctan0.135142

则314,双向转角误差为628。

3.3.2 夹紧力的分析与计算

本套夹具靠六角厚螺母实现夹紧。因此,夹紧力的计算则在于六角厚螺母所需的力。

六角厚螺母夹紧力P按3.2公式计算:

TQrtanf ……………………………………………(3.2)

Q — 夹紧力,;

— 螺纹升角,M16选229;

— 螺纹摩擦角,=10;

f — 支撑表面摩擦力矩的计算力臂,选择13d013155;

— 螺母支撑面的摩擦因素,选择f=0.178;

通过计算,M16孔定位的螺钉所需夹紧力为:T=180N 因为六角厚螺母需在两端进行夹紧,故夹紧力为双倍。因此总共所需夹紧力为:T总=2T=180N×2=360N 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

3.4 夹具的使用操作说明

本夹具用于加工法兰盘的∅11孔(工件材料45钢)。工件以∅32和∅16孔、∅11孔分别在定位心轴

8、可换定位销7及可换定位销9上定位,通过在定位心轴8上旋动六角厚螺母4使平垫圈3接触工作,从而达到夹紧工件的效果。零件的仿真加工

图4-1 钻3-Φ5孔中心孔

图4-2 钻6-Φ11沉孔中心孔 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

图4-3 铰3-Φ5孔

图4-4 铰6-Φ7孔

图4-5 锪6-Φ11孔 上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

图4-6 钻Φ10孔中心孔

图4-7 铰Φ10孔 结论

(1)通过对零件和夹具的三维造型,实战练习了UG三维造型软件的造型模块和AtuoCAD工程图模块,加深了AutoCAD二维软件的操作和理解。

(2)通过对夹具的理论计算,证明本套夹具具有可行性。(3)通过对零件的加工仿真,证明数控加工程序具有可行性。(4)通过对夹具的三维建模,证明夹具的设计具有可行性。(5)对使用Office办公软件时,还需要多加熟练。上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

(6)在进行UG三维建模时,了解了计算机辅助制图编程软件的功能及使用方法。

(7)在用Auto CAD、UGNX7.0等软件时,还需要多熟练快捷键的使用,从而提高效率。

(8)设计过程中应用到的材料力学、机械原理、机械设计、数控编程等方面的知识。通过设计,加深了对所学知识在脑海中的印象,并提高了在实际中应用所学知识的能力。

同时,也认识到数控技术的应用不但给传统制造业带来了革命性的变化,是制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国际民生的一些重要行业的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

参考文献

[1] 洪如瑾.UG NX4 CAD快速入门指导.清华大学出版社,202_.[2] 毕承恩等.现代数控机床(上、下册).北京:机械工业出版社,1993.[3] 数字化手册编委会.机床夹具设计手册.机械工业出版社,202_.[4] 李福生等.实用数控机床技术手册.北京:北京出版社,1993.[5] 于华等.数控机床的编程及实例.北京:机械工业出版社,1996.[6] 朱耀祥等.现代夹具设计手册.北京:机械工业出版社,202_.[7] 夏伯雄.数控机床的产生发展及其趋势[J].精密制造与自动化.202_.[8] 赵长明等.数控加工工艺及设备.北京:高等教育出版社,202_.[9] AMT Statistical Department.1998-1999 Economic Handbook of the Machine Tool Industry.1998.[10] 李洪等.机械加工工艺手册.北京.北京出版社,1990.上海工程技术大学毕业设计(论文)

法兰盘工艺设计与数控加工

附录

附录1.机械加工工艺过程卡片 附录2.机械加工工艺过程卡片 附录3.机械加工工艺过程卡片 附录4.数控加工工序卡 附录5.数控加工工序卡 附录6.数控加工工序卡 附录7.数控加工工序卡 附录8.数控加工刀具卡片 附录9.数控加工刀具卡片 附录10.数控加工刀具卡片 附录11.数控加工进给路线图 附录12.数控加工进给路线图 附录13.数控加工进给路线图 附录14.数控加工进给路线图 附录15.数控加工进给路线图 附录16.数控加工进给路线图 附录17.数控加工程序 附录18.法兰盘二维图及三维图

附录19.法兰盘钻Φ10孔专用夹具装配图 附录20.专用夹具中夹具体二维图 附录21.专用夹具中可换圆柱销二维图 附录22.专用夹具中可换菱形销销二维图 附录23.专用夹具中定位心轴二维图

第五篇:铝合金型材加工新技术

铝合金型材加工新技术

铝合金型材加工新技术,隔热铝合金型材施工工艺有以下三种,新型的隔热铝合金型材产品的推广使用将在节能和环保方面对我国国民经济起到重要作用。

一、灌注辊压一体隔热铝合金型材

灌注辊压一体隔热铝合金型材是采用机械加工的方法,把两部分型材通过隔热条进行连接,在连接的隔热条腔内灌注PU树脂起到双效隔热断桥的作用。其工艺是综合灌注PU树脂隔热铝合金型材与嵌条隔热铝合金型材两种工艺而成,工艺要求严格复杂。它通过隔热条来阻断热量在铝型材上的传导,对K值起到了有效地降低作用。而灌注PU树脂阻止了热量的对流传导,双效节能,节能效果更加显著。灌注辊压一体隔热铝合金型材制作的产品各项指标很大程度地优于国家现阶段的标准要求,具有广阔的发展前景。

二、嵌条隔热铝合金型材。

嵌条隔热铝合金型材是采用机械加工的方法,把两部分型材通过隔热条进行连接,连接的隔热条起到隔热断桥的作用。嵌条隔热铝合金型材生产工艺为:型材贴保护膜→铝型材开齿→穿隔热条→辊压成形。其加工难点是,开齿深度和辊压型材变形量。新起草的国家标准中规定了其抗拉强度和剪切强度值,从而要求开齿深度必须保证将隔热条与铝合金型材辊压紧密连接在一起。为了保证达到国标要求,开齿深度和辊压的变形量必须达到工艺参数的要求;复合处铝。铝合金型材以其强度高、水密性及气密性好、外观精美、加工简便等优点,20世纪80年代初开始在我国建筑行业中得到广泛应用。但是,进入90年代末,由于铝合金的导热性能好,制作的门窗产品对于建筑物的保温性能差这一问题逐渐被人们所重视。隔热铝合金型材保温原理型材的几何尺寸要满足尺寸精度要求,确保产品质量合格。嵌条隔热铝合金型材制作的门窗产品各项指标完全达到国家标准要求。

三、灌注PU树脂隔热铝合金型材

灌注PU树脂隔热铝合金型材生产工艺为:挤压型材→灌注PU树脂→切断金属冷桥。灌注PU树脂隔热铝合金型材的加工工艺难度较大,灌注铝合金型材制作的门窗产品抗风压强度、气密性能、水密性能、门窗产品的导热系数、隔声性能等各项性能指标完全能够满足建筑铝合金隔热型材的标准要求和新出台的建筑门窗国家标准的七个性能指标要求。

相关内容

热门阅读

最新更新

随机推荐