首页 > 文库大全 > 精品范文库 > 5号文库

北师版七年级下册数学 第6章达标检测卷

北师版七年级下册数学 第6章达标检测卷



第6章达标检测卷

一、选择题(每题3分,共30分)

1.下列事件中,是必然事件的是()

A.两条线段可以组成一个三角形

B.400人中至少有2人的生日在同一天

C.早上的太阳从西方升起

D.打开电视机,它正在播放动画片

2.在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是()

A.B.C.D.3.用扇形统计图反映地球上陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()

A.0.2

B.0.3

C.0.4

D.0.5

4.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a,b大小的判断正确的是()

A.a>b

B.a=b

C.a<b

D.不能判断

5.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能是()

A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”

B.一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃

C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一个球是黄球

D.掷一枚质地均匀的正六面体骰子,向上一面的点数是4

6.在一个不透明的袋中,红色、黑色、白色的玻璃球共有40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在25%和35%,则袋中白色球的个数可能是()

A.24

B.18

C.16

D.6

7.某省国税局举办有奖纳税活动,纳税满500元以上(含500元)发奖券一张.在10

000张奖券中,设特等奖2张,一等奖20张,二等奖178张.若小王纳税600元,则他中奖的概率是()

A.B.C.D.8.某人在某一时刻看手表,发现秒针在1

s到30

s之间的概率为()

A.B.C.D.9.如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气

质量指数大于200表示空气重度污染.某人随机选择7月1日至8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()

A.B.C.D.10.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中只有3个红球.每次将球搅拌均匀后,任意摸出一个球,记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是()

A.12

B.9

C.4

D.3

二、填空题(每题3分,共24分)

11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是________(填“随机”或“必然”)事件.

12.小明和小华做掷硬币的游戏.将同一枚硬币各掷三次,小明掷时,朝上的面都是“国徽”才获胜;小华掷时,朝上的面只要有一次是“国徽”即获胜,获胜可能性大的是________.

13.有长度分别为2

cm,3

cm,4

cm,7

cm的四条线段,任取其中三条能组成三角形的概率是________.

14.小明和小斌都想去参加一项重要的活动,但只有一个名额.于是他们决定抓阄,两张纸条:一张写着“yes”,一张写着“no”,他们两人闭上眼睛随机各抓一张,抓住“yes”的就去,抓住“no”的就不去,这对双方公平吗?答:__________.(填“公平”或“不公平”)

15.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表:

移植总棵数n

400

750

500

500

000

000

成活棵数m

369

662

335

203

335

073

移植成活率

0.923

0.883

0.890

0.915

0.905

0.897

根据表中数据,估计这种幼树移植成活率为________.(结果精确到0.1)

16.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.

17.在如图所示的3×3的方格中,任意涂黑一块白色方块,和原有的黑色方块恰好构成轴对称图形的概率是________.

18.若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________

.三、解答题(19,20题每题8分,21题10分,24题14分,其余每题13分,共66分)

19.根据下列事件发生的概率,把A,B,C,D填入事件后的括号里,并说明理由.

A.发生的概率为0  B.发生的概率小于  C.发生的概率大于  D.发生的概率为1

(1)从一副扑克牌中任意抽取一张,是红桃;()

(2)2024年2月有29天;()

(3)小波能举起重500

kg的大石头;()

(4)从5张分别写有数字1,2,4,6,8的卡片中任取一张,卡片上的数字恰为偶数.()

20.在一个红绿灯路口,红灯、黄灯和绿灯亮的时间分别为30

s、5

s和40

s,当你到达该路口时,求:

(1)遇到红灯的概率;

(2)遇到的不是绿灯的概率.

21.某家住宅面积为90

m2,其中大卧室18

m2,客厅30

m2,小卧室15

m2,厨房14

m2,大卫生间9

m2,小卫生间4

m2.如果一只小猫在该住宅内地面上任意跑.求:

(1)P(在客厅捉到小猫);

(2)P(在小卧室捉到小猫);

(3)P(在卫生间捉到小猫);

(4)P(不在卧室捉到小猫).

22.某商人制成了一个如图所示的转盘(平均分成8个扇形),取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元;若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?

23.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:

摸球的次数n

200

300

500

800

000

000

摸到白球的次数m

124

178

302

481

599

803

摸到白球的频率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

(1)请估计:当n很大时,摸到白球的频率将会接近________;(精确到0.1)

(2)假如你摸一次,摸到白球的概率P(白球)为________;

(3)试估算盒子里黑、白两种颜色的球各有多少个.

24.如图是一个可以自由转动的转盘,被平均分成8个扇形,利用这个转盘,甲、乙两人玩游戏,规则如下:

①甲自由转动转盘,若指针指向大于4的数,则甲胜,否则乙胜;

②甲自由转动转盘,若指针指向质数,则甲胜,否则乙胜;

③乙自由转动转盘,若指针指向大于2的偶数,则乙胜,否则甲胜;

④乙自由转动转盘,若指针指向3的倍数,则甲胜,否则乙胜.

在上面四个游戏规则中:

(1)对甲、乙双方公平的游戏规则是________;(填序号)

(2)对甲、乙双方不公平的游戏规则是________;(填序号)

(3)选择对甲有利的规则,用你所学的概率知识进行分析说明.

答案

一、1.B 2.C 3.B 4.B 5.D 6.C

7.D 点拨:由题意知能中奖的奖券共有200张,若小王纳税600元,则他可以获得1张奖券,因此他中奖的概率是=.8.B

9.C 点拨:由题图可知,当1日到达时,停留的时间为1,2,3日,空气质量指数分别为86,25,57,3天空气质量均为优良;

当2日到达时,停留的时间为2,3,4日,空气质量指数分别为25,57,143,2天空气质量为优良;

当3日到达时,停留的时间为3,4,5日,空气质量指数分别为57,143,220,1天空气质量为优良;

当4日到达时,停留的时间为4,5,6日,空气质量指数分别为143,220,160,3天空气质量均不是优良;

当5日到达时,停留的时间为5,6,7日,空气质量指数分别为220,160,40,1天空气质量为优良;

当6日到达时,停留的时间为6,7,8日,空气质量指数分别为160,40,217,1天空气质量为优良;

当7日到达时,停留的时间为7,8,9日,空气质量指数分别为40,217,160,1天空气质量为优良;

当8日到达时,停留的时间为8,9,10日,空气质量指数分别为217,160,121,空气质量均不是优良.

所以此人在该市停留期间有且仅有1天空气质量优良的概率为=.10.A 点拨:由题意得a==12.二、11.随机 12.小华 13.14.公平

15.0.9 16.15 17.18.点拨:大于0且小于100的“本位数”:1,2,10,11,12,20,21,22,30,31,32,共有11个,其中有7个偶数,4个奇数,所以P(抽到偶数)=.三、19.解:(1)B 理由:一副扑克牌有54张,其中红桃有13张,所以任意抽取一张,是红桃的概率为,<.(2)D 理由:2024年2月有29天,是必然事件,发生的概率为1.(3)A 理由:显然小波不能举起重500

kg的大石头,是不可能事件,发生的概率为0.(4)C 理由:卡片上的数字恰为偶数的概率为,>.20.解:(1)P(遇到红灯)==;

(2)P(遇到的不是绿灯)==.21.解:(1)P(在客厅捉到小猫)==;

(2)P(在小卧室捉到小猫)==;

(3)P(在卫生间捉到小猫)==;

(4)P(不在卧室捉到小猫)==.22.解:商人盈利的可能性大.

商人收费:80××2=80(元),商人奖励:80××3+80××1=60(元).

因为80>60,所以商人盈利的可能性大.

23.解:(1)0.6(2)0.6

(3)16个黑球,24个白球.

24.解:(1)①②(2)③④

(3)对甲有利的规则是③.说明如下:

共有8个数,大于2的偶数有4,6,8共3个,所以P(乙胜)=,P(甲胜)=,即P(甲胜)>P(乙胜).

所以规则③对甲有利.

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jingpin/5/1402743.html

相关内容

热门阅读

最新更新

随机推荐