首页 > 文库大全 > 精品范文库 > 5号文库

铝合金激光焊接技术

铝合金激光焊接技术



第一篇:铝合金激光焊接技术

一、铝合金激光焊接的发展

铝合金密度低,但强度比较高,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。

不过,铝合金本身的特性使得其相关的焊接技术面临着一些亟待解决的问题:表面难溶的氧化膜、接头软化、易产生气孔、容易热变形以及热导率过大等。以往的生产实践中,铝合金的焊接常用钨极氩弧焊和熔化极氩弧焊。虽然这两种焊接方式能量密度较大,焊接铝合金时能获得良好的接头,但仍然存在熔透能力差、焊接变形大、生产效率低等缺点。用这些传统的、应用于黑色金属的焊接方法焊接铝合金,并不能达到工业上高效、无缺陷、性能佳的要求,于是人们开始寻求新的焊接方法,20世纪中后期激光技术逐渐开始应用于工业。欧洲空中客车公司生产的A340飞机机身,就采用激光焊接技术取代原有的铆接工艺,使机身的重量减轻18 %左右,制造成本降低了近25 %。德国奥迪公司A2和A8全铝结构轿车也获益于铝合金激光焊接技术的开发和应用。这些成功的事例大大促使对激光焊接铝合金的研究,激光技术已经成为了未来铝合金焊接技术的主要发展方向,因为激光焊接具有其独特的优点:

(1)能量密度高,热输入量小,焊接变形小,能得到窄的熔化区和热影响区以及熔深大的焊缝。

(2)冷却速度快,焊缝组织微细,故焊接接头性能良好。

(3)焊接能量可精确控制,可靠性高,针对不同的要求有较高的适应性。(4)可进行微型焊接或实现远距离传输,不需要真空装置,利于大批量自动化生产。

二、激光焊接铝合金的难点及解决措施 1.铝合金表面的高反射性和高导热性

这一特点可以用铝合金的微观结构来解释。由于铝合金中存在密度很大的自由电子,自由电子受到激光(强烈的电磁波)强迫震动而产生次级电磁波,造成强烈的反射波和较弱的透射波,因而铝合金表面对激光具有较高的反射率和很小

吸收率。同时,自由电子的布朗运动受激而变得更为剧烈,所以铝合金也具有很高的导热性。

针对铝合金对激光的高反射性,国内外学者都作了大量研究,试验结果表明,进行适当的表面预处理如喷砂处理、砂纸打磨、表面化学浸蚀、表面镀、石墨涂层、空气炉中氧化等均可以降低光束反射,有效地增大铝合金对光束能量的吸收。另外,从焊接结构设计方面考虑,在铝合金表面人工制孔或采用光收集器形式接头,开V形坡口或采用拼焊(拼接间隙相当于人工制孔)方法,都可以增加铝合金对激光的吸收,获得较大的熔深。另外,还可以利用合理设计焊接缝隙来增加铝合金表面对激光能量的吸收(如图1)。从图上可以直观的反应出,将焊缝和激光束的位置关系由图1(a)改为图1(b)或图1(c),使激光束与缝壁有一定角度后,激光束能够在缝隙内多次反射,形成一个人工小孔,增加了焊件对激光能量的吸收。

图1 改变焊缝几何形状

2.小孔的诱导和维持

小孔的诱导和维持是铝合金激光焊接中的特有困难,这是由铝合金材料特性和激光光学特性造成的。激光焊接的过程中,小孔可看成是铝合金的黑体,能大大提高材料对激光的吸收率,为母材获得更多的能量耦合,这有利于提高焊接接头的质量。但由于铝合金的高反射性和高导热性,要诱导小孔的形成就需要激光有更高的能量密度。而铝元素以及铝合金中的Mg、Zn、Li沸点低、易蒸发且蒸汽压大,虽然这有助于小孔的形成,但等离子体的冷却作用(等离子体对能量的屏蔽和吸收,减少了激光对母材的能量输入)使得等离子体本身“过热”,却阻碍了小孔维持连续存在。

由于能量密度阈值的高低本质上受其合金成分的控制,因此可以通过控制工艺参数,选择确定激光功率保证合适的热输入量,有助于获得稳定的焊接过程。另外,能量密度阈值一定程度上还受到保护气体种类的影响。研究表明,激光焊接铝合金时使用N2气时可较容易地诱导出小孔,而使用He气则不能诱导出小孔。这是因为N2和Al之间可发生放热反应,生成的Al-N-O 三元化合物提高了对激光吸收率。

三、激光焊接铝合金容易产生的缺陷及消除方法 1.气孔

铝合金激光焊接的主要缺陷之一是气孔,焊缝气孔的形成机理比较复杂,一般认为存在两类气孔:氢气孔和由于小孔的破灭而产生的气孔。氢气孔是由于氢(主要来自表层的湿气与微量水)在熔池金属中的可溶性引起的,激光焊接冷却速度极快,导致氢的溶解度急剧下降形成氢气孔。由于小孔塌陷而形成的孔洞,主要是由于小孔表面张力大于蒸气压力,不能维持稳定而塌陷,液态金属来不及填充就造成孔洞。另外,低熔点、高蒸气压合金元素蒸发导致气孔,表面氧化膜在焊接过程中溶解到熔池中也会形成气孔。

从氢气孔的形成原理可知,表层物质是氢元素的主要来源,因此选择正确的焊前表面预处理可以有效地减少氢气孔的产生。对于由小孔塌陷引发的气孔,则要求选择适当的保护气体并合理控制流量流速,在条件允许下采用高功率、高速度、大离焦量(负值)的焊接方式,可以进一步消除气孔的产生。

2.热裂纹

铝合金的焊接裂纹都是热裂纹,与冷却时间(或焊接速度)密切有关,主要有结晶裂纹和液化裂纹。铝合金激光焊接产生的结晶裂纹是由于焊缝金属结晶时在晶界处形成低熔点共晶化合物导致的,焊缝金属氧化生成的Al2O3和AlN也会成为微裂纹的扩展源。液化裂纹是熔化的铝合金在凝固过程中局部塑性变形量超过其本身所能承受的变形量的结果。

目前常用的消除热裂纹的方法是使用填充材料,即填丝,这能有效地防止焊接热裂纹,提高接头强度。此外,调整激光能量的输入方式,合理选择脉冲点焊时的脉冲波形,焊缝熔化凝固重复进行,以降低熔池凝固时的凝固速度,这种在凝固过程中增加热循环的控制方法同样可以减少结晶裂纹。

3.Mg、Zn等元素的烧损

使用激光焊接铝合金时,焊缝的加热和凝固速度都非常快,这使得Mg,Zn 等低熔点强化元素发生烧损,导致焊缝硬度和强度下降。Mg 的沸点为1 380 K,比Al 的2 727 K低,Mg首先蒸发烧损。烧损现象使得焊缝成型时的晶粒大小严重不均匀,从金属学角度讲,大晶粒的存在破坏合金元素的强化作用,导致焊缝的强度明显比母材低。

防止合金元素的烧损主要从控制合金成分入手,在保证铝合金质量和接头要求的前提下,降低Mg的含量,添加Mn、Si等元素。

四、铝合金激光焊接的工艺参数

铝激光焊接的工艺参数主要有: 功率密度、焊接速度、焦点位置、保护气体种类及流量等,它们直接决定着焊缝成形。

1.功率密度

激光的功率密度是决定焊缝熔深的最主要因素。当其他工艺参数保持不变时,随着功率密度的增大,焊缝深宽比增大。因为功率密度增大时,蒸汽压力能克服熔化成液态金属的表面张力和静压力而形成小孔,小孔有助于吸收光束能量——“小孔效应”。但是如果功率密度过大,使金属强烈汽化,严重烧损合金,焊缝成型组织的晶粒过大,焊缝的硬度和强度均下降。并且,大量的光致等离子体的冷却和屏蔽作用,使得熔深反而下降。

2.焊接速度

在其他工艺参数不变的情况下,熔深随焊速的增加而减小,焊接效率随焊速的增加而提高。但是速度过快,到达焊缝处的线能量密度较低,会使熔深达不到焊接要求;速度过慢,则线能量密度过高,母材过度熔化和烧损,降低接头性能,甚至引发热裂纹。因此,对一特定厚度的铝合金工件,选择确定激光功率密度之后,存在着既能维持合适的焊缝深宽比又不会使工件过热的最佳焊速,这可以从以往的生产实践中总结经验或者查阅相关文献获得。

3.焦点位置

研究表明,铝合金激光焊接的焦点位置与熔深的关系如图2所示。我们可以看出,熔深随焦点位置的变化有一个跳跃性变化过程:当焦点处于偏离工件表面较大(2 mm)时,工件表面光斑尺寸较大,因此光束能量密度较低,属于以热传

导为主的熔化焊,熔深较浅; 而当焦点靠近工件表面某一位置(2 mm)时,工件表面入射光束能量密度值增大到临界值,产生小孔效应,因此熔深发生跳跃性增加。经试验得到,当焦点位置在工件表面上方1 mm 处时焊缝熔深最大。

图2 焦点位置对焊缝熔深的影响

4.保护气

和电子束焊接相比,激光焊接不需要真空环境,但焊接铝合金需采用保护气体,其目的是抑制光致等离子体,并排除空气使焊缝免受污染。光致等离子体的形成不仅来自被离子化的金属母材蒸汽,而且和保护气体本身性质也有很大的关系。通过增加电子与离子和中性原子三体碰撞来增加电子的复合速率,以降低等离子体中的电子密度。中性原子越轻,碰撞频率越高,复合速率越高;另一方面,保护气体本身的电离能应该高,不致因气体本身的电离而增加电子密度。铝合金激光焊接传统上采用的保护气体主要有三种:Ar、N2、He。理论上He最轻且电离能最高,但是在较低功率、较高焊速下,由于等离子体很弱,不同保护气体差别很小。研究表明,在相同条件下,使用N2容易诱导小孔,主要是N2和Al 之间可发生放热反应,生成的Al-N-O 三元化合物对激光的吸收率要高一些,纯N2 会在焊缝中产生AlN 脆性相,同时易形成气孔。而采用惰性气体保护时,由于质轻而逸出,气孔形成机率小,因此采用混合气体保护效果较好。现在也有采用Ar-O2,N2-O2等气体进行铝合金激光焊接的研究越来越多。

五、先进的铝合金激光焊接技术 1.铝合金的激光-电弧复合焊

现在激光焊接铝合金还处于发展阶段,设备成本高、接头间隙允许度小、工件准备工序要求严等制约了纯激光焊接铝合金的应用。目前,激光-电弧复合焊在德国和日本等发达国家研究比较多,激光-电弧复合主要是激光与TIG电弧、MIG电弧及等离子体复合,分别如图3、4所示。这种工艺在汽车制造业中已有一定的应用,如德国大众汽车公司的Phaeton前门上就有48处激光-M IG焊道,而且还可以用来焊接车体及轮轴。铝合金激光-电弧复合焊很好地解决了激光焊接的功率、铝合金表面对激光束的吸收率以及深熔焊的阈值等问题。这是因为焊接铝合金时,激光与电弧的相互影响,可以克服单用激光或电弧焊方法自身的不足,产生良好的复合效应——两种热源同时作用在一个相同区域的叠加效应——高的能量密度导致了高的焊接速度,显著提高焊接效率。

图3 激光-TIG复合焊接铝合金原理图

图4 激光-MIG复合焊接铝合金原理图

2.铝合金的双光束激光焊接

单束激光焊接铝合金时,由于小孔的塌陷而容易产生气孔。李俐群[10]等学者研究表明,采用如图5所示的双光束焊接铝合金,焊缝成形美观、无飞溅或凹坑等缺陷,对焊接参数适应性更好;等离子体稳定性提高;气孔大大减少。这是因为采用双光束激光焊接时,第一束激光产生熔池,并对焊接区域附近进行预热积累热量。当第二束激光照射该处时,更多的母材能够熔化,从而使得形成焊缝更宽。同时,第二束激光能把第一束激光形成的小孔后壁气化,防止其塌陷,大大减小了形成气孔的几率。双光束激光焊接铝合金的技术已经在德国军用飞机EADS进气管的焊接上得到了应用。

图5 双光束激光焊接铝合金的原理图

3.铝合金激光填丝焊技术

在新兴的铝合金焊接技术中,搅拌摩擦焊需要针对被焊母材的形状和接口要求设计专用夹具,铝合金激光填丝技术则解决了对工件装夹、拼装要求严的问题,而且用较小功率激光器就能实现厚板窄焊道的多层焊。另外通过调节焊丝成分,改善焊缝区组织性能,对裂纹等缺陷更易控制,显著提高铝合金焊接稳定性与适应性。铝合金激光填丝焊示意图如图6所示。

图6 铝合金激光填丝焊示意图

六、铝合金激光焊接的前景展望

前面已经提到,日本和德国等发达国家已经开始将激光焊接铝合金应用于汽车制造业。由于铝合金具有高比强度、耐锈蚀、热稳定性好、易成形、再生性好和简化结构等一系列优点,在汽车业中倍受青睐。大量的对比研究和反复实践证明,选用铝合金材料是实现汽车轻量化的有效途径。减轻汽车重量以降低能耗、减少污染、提高燃油效率,这是解决汽车节能和环保问题的最有效的措施。而激光焊接技术效率高、热影响区小、能获得良好的接头质量。在铝合金颇受汽车业青睐的大环境下,激光焊接铝合金将会成为越来越成熟的工艺,并被推广至船舶制造行业和航空航天产业。其实,上文也已经提到过,欧洲的空中客车已经在使用激光焊接铝合金的技术部分取代传统的铆接技术。这种自动化程度极高、质量稳定的焊接方式甚至能够满足载人航天和可重复使用航天器对焊接结构的可靠性提出了更高的要求。我们可以预见,铝合金激光焊接技术在近几年将成为航天焊接研究领域工作者热点之一。

第二篇:张伟-铝合金车身的激光焊接工艺设计

铝合金车身的激光焊接工艺设计

前言

激光焊接的原理:

光子轰击金属外表形成蒸汽,蒸发的金属可防止剩余的金属被金属反射掉。如果被焊金属有良好的导热性能,那么会得到较大的熔深。激光在材料外表的反射、透射和吸收,本质上是光波的电磁场与材料相互作用的结果。激光光波入射材料时,材料中的带电粒子依着但矢量3的步调振动,使光子的辐射能变成了电子的动能。物质吸收激光后,首先产生的是某些质点的过量能量,束缚电子的激发能或者还有过量的声子。这些原始激发能经过一定过程再转化为热能。

激光的分类:

分为连续激光焊和脉冲激光焊。连续激光焊在焊接过程中形成一条连续的焊缝。脉冲激光焊接时,输入到工件上的能量是断续的,脉冲的,每个激光脉冲在焊接过程中形成一个圆形焊点。

激光焊接设备及技术参数:

激光焊接设备包括:激光器、光束传输和聚焦系统、气源、电源、工作台和控制系统

技术参数包括:激光波长、最大输出能量、重复率、脉冲宽度和激光工作物质尺寸

激光的应用:

在汽车车身制造方面的应用:

汽车车身是整个汽车零部件的载体,车身制造质量的优劣对整车质量起着决定性的作用。在汽车车身制造方面,激光焊接成为了一种固定的成形方法,适用于量体裁衣地制造半成品。世界一些著名汽车公司,如宝马、通用、福特、本田、丰田、菲亚特、雷诺、沃尔沃以及克莱斯勒公司等都广泛采用了激光拼焊工艺,而且所生产的轿车车身均由激光拼焊板冲压而成。在我国,武汉钢铁公司采用激光焊接技术进行汽车用超宽钢板的拼接。

激光拼焊是将2-3

块精确裁剪、物理化学性能、外表状态、厚度各不相同的板材拼焊在一起,然后再把这种半成品冲压成车身零件。采用激光拼焊工艺获得的焊缝质量优良,焊缝转接也较为平稳,使车身零部件的抗冲击性和抗疲劳性得到了显著改善。

总的说来,激光焊接技术在车身制造中的应用大大减少了结构件和零配件的数量,从而减轻了汽车质量;提高了车身的尺寸精度和耐腐蚀能力,增加了汽车结构的可靠性、稳定性和平安性;在改善车身质量的前提下,不仅减少了装配工作量,而且还减少了成型工具、冲压机的工装投资以及运输、储存金属材料的费用,节约了制造本钱。

铝合金激光焊接技术的研究现状及

5.1开展前景:

由于铝合金对激光的高反射和自身的高导热性,铝合金激光焊接对激光器的输出功率和光束质量要求很高。因此,铝合金激光焊接技术的开展必然与激光器的开展紧密联系在一起。大功率CO2

激光器光束质量的改善和短波长YAG激光器输出功率的提高将大大改善铝合金的激光焊接性

。采用双光束或多光束激光焊接技术通过扩大激光焊接小孔的开口,可以提高焊接过程中的稳定性,改善焊缝成型。

针对铝合金激光焊接过程的稳定性及焊缝质量的问题,当前,国际上铝合金激光焊接的研究热点是采用所谓的复合工艺,即将激光与电弧焊接结合起来。这种复合工艺早在20

世纪70

年代末就已经提出,但因为电弧的引入增加了焊接的热输入,从而必然使焊接热影响区和热变形增大。因此,“激光与电弧〞这种复合工艺在铝合金的焊接方面是否具有工业应用前景还需深入研究。

最近有人发现在CO2

激光熔池中存在幅度为几安培的固有电流,在焊接区施加一定的外磁场可以影响熔池的流动状态。因此,采用某种形式的外磁场有可能改善铝合金激光焊接过程的稳定性和焊缝质量。

另外,还有人采用辅助电流的铝合金激光焊接技术。即通过附加电极或通过填充焊丝向焊接熔池提供辅助电流,借助辅助电流在熔池中产生的电磁力控制熔池的流动状态,实现熔池中热量的重新分配,到达强化激光能量的有效利用率、提高加工效率之目的。同时利用辅助电流在焊接熔池中形成的磁流体效应使熔池**不定的运动变得有序和可控,从而改善焊接过程的稳定性,提高焊缝质量。通过试验证明,焊缝深度最高增加约32

%,面积增加约20

%,而焊缝宽度减少约28

%。这一技术很有可能在未来的铝合金激光焊接中起到重要作用。

激光焊接技术开展到今天,其逐步取代传统焊接方法的趋势已不可逆转。在21

世纪,激光焊接技术在材料领域必将起到至关重要的作用。当前,可持续开展战略已成为各国经济开展的重要战略,节能、环保已成为科研工作的两大主题。因此,铝合金成为航空、航天、汽车工业中一种非常有竞争力的材料,德国和日本等公司都已投入巨资进行激光焊接

铝合金的研究。

尽管铝合金激光焊接技术中的工艺还不十分成熟,但存在的问题是可以解决的。随着研究的深入,铝合金激光焊接的工艺参数将得到进一步优化。

5.2

铝合金焊接的特点

铝合金由于重量轻、比强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50

%以上。铝合金焊接有几大难点:

①铝合金焊接接头软化严重,强度系数低,这也是阻碍铝合金应用的最大障碍;

②铝合金外表易产生难熔的氧化膜(Al2O3

其熔点为2060

℃),这就需要采用大功率密度的焊接工艺;

③铝合金焊接容易产生气孔;

④铝合金焊接易产生热裂纹;

⑤线膨胀系数大,易产生焊接变形;

⑥率铝合金热导大(约为钢的4

倍),相同焊接速度下,热输入要比焊接钢材大2~4

倍。因此,铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效焊接方法。

5.3

铝合金的激光焊接

铝及铝合金激光焊接技术(Laser

Welding)

是近十几年来开展起来的一项新技术,与传统焊接工艺相比,它具有功能强、可靠性高、无需真空条件及效率高等特点。其功率密度大、热输入总量低、同等热输入量熔深大、热影响区小、焊接变形小、速度高、易于工业自动化等优点,特别对热处理铝合金有较大的应用优势。可提高加工速度并极大地降低热输入,从而可提高生产效率,改善焊接质量。在焊接高强度大厚度铝合金时,传统的焊接方法根本不可能单道焊透,而激光深熔焊时形成大深度的匙孔,发生匙孔效应,那么可以得到实现。激光焊接铝合金有以下优点:

①能量密度高,热输入低,热变形量小,熔化区和热影响区窄而熔深大;

②冷却速度高而得到微细焊缝组织,接头性能良好;

③与接触焊相比,激光焊不用电极,所以减少了工时和本钱;

④不需要电子束焊时的真空气氛,且保护气和压力可选择,被焊工件的形状不受电磁影响,不产生X

射线;

⑤可对密闭透明物体内部金属材料进行焊接;

⑥激光可用光导纤维进行远距离的传输,从而使工艺适应性好,配合计算机和机械手,可实现焊接过程的自动化与精密控制。

现在应用的激光器主要是CO2

和YAG

激光器,CO2

激光器功率大,对于要求大功率的厚板焊接比拟适合。但铝合金外表对CO2

激光束的吸收率比拟小,在焊接过程中造成大量的能量失。YAG激光一般功率比拟小,铝合金外表对YAG激光束的吸收率相对CO2激光较大,可用光导纤维传导,适应性强,工艺安排简单等。因此采用YAG激光器焊接。

在焊接大厚度铝合金时,传统的焊接方法根本不可能单道焊透,而激光深熔焊时形成大深度的匙孔,发生匙孔效应,那么可以得到实现。图1激光焊接时的小孔形状。图2为激光深熔焊示意图。

图1 激光焊接时的小孔

图2

激光深熔化焊

铝及铝合金的激光焊接难点在于铝及铝合金对辐射能的吸收很弱,对CO2

激光束(波长为10.6μm)

外表初始吸收率1.7

%;对YAG激光束(波长为1.06

μm)吸收率接近5%。图3

为不同金属对激光的吸吸收率小,热收率。由于导率高,在实际铝合金焊接过程中,一定要保证良好的光束聚焦,同时还要用高功率密度的高能激光束进行照射。铝合金激光焊接时,产生深熔焊,激光功率必须到达一个特定的阈值,这就对激光器提出一定的要求,也是激光焊接的一个难点。铝合金的电离能低,局部牌号焊接过程中光致等离子体易于过热和扩散,焊接稳定性差。焊接铝合金就一定要求激光束的能量密度高和光束的聚焦性能好。铝合金又是典型的共晶合金,在激光焊接的快速凝固过程中更容易产生热裂纹。激光焊接熔池深宽比大,气泡不易上浮析出,容易产生气孔。液态铝合金的流动性好,外表张力低,焊接过程的不稳定造成焊接熔池剧烈震荡,易产生咬边、成形不连续,严重时造成焊接过程中的小孔突然闭合而在焊缝中产生直径较大的工艺孔洞(Process

Holes),或小孔在闭合前由向外喷发的等离子体将液态金属吹出熔池而形成所谓的喷射孔洞。

图3 不同金属对激光的吸收率

5.4

YAG激光焊接

激光焊接是利用激光束优异的方向性和高功率密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。

常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。

l、激光焊接加工方法的特征

A、非接触加工,不需对工件加压和进行外表处理。

B、焊点小、能量密度高、适合于高速加工。

C、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、特种材料。

D、不需要填充金属、不需要真空环境〔可在空气中直接进行〕、不会像电子束那样在空气中产生X射线的危险。

E、与接触焊工艺相比.无电极、工具等的磨损消耗。

F、无加工噪音,对环境无污染。

G、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。

H、可通过光纤实现远距离、普通方法难以到达的部位、多路同时或分时焊接。

I、很容易改变激光输出焦距及焊点位置。

J、很容易搭载到自动机、机器人装置上。

K、对带绝缘层的导体可直接进行焊接,对性能相差较大的异种金属也可焊接。

焊接工艺:

1.缝材料的要求和钢-铝激光焊焊接材料的选择

1.1对焊缝材料的要求:

1.防锈性能稳定;2.较好的延展性;3.与钢材很好的润湿性;4钢材和焊缝材料有很好的连接性;5.铝材和焊缝材料有很好的可混性。

1.2

钢-铝激光焊焊接材料的选择

很多元素都与钢材有很好的润湿性,如Cu,Ni,Co,V,Ca,Ag,As和Au等,所以关键是看与铝材的润湿性。图1所示为与钢、铝有很好连接性的金属,从图中相交位置发现像Cr,Mn,Zn,Si和Ag这些金属与钢、铝的连接性都很好。对镀锌钢板和铝合金的连接,应最先考虑锌基的焊接材料。锌基合金可用来制作填丝,以得到很好的焊缝材料。

对锌铝合金而言,最好的材料性能可在ZnAl6~ZnAL22.3之间获得,对相近的ZnAl5而言,可得到富Al的α混合晶体,而ZnAl22可得到富Al的β混合晶体。由于连接时局部铝材会熔化,考虑将ZnAl2作为填丝,以

得到ZnAl6~ZnAl22.3之间的焊缝材料。

图4

钢、铝有很好连接性的金属

其他合金元素〔如Mg〕

可以提高锌铝合金的抗腐蚀性能,因此在合金中w〔Mg〕可为0.05%。Cu通过混合晶体的生成可以提高强度和蠕变特性,也对抗腐蚀性能有改善作用。w〔Ag〕1%~5%可以改善ZnAl合金的可变形性能。Bi能增加ZnAl合金的润湿性。在此将研究ZnAl,ZnAlAg,ZnAlBi,ZnAlCu,这些合金的性能和以它们作为焊丝得到的焊缝材料的性能。

2.钢-铝薄板激光焊接的过程

母材中镀锌钢板采用DX56D+Z,铝板采用AA6016〔〕或其改良的材料品种AC120PX,在T4状态下即未经过热处理的状态下的力学性能测试结果如图!所示。叠接构件尺寸如图4所示,其中钢板厚0.9mm,铝板厚1.1mm。

图5

钢板—铝板ZnAl5的力学性能

图6

钢板—铝板叠接的构件尺寸图

Zn基合金材料的性能测定

3.1

ZnAl合金的性能

各种ZnAl合金由Zn和Al混合而成,它们的维氏硬度及抗拉

强度、伸长率如图7,图8示所:

图7

ZnAl合金的硬度

图8

合金的抗拉强度和伸长率

3.2

ZnAl合金的力学性能

ZnAl2合金由ZnAl2熔化后参加Ag,Bi制成,其力学性能见表1

表1

合金的力学性能

3.3

ZnAl4合金的力学性能

ZnAl4合金由ZnAl4熔化后参加Cu制成,力学性能见表2

表2

ZnAl4合金的力学性能

3.4

ZnAl20合金的力学性能

ZnAl20合金由ZnAl20熔化后参加Ag,Bi制成,力学性能见表3

表3

ZnAl20合金的力学性能

4.ZnAl基合金焊缝材料的性能测定

4.1

ZnAl基合金焊缝材料的成分与性能

ZnAl基合金作为焊丝,激光焊接后形成的焊缝材料的成分、接头力学性能见表0。针对焊缝材料测出硬度,对整个焊接后的接头〔长230mm,宽200mm〕测出最大拉力和轴向拉伸变形。以下ZnAl2,ZnAl4,ZnAl20合金焊缝材料的力学性能测试与此相同

表4

ZnAl基合金焊缝材料的成分〔质量分数〕〔%〕及力学性能

4.2

ZnAl2基合金焊缝材料的成分与性能

ZnAl2基合金分别添加Ag,Bi作焊丝,激光焊接后形成的焊缝材料成分及接头力学性能见表5

表5

ZnAl2基合金焊缝材料的成分〔质量分数〕〔%〕及力学性能

4.3

ZnAl4基合金焊缝材料

ZnAl4基合金添加Cu作为焊丝,激光焊接后形成的焊缝材料的接头力学性能见表6

表6

ZnAl4基合金焊缝材料的力学性能

4.4

ZnAl20基合金焊缝材料

ZnAl20基合金添加Ag,Bi作焊丝,激光焊接后形成的焊缝材料成分及接头力学性能见表7

表7

ZnAl20基合金焊缝材料的成分〔质量分数〕〔%〕及力学性能

数据显示,ZnAl2作为焊丝,所得焊缝材料性能最正确,最大拉力为8.8KN,轴向伸长6.7

MM

〔1〕

锌铝2种金属的合金随铝含量增加,其强度增加,ZnAl20的塑性最好。Ag,Cu,Bi能增加锌铝合金的硬度。在ZnAl2合金中参加Ag能增加抗拉强度,而在ZnAl2合金中参加

Ag那么效果不明显。Cu的参加能提高合金的强度,但伸长率减小,塑性变差。在ZnAl2合金中Bi的参加对强度、塑性都不好。ZnAl2合金参加w〔Bi〕0.5%,对强度影响不大,但塑性大大减少。

〔2〕由锌铝合金作为焊丝,采用Nd:YAG激光束连接钢板和铝板〔叠接〕时,ZnAl2焊丝得到的焊缝材料抗拉强度和塑性最好。ZnAl4Cu作为焊丝所得的焊缝材料与ZnAl4的相比,强度、塑性都差不多,但硬度提高。参加Ag能使硬度加大,但降低了强度与塑性。Bi的参加一般能使硬度加大,但塑性大大降低。建议在本文情况下,采用ZnAl2作为焊丝,不用添加Ag,Cu,Bi。

表3为试验获得的力学性能试验数据,从表中可看出,焊缝和热影响区的硬度都比母材高,焊缝中心的硬度最高,随着两侧与焊缝中心的距离增大,硬度呈抛物线下降,至母材后趋于稳定。

表8试验获得的力学性能数据

焊缝断口微观形貌表现出明显的韧性断裂特征。断口部位呈现出许多尺寸不均匀的一次相,韧窝底部还有近似平行的条纹,这是由六方马氏体只有/个滑移系和其特定的晶体学关系决定的。

〔1〕Ti-6Al-4V合金热影响区的晶粒略有粗大,其焊缝组织是由粗大的原始β相转变而成的片状或长针状α相。

〔2〕Ti-6Al-4V合金焊接接头的抗拉强度比母材高,断口形貌表现为塑性断裂特征。

〔3〕Ti-6Al-4V合金焊接接头的硬度比母材略高,且由焊缝中心向母材过渡呈抛物线状下降。

5.焊接结构与焊缝组织:

图9

焊接部位

为提高铝及铝合金对激光的吸收率,进行了外表化学改性、外表镀层、外表涂层及复合激光焊等研究。将连续电弧与脉冲激光束复合,能够消除焊缝区的凝固裂纹.激光焊铝及铝合金质量控制系统采用多参数的线性回归方法预测铝及铝合金激光焊接时熔核直径、形状及喷溅情况。

研究各个工艺参数之间的关系以及它们对激光焊接质量的影响,找出焊接不同厚度的铝及铝合金的最正确工艺。

对铝合金激光焊接接头本身性能进行了研究。例如,铝合金进行了混合气和焊剂的激光焊的研究,使焊缝强度可到达母材的90%.焊接设备为Rofin

Sinar激光生产的YAG-DY044激光焊机,最大功率2.5KW。激光焊焊接参数见下表:

6.控制参数:

6.1

离焦量

离焦量指焦点偏离工件的距离,实质是改变辐射到工件外表的功率密度,但起作用不止如此。离焦的方式有两种:焦平面位于工件上方为正离焦,反之为负离焦。离焦量的大小,影响材料外表熔化斑点的直径及熔池的径深比。虽然正负离焦量大小相等时,工件外表的功率密度相等,但一般来说负离焦量时工件内部功率密度大于外表处,焦点处的高能量密度完全用于熔化母材,因此可获得更大的熔深,另外焦点位置小于零,工件与喷嘴端部较近,保护气

因流动路径的缩短而挺度增加,有利于进一步消除等离子体。为了增加熔深,焊接过程中一般都采用负离焦,由于不同的激光器光束质量不一样,焊接过程中对离焦量的要求也不一样。本文中采用300mm的焦距的铜镜,激光器光斑直径在焦点处仅有0.26mm,在焦点处的激光功率密度到达5.2

×106W/

cm2,添加电弧后由于在激光的引导下电弧能够到达激光小孔,焦点处的能量密度进一步提高。如果继续采用负离焦,焦点处的高能密度全部用来熔化母材,将会形成大量的金属蒸汽,喷射出的金属蒸汽能够吸收激光能量,造成等离子体屏蔽激光,使焊接过程不稳定,反而使熔深减少.激光功率为1.5kW,送丝速度为1.3m/

min

.6.2

焊接速度

提高焊接速度,虽然能够稳定激光小孔,但是热输入下降,焊缝熔深会有减少,而且焊接速度过大,熔滴过渡不稳定,容易引起熔池的不稳定;降低焊接速度可加大熔深,但假设焊接速度过低,熔深却不会增加,反而使熔宽增大,而且将会使焊接过程不稳定容易造成飞溅,因为复合焊维持小孔存在的主要动力是金属蒸汽的反冲压力。在焊接速度低到一定程度后,热输入增加,熔化金属越来越多,当金属蒸汽所产生的反冲压力缺乏以维持小孔的存在时,小孔不

仅不再加深,甚至会崩溃,因而熔深不会增大。所以,对一定激光功率和一定厚度的某特定材料都有一个适宜的焊接速度范围,并在其中相应速度值时可获得最大熔深。不同焊接速度下的等离子体形态可以看到:在焊接速度为1.2m/

Min

时熔滴过渡不是稳定的射滴过渡;

在焊接速度为0.8m/

Min

时,没有观察到小孔的存在,激光小孔由于不能够维持自身的平衡,发生坍塌。在焊接速度为1

时,熔滴过渡和激光小孔都很稳定。

焊接速度对复合焊熔深、熔宽以及深宽比的影响。激光功率为1.5kW,送丝速度为1.3m/min,离焦量为+

3mm,DL

A

为+

2mm。

6.3

激光倾斜角度

激光功率为1.5kW,送丝速度为1.3,离焦量为+2mm,DL

A

为+

2mm,焊接速度为1.2

m/

min。

采用激光倾斜一定角度可以防止反射回来的光损伤光镜,其次激光倾斜一定的角度可以减少等离子体对激光能量的吸收,从而可以提高激光能量的利用率,因为焊接过程中形成的等离子体一般上浮于焊缝外表,激光垂直入射等离子体对激光的吸收散射将比拟大,减弱激光的利用率;倾斜一定角度,激光穿透等离子层的深度就会减少。但是激光的倾斜角度又不能过大,过大的角度将会使激光直接作用在焊缝的熔融金属上,熔深反而会减少。

6.4

机器人姿态的控制

焊缝走向及位置为机器人姿态控制的难点,很容易造成机器人行走时的抖动,从而影响送丝的不稳定性,直接导致假焊、焊料堆积、缩孔和其它焊接缺陷。

这需要通过以下两方面的对策来加以解决。一是合理调节焊接工艺参数,主要是指送丝速度,需要根据实际情况,在不同的焊缝段适时加以调整。比方根据位置的送丝速度是不同的,在几个拐角处均需降低送丝速度以防止焊料堆积(焊缝突起)

;需加快送丝速度以使焊料充分铺展浸润至焊缝中,到达较好的连接效果。二是控制好机器人的行走姿态。必须反复调整机器人的姿态,使机器人平稳顺滑地行走。一般说来,在每个顶点处需设置三个编程点,以直线插值方式控制机器人的行走轨迹。另外,当机器人每一点的行走“精度圆(Genau)

〞设置为6mm时,可以使机器人行走得更加平稳。对于上下坡时的送丝速度,也需要进行适当增加或减小,以防止焊料堆积或浸润缺乏。同时,通过控制机器人的关节运动,来到达不同的倾角,以确定机器人的姿态。主要指机器人头部所带的ALO

聚焦镜头在三个方向上的角度,即前后倾角,侧向角度和扭转角度。这些角度主要影响了送丝的方向和焊丝熔化时的流向,因此可以明显地影响焊缝的成型并造成各种各样的焊接缺陷,如假焊或单边焊、缩孔、焊缝过度凹陷、焊料堆积等。在焊接过程中,需要根据焊接结果随时对机器人的姿态加以调整,来不断改善焊缝成型。

7.全自动激光焊接线主要工艺流程:拆垛→上料→夹紧定位→激光焊接→焊缝检测→打浅坑→堆垛。

8.激光焊接辅助设备--机器人应用技术:

机器人按照在焊装车间的用途可以分为:点焊机器人、弧焊机器人、涂胶机器人、螺柱焊机器人、装配及持件机器人和激光焊接机器人。

激光焊接机器人是由机器人操纵激光加工镜组,进行激光焊接,激光源可以采用CO2

激光器或者YAG

激光器,激光焊接设备非常复杂,要求机器人重复精度高。

图10

生产线三维布置图

9.铝合金激光焊接的工艺特性及难点

9.1光束反射及改善方法:

铝合金激光焊的难点之一就是铝合金对激光的高反射,国内外学者针对这一问题已作了大量试验研究。研究说明,进行适当的外表预处理如砂纸打磨、外表化学浸蚀、外表镀、石墨涂层、空气炉中氧化等可以降低光束反射,改善对光束能量的吸收。文献中作者经实验证明,3

mm

厚的外表形成氧化膜的A6063

铝合金,比1

mm

厚的外表光洁的A6063

铝合金的吸收率显著增大;C

A

Huntington

等人在文献中详细研究了铝在原始外表(铣、车加工后)、喷砂(300

目砂纸)、电解抛光和阳极氧化4种外表状况下对入射光束能量的吸收情况,得出结论:阳极氧化和喷砂处理可以显著地提高铝对光束能量的吸收。他们同时研究了接头坡口几何形状对光束吸收率的影响,指出:尖V

形坡口接头比无坡口或方坡口接头的吸收率要高得多。另外,有人从焊接结构设计方面考虑,通过合理设计焊接缝隙,也可以增加铝合金外表对激光能量的吸收(如图10所示)

。其原因是V

形坡口或采用图10结构相当于人工制孔,有利于小孔效应的形成,可获得较大的熔深。

图11

改变工件焊缝的几何形状

9.2小孔的“诱导〞及稳定性

小孔的“诱导〞及稳定性是铝合金激光焊接中的特有困难,这是由铝合金的材料特性和激光的光学特性造成的。由于铝合金对激光的高反射率和高导热性,要想诱导出小孔,就必须有更高的能量密度阈值。有研究说明,能量密度阈值的上下要受其合金成分的控制及保护气体种类的影响。有专家学者做了YAG激光焊接5083

铝合金的试验。试验说明,热输入影响焊接过程的稳定性,当激光功率密度处于小孔形成的临界条件附近时,深熔焊与传热焊交替进行,焊接过程稳定性差。可以在保证起弧功率密度前提下,采取一定的措施,通过控制工艺参数来减少热输入,有助于获得稳定的焊接过程;

另外,保护气体也影响焊接过程的稳定性,采取适宜比例和成分的混合保护气体并控制流量,能很好地维持稳定的焊接过程。

10.焊接缺陷及质量控制措施

铝合金激光焊接的主要缺陷之一是气孔问题,气孔问题至今仍然是一个不解之谜。一般认为:激光焊接在冷却过程中氢的溶解度急剧下降形成氢气孔;低熔点、高蒸气压合金元素蒸发导致气孔;激光束引起熔池金属波动匙孔不稳定,熔池金属紊流导致气孔生成。气孔的存在,会导致焊缝的力学性能和气密性下降。有研究说明,材料外表态、保护气体种类、流量及保护方法、焊接参数和焊缝形状都影响气孔的产生,选择适宜的外表处理措施,加强保护和采用高功率、高速度、大离焦量(负值)

焊接时可以使气孔的产生降低到最少。热裂纹也是铝合金激光焊接时最常见的缺陷主要是焊缝结晶裂纹和HAZ

液化裂纹。铝合金激光

焊接产生的结晶裂纹是由于焊缝金属结晶时在柱状晶边界形成Al2Si

或Mg2Si、Al2Mg2

Si

等低熔点共晶导致的。激光焊接时,焊缝细,HAZ

窄,特别是脉冲激光焊接,总输入能量低,冷却速度快,液化裂纹不易产生。防止热裂纹的产生是铝合金激光焊接的关键技术之一,国内外学者在这一方面进行了大量研究工作。研究说明,调整焊缝金属成分,填加Si,对减少裂纹有一定好处;填充材料的采用也可有效地防止焊接热裂纹,提高接头强度;此外,在脉冲点焊时,调节脉冲波形,控制热输入同样可以减少结晶裂纹,如图11所示,采用此波形,使焊缝熔化凝固重复进行,以降低熔池凝固时的凝固速度。

图12

减少裂纹的脉冲波形

11.检测方法及内容

焊接过程稳定性的检测

焊接过程稳定性的实时检测是最早开始的激光焊接质量监测内容。包括对焊接模式变化、焊接过程的扰动变化检测等,一般仅能简单判断焊接质量的“

好〞与“

坏〞。其根本原理是:给定正常焊接信号的参考值%一般为信号时域幅值,也有利用信号频域特性如功率谱作为参考值,在焊接过程中实时估计检测信号与给定值之间的偏差,当偏差超出一定范围时即认为焊接过程或焊缝质量发生了变化,此时容易出现焊接缺陷!

装配质量的检测

对装配质量实时检测方法可分为两类。一是在激光与材料作用前在线检测焊缝,一般采用机器视觉获取焊缝二维或三维图像,通过图像处理提取焊缝间隙、错变量以及焊缝中心位置等信息,进一步实时调整工艺参数和焊接头相对位置,以对焊接质量进行实时控制;二是在激光与材料相互作用时采集焊接过程中有关信号,通过一定的信号分析手段判断焊接发生时是否存在间隙、错变以及光束与焊缝不对中等引起的质量问题,这种检测方法一般不能用于焊接过程的实时控制。对焊接过程中的紫外信号置于不同角度和路红外信号进行检测与分析,并可通过模糊逻辑实现对光束与焊缝不对中问题的识别。

离焦量的检测

对焊接过程中离焦量的在线检测主要有两种方法:一种是利用喷嘴作为传感器检测在喷嘴上的等离子体电荷信号,通过电荷信号随离焦量的变化规律实现离焦量的在线检测与闭环控制,这种方法有效的前提条件是焊接喷嘴与工件的距离唯一决定了离焦量的大小,但大多数情况下这种前提并不成立;另一种方法是通过光电传感器检测焊接过程中的光信号,在不同离焦量下分析光信号的变化特性,从而实现焦点位置的实时检测与控制,在两个位置对焊接过程中的等离子体光辐射信号进行了同步检测,分析发现等离子体光信号随离焦量的变化规律。

焊缝熔深的检测

焊缝熔深是激光深熔焊的重要质量指标,对它实时检测的研究可分为两类。一类是针对穿透激光深熔焊进行的,通过检测焊接过程的各种信号实现熔透状态的检测与识别,这方面的大多数研究仅能够对未熔透和完全熔透两种熔透状态进行识别或是对熔深的稳定性进行实时监测,也有少数学者对熔透状态作了进一步的细化分类并对其实时监测技术进行了研究。

熔池与小孔的监测

焊缝质量从根本上是由熔池与小孔决定的,然而在激光深熔焊过程中由于存在强烈等离子体弧光的干扰,对直接观察熔池与小孔的状态造成了极大的障碍。随着近年来机器视觉技术的不断进步,为激光焊接熔池与小孔行为的直接观测提供了可能。

焊缝外表形貌的检测

焊缝外表形貌的检测主要指焊缝堆高和下凹的检测。焊缝都不同程度的存在一定尺寸的堆高或下凹。堆高易造成咬边,焊件在服役过程中该处容易形成应力集中而失效;而下凹除了容易形成应力集中外,还会导致强度下降。因此,投入使用的激光焊件的焊缝堆高和下凹程度都必须在一定范围内。

其他焊接缺陷的检测

对于焊接深熔过程中的其他缺陷,如气孔,也有少数学者对其在线检测技术进行了研究。通过检测对焊过程的超声波信号,对气孔缺陷的识别技术进行了一定程度的研究通过采集脉冲激光点焊的熔池红外辐射信号,并结合数字模拟,对焊缝热影响区的大小进行非破坏性测量。

[1]谢兴华.激光加工技术在汽车工业生产中的应用[J].激光集锦,1997,(3):1-3.[2]

骆红,胡伦骥,黄树槐,等.铝合金的激光焊接[J].激光技术,1998,22(2):94-97.[3]

朱宏,金忠华.铝及铝合金激光焊接技术的研究现状[J].电子工艺技术,1997,18(4):129-132.[4]樊丁,余淑荣,张建斌,等.激光焊接开展现状及动向[J].甘肃工业大学学报,2003,19(1):15-18

[5]关正中编.激光加工手册,中国计量出版社.109-116

第三篇:珠宝首饰贸易的激光焊接技术

很多珠宝商认为,这是不可能修复或调整,如不锈钢或钛金属制成的珠宝首饰。嗯,这是很难找人修理他们,但用大桥焊丝激光焊接机的工作很容易。

珠宝商在调整环有软宝石,如珊瑚,珍珠,蛋白石和许多其他的问题,是热,他们将被立即销毁从一个珠宝商的火炬。钻石,红宝石,蓝宝石,可以有一个珠宝商的火炬其实摸他们,他们不会打破。当然这总是尽量避免使用。但许多其他的石头,甚至是祖母绿,必须从环中删除,从火炬的热量可以用于焊接两部分。

这提出了进一步的问题时,石头已经挡板集。挡板的设置涉及被迫在石头推擦超过金属。这是一个单向的行动,你不能奖的金属背面,取出结石,购买后焊接已完成,取代石头和金属挡板再次推。这种金属现在毁了。

那么,如果你能留在原地的石头和切割环,然后取出一块更小的尺寸,然后焊接到一起再次使环?好吧,那只是完美,你几乎可以做激光技术。

用激光焊接机,目前售价在$30,000和$50,000之间,你可以留在原地的石头,并调整大小,然后焊接或两件融合在一起。成功,这是可以做的原因是因为激光只点点的热量。可以握在你的手环和激光焊接在一起。

激光器可用于各类金属不锈钢,钛,铂,银,金。激光焊接实际上是一个融合的两个金属部分,所以没有焊接或凌乱通量。焊接是最好的焊点强三倍。

小块可高达0.2毫米的小焊接在一起,这就是小。最白金镀铑给它白色的外观,光泽,但是当它被修复,它有镀铑再次与激光技术,但不作为的焊缝是一个非常本地化的。

对于我来说焊料2环一起并排双带将大约需要20分钟时间做焊接,我做了一些准备工作。然后我需要在一种酸浴离开它,然后去酸浴和各种其他程序,把它清理干净,所以采取了很多时间。激光焊接两件一起可能需要三,四分钟,有没有后续治疗。

本文出自:http:///shownews.asp?id=235

第四篇:水下激光焊接技术的应用

水下激光焊接技术的应用

海洋工程结构因常年在海上工作,其工作环境极为恶劣,除受到结构的工作载荷外,还要承受风暴、波浪、潮流引起的附加载荷以及海水腐蚀、砂流的磨蚀、地震或寒冷地区冰流的侵袭。此外,石油天然气的易燃易爆性对结构也存在威胁。而且海洋结构的主要部分在水下,服役后焊接接头的检查和修补很困难,费用也高,一旦发生重大结构损伤或倾覆事故,将造成生命财产的严重损失。所以对海洋工程结构的设计制造、材料选择以及焊接施工等都有严格的质量要求。而随着海洋石油和天然气工业的发展,海洋管道工程日益向深海挺进,我国作为一个发展中的沿海大国,国民经济要持续发展,就必须把海洋的开发和保护作为一项长期的战略任务。大量的海底管道施工工程对水下焊接技术提出了新的要求。

水下焊接由于水的存在,使焊接过程变得更加复杂,并且会出现各种各样陆地焊接所未遇到的问题,目前,世界各国正在应用和研究的水下焊接方法种类繁多,应用较成熟的是电弧焊。随着水下焊接技术的发展,除了常用的湿法水下焊接、局部干法水下焊接和干法水下焊接以外,又出现了一些新的水下焊接方法。但是,从各国海洋开发的前景来看,水下焊接的研究远远不能适应形势发展的需要。因此,加强这方面的研究,无论是对现在或将来,都将是一项非常有意义的工作。

湿法水下焊接

湿法焊接中,水下焊接的基本问题表现最为突出。因此采用这类方法难以得到质量好的焊接接头,尤其在重要的应用场合,湿法焊接的质量难以令人满意。但由于湿法水下焊接具有设备简单、成本低廉、操作灵活、适应性强等优点。所以,近年来各国对这种方法仍在继续进行研究,特别是涂药焊条和手工电弧焊,在今后一段时期还会得到进一步的应用。在焊条方面,比较先进的有英国Hydroweld公司发展的Hydroweld FS水下焊条,美国的专利水下焊条7018’S 焊条,以及德国Hanover大学基于渣气联合保护对熔滴过渡的影响和保护机理所开发的双层自保护药芯焊条。美国的Stephen Liu等人在焊条药皮中加入锰、钛、硼和稀土元素,改善了焊接过程中的焊接性能,细化了焊缝微观组织。水下焊条的发展促进了湿法水下焊接技术的应用。目前,在国、内外都有采用水下湿法焊条电弧焊技术进行水下焊接施工的范例。

药芯焊丝的出现和发展适应了焊接生产向高效率、低成本、高质量、自动化和智能化方向发展的趋势。英国TWI与乌克兰巴顿研究所成功开发了一套水下湿法药芯焊丝焊接的送丝结构、控制系统及其焊接工艺。华南理工大学机电工程系刘桑、钟继光等人开发了一种药芯焊丝微型排水罩水下焊接方法,从实用经济的角度出发,完全依靠焊接时自身所产生的气体以及水汽化产生的水蒸气排开水而形成一个稳定的局部无水区域,使得电弧能在其中稳定的燃烧。微型排水罩的尺寸和结构决定了焊接过程中无水区(局部排水区)的大小和稳定程度。除此之外,他们还通过复合滤光技术和水下CCD摄像系统,采集出了药芯焊丝水下焊接电弧区域图像,从而为水下湿法焊接电弧的机理分析及水下焊接过程控制奠定了基础。

20081182069光信0802林裕

第五篇:铝合金焊接缺陷

上海承久金属制品有限公司关于铝合金焊接缺陷分析

1.铝合金焊接缺陷的种类?

铝及其铝合金MIG焊时,罕见的焊接缺陷可分为外部缺陷和内部缺陷两大类 外部缺陷位于焊缝外表面,罕见的有表面气孔、裂纹、咬边、未焊透和烧穿等;

内部缺陷位于焊缝的内部,需要用破坏性试验或无损探伤等方法才干发现,如内部气孔、裂纹、夹渣及未熔合等。

2.铝合金MIG焊焊接缺陷发生的原因

1气孔 焊接时熔池中的气孔在凝固时未能逸出而留下来所形成的空穴称为气孔。

MIG焊接过程中,气孔是不可防止的只能尽量减少它存在培训的过程中,仰角焊、立向上焊气孔傾向尤为明显,根据DIN30042规范规定,单个气孔的直径最大不能超过0.25(为板厚)密集气 孔的单个直径最大不超过0.25+0.01(为板厚)氢是铝及铝合金熔化焊产生气孔的主要原因。氮不溶于液态铝,铝又不含碳,因此铝合金中不会发生氮气孔和一氧化碳气孔;氧和铝有很大的亲和力,总是以氧化铝的形式存在所以也不会发生氧气孔;氢在高温时大量的溶于液态铝,但几乎不溶于固态铝,所以在凝固点溶于液体中的氢几乎全部析出,形成气泡。但铝和铝合金的比重轻,气泡在熔池中的上升的速度较慢,加上铝的导热能力强凝固,有利于气泡的浮出,故铝和铝合金易产生气孔,氢气孔在焊缝内部一般呈白亮光洁状。氢的来源比较多,主要来自弧柱气氛中的水、焊丝以及母材所吸附水分对焊缝气孔的发生经常占有突出的地位。一:防止措施

1厂房环境湿度>70% 及空气的对流

空气中的湿度影响弧柱气氛。MIG焊接时,焊是以细小熔滴形式通过弧柱而落入熔池的由于弧柱温度最高,熔滴比外表积很大,故有利于熔滴金属吸收氢,发生气

孔的倾向也更大些。弧柱中的氢之所以能够形成气,与它铝合金中的溶解度变化有。如前段所说,凝固点时氢的溶解度从0.69突降到0.036ml/100g相差约20倍(钢

中只相差不到2倍)这是氢容易使焊缝产生气孔的重要原因之一。控制了弧柱气氛中的水分后,母材和焊丝所带的氧化膜所吸附的水分成为生成焊缝气孔的主要原因

另外,维护气体流量缺乏或过量也会引起气孔的呈现。维护气体流量缺乏不能排除弧柱气氛中的空气,空气中的水分将分解成氢进入熔池中发生氢气孔;反之维护气体流量过

大又会将空气卷入弧柱区和熔池,同样会使焊缝气孔趋势增。提前送气和焊后延时送气的时间设置对焊接接头气孔的发生也有很大关系。2.母材的清洁

母材外表通常会有少量油脂、灰尘等杂。通过经焊前母材清理和未经清理的焊缝对,清理过的焊缝气孔明显少于未经清理的焊缝气孔。因此如果焊前没有仔细清理母材表面,发生气孔的倾向将加大。二夹渣:

焊后残留在焊缝中的熔渣称为夹渣。夹渣会降低焊接接头的塑性韧性,还会引起应力集中,根据DIN30042规范规定,夹渣是绝对不允许存在通过培训,得出这样一个结论,夹渣大多出现在厚板多层焊,比方T10BWPCT10BWPF位置试板焊接,夹渣是其主要的缺陷。发生夹渣的原因主要是焊接之前没有对前一道焊缝进行仔细的清理,焊层或焊道中仍存在熔渣或氧化物,焊接时用高的行走速度的时候,熔池金属和熔渣得到热量缺乏,熔池冷却速度过快,使得熔渣来不及上浮就已经凝固,焊缝中形成夹渣。另外焊丝过长和焊嘴角度过大致使维护气体效果降低也会引起夹渣。

相关内容

热门阅读

最新更新

随机推荐