第一篇:电火花线切割加工的表面粗糙度及其主要影响因素
电火花线切割加工的表面粗糙度及其主要影响因素
2010-03-27
电火花线切割加工是通过放电能量的热效应使工件材料熔化、蒸发以达到尺寸加工的目标。因为线切割的工作液具有介电功能,所以在加工过程中还伴有一定的电解效应。切割时的热效应和电解效应使加工表面产生变质层,以致电火花线切割加工的模具发生早期损耗,缩短了模具的使用年限。
表面形貌
电火花线切割的加工表面从宏观上看是带有切割条纹的,但又无机械切削那样明显切痕的表面。切割条纹的深度和条纹之间的宽窄主要与放电能量、电极丝的走丝方式、张力和振动的大小以及工作液、机床精度、进给方式和进给速度等因素有关。高速走丝的条纹一般较低速走丝的条纹明显,使用乳化油的水溶液还容易形成黑白相间的条纹。
从微观来看,加工表面是由许多放电痕重叠而成。因为在加工中每次脉冲放电都在工件表面形成一个放电痕,连续放电使放电痕相互重叠就形成了无明显切痕的表面。放电痕的深度和直径主要决定于单个脉冲放电能量和脉冲参数。
表面变质层
电火花线切割表面变质层与工件材料、工作液和脉冲参数有关。
1、金相组织及元素成分:由于火化放电的热作用使材料急剧加热熔化,放电停止后立即在工作液的冲洗下急剧冷却,因此工件表面层的金相组织发生了明显的变化,形成不连续的、厚薄不均匀的变质层,通常称为白层。金相分析认为该层残留了大量的奥氏体。在使用钼丝电极丝和含碳工作液时,光谱分析和电子探针分析表明,在白层内,钼和碳的含量大幅度增高;而使用铜电极丝和去离子水的工作液时,发现变质层内铜的含量增加,但无渗碳现象。
2、显微硬度:由于变质层金相组织和元素含量的变化,使显微硬度明显下 降。图1-1是在煤油中进行电火花成形加工和在去离子水中进行电火花线切割加工后,表面层和内侧硬度分布情况的比较。由此可见,在距表面十几微米的深度内出现了线切割的软化层。
3、变质层厚度:这里所说的变质层厚度是指白层的厚度。由于放电的随机 性,在相同加工条件下,白层的厚度明显不均匀。
4、显微裂纹和应力:电火花线切割加工表面的变质层,一般存在拉应力,甚至出现显微裂纹。在加工硬质合金时,在一般的电参数条件下,更加容易出现裂纹,并存在空洞,这是要注意的。
对于电火花线切割加工表面的缺陷,可采用多次切割的方法,尽量减少其缺陷,对要求高的工件,可采用各种措施,抛除变质层。
第二篇:影响机械加工表面粗糙度的几个因素及措施[定稿]
职教类
影响机械加工表面粗糙度的几个因素及措施
摘要:表面粗糙度是零件表面所具有的微小峰谷的不平程度,它是评价零件的一项重要指标。一般说来,它的波距和波高都比较小,是一种微观的几何形状误差。对机械加工表面,表面粗糙度是由切削时的刀痕,刀具和加工表面之间的摩擦,切削时的塑性变形,以及工艺系统中的高频振动等原因所造成的。表面粗糙度是检验零件质量的主要依据,它的选择直接关系到生产成本、产品的质量、使用寿命。
关键词:机械加工
表面粗糙度
提高措施
随着工业技术的飞速发展,机器的使用要求越来越高,一些重要零件在高压力、高速、高温等高要求条件下工作,表面层的任何缺陷,不仅直接影响零件的工作性能,而且还可能引起应力集中、应力腐蚀等现象,将进一步加速零件的失效,这一切都与加工表面质量有很大关系。因而表面质量问题越来越受到各方面的重视。
一、机械加工表面粗糙度对零件使用性能的影响
表面粗糙度对零件的配合精度,疲劳强度、抗腐蚀性,摩擦磨损等使用性能都有很大的影响。
1、表面质量对零件配合精度的影响
(1)对间隙配合的影响
由于零件表面的凹凸不平,两接触表面总有一些凸峰相接触。表面粗糙度
过大,则零件相对运动过程中,接触表面会很快磨损,从而使间隙增大,引起配合性质改变,影响配合的稳定性。特别是在零件尺寸和公差小的情况下,此影响更为明显。
(2)对过盈配合的影响
粗糙表面在装配压入过程中,会将相接触的峰顶挤平,减少实际有效过盈量,降低了配合的连接强度。
2、表面质量对疲劳强度的影响
零件表面越粗糙,则表面上的凹痕就越深明,产生的应力集中现象就越严重。当零件受到交变载荷的作用时,疲劳强度会降低,零件疲劳损坏的可能性增大。
3、表面质量对零件抗腐蚀性的影响
零件表面越粗糙,则积聚在零件表面的腐蚀气体或液体也越多,且通过表面的微观凹谷向零件表层渗透,形成表面锈蚀。
4、表面质量对零件摩擦磨损的影响
两接触表面作相对运动时,表面越粗糙,摩擦系数越大,摩擦阻力越大,因摩擦消耗的能量也越大,并且还影响零件相对运动的灵活性。此外,表面越粗糙,两配合表面的实际有效接触面积越小,单位面积压力越大,更易磨损。
此外,表面粗糙度还影响零件的接触刚度、密封性能、产品的美观和表面涂层的质量等。因此,提高产品的质量和寿命应选取合理的表面粗糙度。
二、影响表面粗糙度的因素及措施
1、切削加工影响表面粗糙度的因素
在加工表面留下了切削层残留面积,其形状是刀具几何形状的复映。减小
进给量vf、主偏角、副偏角以及增大刀尖圆弧半径,均可减小残留面积的高度。此外,适当增大刀具的前角以减小切削时的塑性变形程度。合理选择润滑液和提高刀具刃磨质量以减小切削时的塑性变形和抑制刀瘤、鳞刺的生成,也是减小表面粗糙度值的有效措施。
2、工件材料的性质
加工塑性材料时,由于刀具对金属的挤压产生了塑性变形,加之刀具迫使切屑与工件分离的撕裂作用,使表面粗糙度值加大。加工脆性材料时,其切屑呈碎粒状,由于切屑的崩碎而在加工表面留下许多麻点,使表面粗糙度值加大。
3、切削用量
(1)进给量ƒ影响
采用较小的进给量ƒ,加工表面残留面积高度较小,对减小粗糙度Ra值有利。
(2)切削速度υ的影响
切削塑性材料,当切削速度υ小于5 m/min或大于100 m/min时,不易产生积屑瘤,对减小粗糙度Ra值有利。当切削速度υ在20--25 m/min,且切削温度约为300ºC时,切屑与刀具前刀面摩擦系数最大,此时积屑瘤高度最大,使粗糙度Ra值增加。
(3)切削深度αp影响
切削深度αp比进给量ƒ和切削速度υ对粗糙度Ra值的影响要小。当αp减小时,切削力减小,不易产生振动,对减小粗糙度Ra值有利。
4、磨削加工影响表面粗糙度的因素
像切削加工时表面粗糙度的形成过程一样,磨削加工表面粗糙度的形成也
是由几何因素和表面金属的塑性变形来决定的。影响磨削表面粗糙的主要因素有:(1)砂轮的粒度;(2)砂轮的硬度;(3)砂轮的修整;(4)磨削速度;(5)磨削径向进给量与光磨次数;(6)工件圆周进给速度与轴向进给量;(7)冷却润滑液。
三、提高表面粗糙度的措施
1、减小切削加工表面粗糙度的措施
(1)刀具方面:在工艺系统刚度足够时,采用较大的刀尖圆弧半径re,较小副偏角k'r,使用长度比进给量稍大一些的k'r=0的修光刃;采用较大的前角r。加工塑性的材料,提高刀具的刃磨质量,减小刀具前、后刀面的粗糙度数值,使其不大于Ra1.25μm;选用与工件亲和力小的刀具材料;对刀具进行氧、氮化处理;限制副刀刃上的磨损量;选用细颗粒的硬质合金做刀具等。
(2)工件方面:应有适宜的金相组织(低碳钢、低合金钢中应有铁素体加低碳马氏体、索氏体或片状珠光体,高碳钢、高合金钢中应有粒状珠光体);加工中碳钢及中碳合金钢时若采用较高切削速度,应为粒状珠光体;若采用较低切削速度,应为片状珠光体组织。合金元素中碳化物的分布要细匀;易切钢中应含有硫铅等元素;对工件进行调质处理,提高硬度,降低塑性;减小铸铁中石墨的颗粒尺寸等。
(3)切削条件方面:以较高的切削速度切削塑性材料;减小进给量;采用高效切削液;提高机床的运动精度,增强工艺系统刚度;采用超声波振动切削加工等。
2、减小磨削加工表面粗糙度参数值的措施
(1)砂轮特性方面:采用细粒度砂轮;提高磨粒切削刃的等高性;根据工件材料、磨料等选择适宜的砂轮硬度;选择与工件材料亲和力小的磨料;采用适宜的弹性结合剂的砂轮,采用直径较大的砂轮;增大砂轮的宽度等。
(2)砂轮修整方面:金刚石的耐磨性、刃口形状、安装角度应满足一定要求;选择适当的修整用量。
(3)磨削条件方面:提高砂轮速度或降低工作速度,使V砂/V工的比值增大;采用较小的纵向进给量、磨削深度,最后进行无进给光磨。正确选用切削液的种类、浓度比、压力、流量和清洁度等;提高砂轮的平衡精度;提高主轴的回转精度、工作台运动的平衡性及整个工艺系统的刚度。
四、结 论
由于机械加工表面对机器零件的使用性能如耐磨性、接触刚度、疲劳强度、配合性质、抗腐蚀性能及精度的稳定性等有很大的影响,因此对机器零件的重要表面应提出一定的表面粗糙度要求。由于影响表面粗糙度的因素是多方面的,因此应该综合考虑各方面的因素,对表面粗糙度根据需要提出比较经济适用的要求。
第三篇:铝合金的电火花线切割加工工艺
防锈铝合金的电火花线切割加工工艺
防锈铝合金的电火花线切割加工工艺
摘要:电火花线切割加工防锈铝合金时,电极丝极易粘附氧化铝,馈电块磨损及腐蚀特别严重,影响加工零件的表面粗糙度及加工的稳定性和精度。探讨了有效控制馈电块磨损及腐蚀、提高加工效率与质量的措施和方法。
关键词:线切割加工;防锈铝合金;电极丝;馈电块
由于防锈铝合金具有特殊的理化性能,故在电火花线切割加工时存在着较多的问题。如:电蚀物(即氧化铝)易粘附在电极丝上;电蚀物颗粒较大,加工间隙易堵塞等。加工时间长,电极丝上粘附的氧化铝(AL2O3)越多,而氧化铝的导电性能极差,此时将影响电极丝的放电性能,并使馈电块加速磨损。另外,在切割防锈铝合金时,还可发现电极丝与馈电块间时有火花产生。针对上述问题,现从几个方面来探讨减轻馈电块腐蚀、改善加工表面粗糙度、提高加工稳定性和精度的措施。加工屑粘附到电极丝上的原因分析
(1)脉冲电源参数搭配不当
电火花线切割加工时,间隙击穿后的初期主要为火花放电,其蚀除过程主要以汽化蒸发的形式进行。随着时间的延长,放电形式便从火花放电转为过渡电弧放电,此时的蚀除过程主要是通过热作用和放电柱对放电痕产生的压力来进行。放电柱对放电痕产生的压力越高,其熔融物抛出的速度就越高,在冷却介质中形成的球状加工屑的直径就越小。计算表明,放电点的压力P与放电峰值电流Im成正比,与放电时间T成反比。当Im确定后,P随时着T的增加而减少,从而使加工屑的直径及体积变大,导致加工屑的热惯性增大即不易冷却。因此,较宽的脉冲宽度易产生较大的加工屑,并易粘附到电极丝上。
如脉冲宽度较窄但间隔过小的话也会产生较大的加工屑。这是因为脉冲间隔过小会造成消电离不充分,此时很可能出现某个通道处连续多次的放电。由于该处每次击穿前的绝缘强度不断降低,故通道直径就可能变大,相应的电流密度就会变小,结果造成放电柱对放电痕的压力下降,从而产生较大的加工屑。由于氧化铝与钼丝的亲合作用较强,故电极丝上极易粘附这些较大的加工屑。
(2)放电间隙的冷却状况差
在相同脉冲参数条件下,加工厚工件要比加工薄工件易产生烧伤点。其原因是工件厚度的增加会导致间隙冷却状况不良,最恶劣的间隙状况在电极丝的出口处。该区域冷却液少、气体多,还有大量的加工屑要排出,因而间隙绝缘强度很差,大量的放电几乎都是在气体中进行。此时的放电柱直径要比液体中大得多,其电流密度相应减小,对放电痕的压力下降,结果产生较大的加工屑。在冷却条件差的情况下,这些较大的加工屑有可能呈熔融或半熔融状态,当它们撞击到电极丝上就有可能粘附上去。另外,由于电极丝的出口处加工屑多,易产生频繁的二次放电,在冷却条件差的时候电极丝的温度就会升高,这也增加了粘附加工屑的可能性。
加工屑粘附到电极丝上后,会出现以下问题:①加工不稳定;②加工间隙易堵塞;③短路、断丝;④工件表面粗糙度值高;⑤馈电块磨损加剧;等等。加工屑粘附到电极丝上的解决措施
解决加工屑粘附到电极丝上的问题,可从改善间隙冷却条件和放电柱对放电点施加的压力来着手,可采取以下措施:
(1)工作液的选择及防护
目前常采用DX-1乳化液的水溶液作为线切割加工工作液,常规比例是1:10(乳化液1份,水10份),而加工防锈铝合金时宜彩用3:8的比例。为了保持工作液的清洁,使其正常有效地工作,并延长工作液的使用期,可将一块5mm厚的海绵(其大小根据工件而定),置于工作台面两夹具之间。这样可避免残屑流入水箱,保持工作液的畅通,减少电极丝上加工屑的粘附。另在上线架后端槽中加一块海绵,高速往返的电极丝经海绵摩擦,可去掉一部分粘附的氧化物,同时减少钼丝抖动,更好地保证放电通道的畅通,确保脉冲电源效率的正常发挥,同时也减少对馈电块的磨损。对海绵垫要进行定期的清洗或更换,电极丝、馈电块和导轮也要定期用煤油或汽油在空运行时进行清洗,清洗时将回水管拿出水箱,避免残屑流入工作液中。
(2)检查工作液的流量
线切割加工时,工作液的上下喷水量应均匀,以便及时把蚀除物排除。加工前首先打开油泵电机,检查上下喷嘴是否堵塞、工作液是否充分畅通。如工作液不畅通就要检查原因,如出水管、上下喷嘴旋转方向等,直到水流正常为止。
(3)改进馈电块
为了延长馈电块的寿命、降低成本、提高生产率,可对馈电块进行改进。馈电块是在导电块上焊一块厚3mm、¢15mm的硬质合金块。
馈电块一般是固定的或不可调的。实践中,对馈电块进行了改进。采取的主要措施有:①变固定的馈电块成活动的馈电块:适当减小硬质合金的公差尺寸,使导电块与硬质合金的双边间隙为0.10~0.20mm(间隙配合),将硬质合金块置于铜套里面,按要求的配合尺寸不需焊接,变固定的馈电块成活动的馈电块,持续切割50~70h,将硬质合金旋转一个方向后继续使用;②适当增加硬质合金的厚度:硬质合金¢15mm的大小是不变的(成形),但可将厚度增加0.2mm。既可使电极丝与馈电块接触良好,又不会使馈电块失去弹性,还可减少馈电块上下的跳动距离,使馈电块的磨损减小。
实际加工表明,改进后的馈电块可持续切割防锈铝合金3个月,寿命提高8~10倍,降低了加工成本,提高了经济效益。
(4)优化电火花加工参数 提高脉冲电源的空载电压幅值,减少加工屑粘附到钼丝上的可能性;选择适当的脉冲方式、功放管数量及进给速度。如电规准选择不当、跟踪不良,轻者将影响加工质量,重者将造成短路、断丝。结束语
在电火花线切割加工防锈铝合金时,从工作液的再次过滤、工作液的比例搭配、馈电块的改进及根据不同材料选择最佳的电规准搭配等方面进行了优化考虑,达到了较理想的效果。以上措施不仅适合于防锈铝合金的加工,对一些较特殊材料的线切割加工也有一定的参考价值
第四篇:表面粗糙度轮廓及其检测
第五章 表面粗糙度轮廓及其检测
思 考 题
5-1 为了研究机械零件的表面结构而采用的表面轮廓是怎样确定的?实际表面轮廓上包含哪三种几何误差?
5-2 表面结构中的粗糙度轮廓的含义是什么?它对零件的使用性能有哪些影响?
5-3 测量表面粗糙度轮廓和评定表面粗糙度轮廓参数时,为什么要规定取样长度?标准评定长度等于连续的几个标准取样长度? 5-4 为了评定表面粗糙度轮廓参数,首先要确定基准线,试述可以作为基准线的轮廓的最小二乘中线和算术平均中线的含义? 5-5 试述GB?T3505-2000《产品几何技术规范 表面结构 轮廓法 表面结构的术语、定义及参数》规定的表面粗糙度轮廓更衣室参数中常用的两个幅度参数和一个间距参数的名称、符号和含义? 5-6 规定表面粗糙度轮廓的技术要求时,必须给出的两项基本要求是什么?必要时还可给出哪些附加要求?
5-7 试述在表面粗糙度轮廓代号上给定幅度参数Ra或Rz允许值(上限值、下限值或者最大值、最小值)的标注方法?按GB/T10610-1998《产品几何技术规范 表面结构要 轮廓法评定表面结构的规则和方法》的规定,各种不同允许值的合格条件是什么? 5-8 试述表面粗糙度轮廓幅度参数Ra和Rz分别用什么量仪测量?试述这些量仪的测量原理和分别属于哪种测量方法? 5-9 试述表面粗糙度轮廓幅度参数允许值的选用原则?
5-10 GB/T131-1993《机械制图 表面粗糙度符号、代号及其注法》规定了哪三种表面粗糙度轮廓符号?
5-11 试述表面粗糙度轮廓代号中幅度参数允许值和其他技术要求的标注位置?
习题
一、判断题 〔正确的打√,错误的打X〕
1.确定表面粗糙度时,通常可在三项高度特性方面的参数中选取。()
2.评定表面轮廓粗糙度所必需的一段长度称取样长度,它可以包含几个评定长度。()
3.Rz参数由于测量点不多,因此在反映微观几何形状高度方面的特性不如Ra参数充分。()
4.Ry参数对某些表面上不允许出现较深的加工痕迹和小零件的表面质量有实用意义。()
5.选择表面粗糙度评定参数值应尽量小好。()
6.零件的尺寸精度越高,通常表面粗糙度参数值相应取得越小。()
7.零件的表面粗糙度值越小,则零件的尺寸精度应越高。()8.摩擦表面应比非摩擦表面的表面粗糙度数值小。()9.要求配合精度高的零件,其表面粗糙度数值应大。()10.受交变载荷的零件,其表面粗糙度值应小。()
二、选择题(将下列题目中所有正确的论述选择出来)1.表面粗糙度值越小,则零件的__。A.耐磨性好。B.配合精度高。C.抗疲劳强度差. D.传动灵敏性差。E.加工容易。
2.选择表面粗糙度评定参数值时,下列论述正确的有__. A.同一零件上工作表面应比非工作表面参数值大。B.摩擦表面应比非摩擦表面的参数值小。C.配合质量要求高,参数值应小。D.尺寸精度要求高,参数值应小。E.受交变载荷的表面,参数值应大。3.下列论述正确的有__。
A.表面粗糙度属于表面微观性质的形状误差。B.表面粗糙度属于表面宏观性质的形状误差。C.表面粗糙度属于表面波纹度误差。
D.经过磨削加工所得表面比车削加工所得表面的表面粗糙度值大。E.介于表面宏观形状误差与微观形状误差之间的是波纹度误差。4.表面粗糙度代(符)号在图样上应标注在__。A. 可见轮廓线上。B. 尺寸界线上。C. 虚线上。
D.符号尖端从材料外指向被标注表面。E. 符号尖端从材料内指向被标注表面。
三、填空题
1.表面粗糙度是指__。
2.评定长度是指__,它可以包含几个__。3.测量表面粗糙度时,规定取样长度的目的在于__。
4.国家标准中规定表面粗糙度的主要评定参数有__、__、__三项。
四.综合题
1.国家标准规定的表面粗糙度评定参数有哪些?哪些是基本参数?哪些是附加参数?
2评定表面粗糙度时,为什么要规定取样长度?有了取样长度,为什么还要规定评定长度?
3.评定表面粗糙度时,为什么要规定轮廓中线? 4.将表面粗糙度符号标注在图2-38上,要求
(1)用任何方法加工圆柱面φd3,R a最大允许值为3.2μm。(2)用去除材料的方法获得孔φd1,要求R a最大允许值为3.2μm。(3)用去除材料的方法获得表面a,要求Ry最大允许值为3.2μm。
(4)其余用去除材料的方法获得表面,要求R a允许值均为25μm。5.指出图2-39中标注中的错误,并加以改正。
图 2-38 图2-39 6.试解释图1-5.1所示六个表面粗糙度轮廓代号中的各项技术要求?
7.试将下列的表面粗糙度轮廓技术要求标注在图1-5.2所示的机械加工的零件的图样上。
①φD1孔的表面粗糙度轮廓参数Ra的上限值为3.2μm; ②φD2孔的表面粗糙度轮廓参数Ra的上限值为6.3μm,最小值为3.2μm;
③零件右端面采用铣削加工,表面粗糙度轮廓参数Rz的上限值为12.5μm,下限值为6.3μm,加工纹理呈近似放射形; ④φd1和φd2圆柱面粗糙度轮廓参数Rz的上限值为25μm; ⑤其余表面的表面粗糙度轮廓参灵敏Ra的上限值为12.5μm。8.试将下列的表面粗糙度轮廓技术要求标注在图1-5.3所示的机械加工的零件的图样上。
①两上φd1圆柱面的表面粗糙度轮廓参数Ra的上限值为1.6μm,下限值为0.8μm;
②φd2轴肩的表面粗糙度轮廓参灵敏Rz的最大值为20μm; ③φd2圆柱面的表面粗糙度轮廓参数Ra的最大值为3.2μm,最小值为1.6μm;
④宽度为b的键槽两侧面的表面粗糙度轮廓参灵敏Ra的上限值为3.2μm;
⑤其余表面的表面粗糙度轮廓参灵敏Ra的最大值为12.5μm。
9.在一般情况下,φ60H7孔与φ20H7相比较,φ40H6/f5与φ40H6/s5中的两个孔相比较,哪个孔应选用较小的表面粗糙度轮廓幅度参数值? 10.在一般情况下,圆柱度公差分别为0.01mm和0.02mm的两个φ45H7孔相比较,哪个孔应选用较小的表面粗糙度轮廓幅度参数值?
第五篇:电火花加工
电火花加工是利用浸在工作液中的两极间脉冲放电时产生工或电蚀加工,英文简称EDM。
1943年,苏联学者拉扎连科夫妇研究发明电火花加工,之后随着脉冲电源和控制系统的改进,而迅速发展起来。最初使用的脉冲电源是简单的电阻-电容回路。50年代初,改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低。
随后又出现了大功率电子管、闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得以提高。60年代中期,出现了晶体管和可控硅脉冲电源,提高了能源利用效率和降低了工具电极损耗,并扩大了粗精加工的可调范围。
到70年代,出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。
进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。
在放电的微细通道中瞬时集中大量的热能,温度可高达一万摄氏度以上,压力也有急剧变化,从而使这一点工作表面局部微量的金属材料立刻熔化、气化,并爆炸式地飞溅到工作液中,迅速冷凝,形成固体的金属微粒,被工作液带走。这时在工件表面上便留下一个微小的凹坑痕迹,放电短暂停歇,两电极间工作液恢复绝缘状态。
紧接着,下一个脉冲电压又在两电极相对接近的另一点处击穿,产生火花放电,重复上述过程。这样,虽然每个脉冲放电蚀除的金属量极少,但因每秒有成千上万次脉冲放电作用,就能蚀除较多的金属,具有一定的生产率。
在保持工具电极与工件之间恒定放电间隙的条件下,一边蚀除工件金属,一边使工具电极不断地向工件进给,最后便加工出与工具电极形状相对应的形状来。因此,只要改变工具电极的形状和工具电极与工件之间的相对运动方式,就能加工出各种复杂的型面。
工具电极常用导电性良好、熔点较高、易加工的耐电蚀材料,如铜、石墨、铜钨合金和钼等。在加工过程中,工具电极也有损耗,但小于工件金属的蚀除量,甚至接近于无损耗。
工作液作为放电介质,在加工过程中还起着冷却、排屑等作用。常用的工作液是粘度较低、闪点较高、性能稳定的介质,如煤油、去离子水和乳化液等。
按照工具电极的形式及其与工件之间相对运动的特征,可将电火花加工方式分为五类:利用成型工具电极,相对工件作简单进给运动的电火花成形加工;利用轴向移动的金属丝作工具电极,工件按所需形状和尺寸作轨迹运动,以切割导电材料的电火花线切割加工;利用金属丝或成形导的电蚀作用蚀除导电材料的特种加工方法,又称放电加电磨轮作工具电极,进行小孔磨削或成形磨削的电火花磨削;用于加工螺纹环规、螺纹塞规、齿轮等的电火花共轭回转加工;小孔加工、刻印、表面合金化、表面强化等其他种类的加工。
电火花加工能加工普通切削加工方法难以切削的材料和复杂形状工件;加工时无切削力;不产生毛刺和刀痕沟纹等缺陷;工具电极材料无须比工件材料硬;直接使用电能加工,便于实现自动化;加工后表面产生变质层,在某些应用中须进一步去除;工作液的净化和加工中产生的烟雾污染处理比较麻烦。
电火花加工的主要用于加工具有复杂形状的型孔和型腔的模具和零件;加工各种硬、脆材料,如硬质合金和淬火钢等;加工深细孔、异形孔、深槽、窄缝和切割薄片等;加工各种成形刀具、样板和螺纹环规等工具和量具。