首页 > 文库大全 > 精品范文库 > 4号文库

化工原理论文[合集五篇]

化工原理论文[合集五篇]



第一篇:化工原理论文

化工原理仿真实验在教学实践中的研究论文 院系:江苏师范大学科文学院生物化学系

姓名:周红霞

班级:10生物

学号:108316130

摘要:采用图形软件及动画设计软件共同开发的化工原理仿真实验系统以其耗时短,成本低,条件多样化的优点已成为一种发展趋势。本文重点阐述仿真实验的内容、优点及实践意义。关键词:化工原理实验 仿真实验

正文:随着时代的发展和科学技术的进步,传统的教学思想、教学方法、教学手段等都面临着前所未有的挑战,特别是计算机、多媒体技术、网络技术等都已广泛应用于教学各领域,引发了教学方法和教学手段的革命。仿真实验将成为一种发展趋势。在这样的形势下,化工原理实验课程传统的教学方法也在进行着新的尝试与改革, 化工原理仿真实验也在化工原理实验教学中崭露头角。目前大学里开设的化工原理实验课大都采用传统的分组实验的形式,由于受到场地和实验装置以及课时和师资的限制,很难实现学生个人独立完成实验的目的。很多学生只是听听老师的讲解,看看其他同学做的实验,然后根据同组的数据写出实验报告,就算做完了一个实验。通常只是走一个过场,多数学生并没有什么实际操作,这种现象非常普遍。引入仿真实验教学则在很大程度上解决了这个问题。根据我在仿真实验系统开发中的体会,下面谈点粗浅认识和看法。

江苏师范大学科文学院

1仿真实验的内容

仿真一词译自英文Simulation ,通常译作“模拟”,仿真是利用系统模型对真实系统或设想系统的本质和规律进行研究、分析和实验的方法。化工原理实验教学中的仿真实验则是以真实的实验原理、实验现象、实验过程和实验数据为基础,在计算机上通过动态数学模型进行模拟实验现象,通过互动动画模拟在现场的真实操作,并产生和真实实验一样的操作结果。它主要包括六方面的内容。

1)选择不同的实验装置:化工原理包括八个实验: ①离心泵性能曲线测定实验;②流量计曲线标定;③流体流动阻力系数测定实验;④换热实验;⑤精馏实验;⑥吸收实验;⑦干燥实验;⑧管路特性曲线 这八个实验基本上包括了化工原理实验课程的主要内容,是最具有代表性的八个实验。在仿真软件中均有设置。

2)实验指导:与实验讲义相关的内容介绍,包括实验目的、实验原理、实验设备、计算公式、实验操作以及注意事项等,也均有详尽的论述。

3)仿真操作:对虚拟装置进行仿真操作。操作界面直观、简洁、友好,使学生读取数据方便而不失真实,特别设计局部放大功能,需要读取数据的仪表、气压计等,都可以放大到最清晰的效果。在实验操作上,也采用相似的设计,感觉真实而又简单明了。

4)数据处理:对实验操作的结果,进行数据的记录、计算、绘制曲线。数据记录由软件或学生自己完成,软件自动生成记录表格,数据处理部分将计算并将结果自动列表,通过连接打印机将实验报告打印出来。这一部分也可以由学生手动计算。

5)考题测试:通过内置题库对学生进行测试。仿真实验的优点

仿真实验与传统的化工原理实验相比较,具有以下明显的优点:

1)仿真实验投资少,维护方便:化工原理实验装置一般价格较高,并且占地大,对于学生较多的班级很难做到人均一台装置,而仿真实验由于由每个学生利用仿真实验软件在计算机上运行,这就解决了学生多而实验装置少的问题。

2)实验操作简便,工艺流程形象逼真:化工原理实验课程对实验装置的结构、实验原理的讲解都是在课堂上进行的,既不够形象、直观,又呆板;而仿真实验的计算技术、图形和图像技术,可以方便、迅速而形象地再现出教学实验装置、实验过程和结果。这种既具体形象又生动逼真的教学,使学生产生如亲临实验现场一般的体验。

3)数据处理、计算、结果分析自动化:化工原理实验的数据处理大多数是一个繁琐的过程,学生往往需要一到两天的时间, 才能完成实验报告。采用仿真实验, 记录实验数据后, 数据处理部分, 计算机可将结果自动列表, 并将数据在坐标图上自动描点, 然后准确的回归并画出连续、平滑的曲线, 大大减少了数据处理所用的时间。

4)仿真实验软件极具扩展性由于仿真实验采用模块化开发技术,这样不仅便于软件的扩展,而且可以增加新的实验装置,教师可根据需要自行增加内容。仿真实验的运用意义

工原理及实验是化工学科的重要技术基础课, 它是化工、轻工、生物工程、制药工程等专业的必修课。高校化工原理实验教学中的仿真实验一般可分两种情况进行。第一种情况是学校没有化工原理实验装置,可以利用仿真实验完全代替真实实验,模拟实验操作效果;或者只有一小部分装置,不能够满足学生的实验需求,可利用仿真实验弥补缺少的实验。第二种情况是学校拥有完整的化工原理实验装置,但由于学生比较多,教师无法保证每个学生都可以独立完成实验,因而在学生上真实实验装置实验之前,先配以仿真实验进行模拟操作,完成实验预习,再进行真实实验,强化教学效果,这二者结合,效果为最好。

当然仿真实验不可能完全替代真实实验仿真实验是对真实实验的模拟, 与真实的实验操作环境还存在一定的差距, 若学生只知道仿真实验而不知真实实验, 无异于纸上谈兵, 不利于培养学生的动手能力及工程观念。因此, 仿真实验不可能完全替代真实实验, 它是真实实验的一种有效的补充。

综上所述,可以清楚看出,仿真实验引入到化工原理实验课中,对于提高整体教学效果的作用是非常明显的。在使用上,虽然仿真实验不能完全代替真实实验,但它们之间具有互补性,而且仿真实验有它自己的优势:首先,利用仿真实验,可以保证每个学生都能自己动手做实验,观察实验现象,验证公式、原理定理,提高了学生实际动手能力。同时,对于难做的实验,学生可以重复进行实验,而不受时间、场地、安全等实际实验条件的限制。其次,仿真实验使理论教学与实验教学更为紧密地联系在一起,既方便了课堂的实验演示,又增加了课堂内

容。三是减轻了教师对实验装置的维护压力,减少了教师实验前的准备工作量。四是仿真实验软件可直接安装在现有的网络教学计算机上,而无需增加硬件投资,同时它和多媒体课件可以资源共享,符合现代多媒体教学的要求。

化工原理实验仿真教学方法以真实实验为基础,吸收和运用了先进的教学思想,利用现代化的教学手段,培养了学生的实际动手能力,将实验改革引入了新的天地。所以在化工原理实验教学中开展仿真实验已经成为化工原理实验教学改革的新方向。

参考文献

[1]陈祖福.迎接知识经济时代,转变教育思想观念,振兴和创新高等教育[J ].大学化学,1999(1).[2]李金云.浅谈高校化工原理实验教学中的计算机辅助教学—— 仿真实验[1].潍坊学院学报, 202_, 2(2).

第二篇:化工原理仿真系统研究论文

一、化工原理仿真系统的制作

化工原理实验包括流体流动阻力测定、离心泵性能测定、传热、精馏、吸收与解吸、干燥、萃取等基本单元操作,分别由不同的仪器仪表和管道组合而成。在仿真软件中,把各种设备和管道用flash画出,再根据每一套装置流程图的要求,以真实、立体的效果来实现。

1.整体结构。实验仿真系统的开发过程分为三个阶段:实验前的准备、实验过程及数据记录和数据处理。前两个阶段在Flash动画制作软件上完成,第三阶段在VisualStudio2005软件开发工具上完成,并且使用Ac-cess数据库进行数据的存储与交换。

2.仿真系统的实现。在计算机模拟化工原理实验时,需要通过动态数学模型来模拟真实的实验操作,该模型主要包括实验指导、素材演示、仿真操作、数据处理、考题测试、帮助功能等内容。下面以离心泵性能测定为例详细说明仿真系统的制作过程。在实验准备阶段与实验开始阶段的Flash动画的制作过程中,考虑到实验步骤有先后,以及更好地做到人机交互,必须使用专门为Flash脚本开发的ActionScript语言。如点击水泵开启按钮必须在阀门开启以后才能启动,直至水灌满后,才可以点击关闭水泵按钮。为了使实验更具有真实性,需设置阀门的流量控制,分为10个级别,可以逐渐增大或减小。运用VisualStudio.Net开发环境编写C#程序,可以通过拖动添加组件,并自动生成组件需要的代码。在制作化工原理实验模拟课件时,可通过VisualStudio属性窗口设置各种开发元素属性如外观、名称等,且属性窗口中显示的内容,随着选择开发元素的不同而动态改变。利用VisualStudi“o工具箱”,可以向应用程序添加标准控件。在设置好窗体和控件后,利用Vi-sualStudio的代码编辑器编写程序代码。在命令窗口中,可以直接输入并执行各种命令,调试应用程序,并通过在即时窗口的命令行中输入表达式或变量名,可以得到它们的值。编写程序过程中,难免会遇到一些错误,开发人员需要对应用程序进行调试,查找错误的根源,以期达到设计要求。离心泵性能测定实验涉及到流体流动、水泵运转、仪表变化、阀门打开或关闭等动作,在仿真系统中通过Flash动画来实现这些动作的动态效果,使整个实验过程表现得更加真实。用Flash中的按钮实现动画交互效果,控制整个实验的操作并对数据进行采集,同时将数据传入C#,由C#对数据库进行读写操作,然后作出离心泵特性曲线图。

3.实验数据产生及处理。化工原理实验过程中往往要测定温度、压强、浓度、流速等数据,同时必须对这些参数进行整理和分析,并运用相关的理论公式进行计算,才能达到实验预期目的。化工原理实验实测数据多,绘图耗时费力,计算公式复杂,有时甚至需要进行迭代计算,借助计算机辅助程序可圆满解决这些问题。在仿真软件中,通过C#语言设计数据处理程序。根据各化工单元操作理论建立数学模型,使仿真数据在实际操作的数据范围内随机产生,以保证每个学生在进行仿真实验时即使初始条件相同,也不会得到完全相同的实验结果,更接近真实操作状况。试验完成后,点击“记录数据”按钮,计算机会自动记录数据,并在后台进行数据传递,然后根据预先输入的计算公式进行数据处理。数据处理后被保存到Access数据库中,再通过调用,将数据输出在DataGridView进行显示,或据此数据绘制实验曲线。

二、操作过程及功能概述

主界面使用VisualStudioC#中的窗体,通过添加菜单栏来控制试验的选择。其特点是方便、简单易用,更重要的是为今后仿真系统的逐步完善提供了空间。首先水泵的开关按钮是不可用的,必须在打开阀门以后,才能启动水泵。当水泵与阀门同时启动后,便开始灌水,在这期间禁用系统中所有的按钮。待灌水过程结束,先关阀门再关水泵。点击“开始实验”按钮,可以开启下一个界面继续实验。先打开水泵,然后打开阀门,通过阀门调节流量级别,仪表数值会随之变化。点击“记录数据”按钮,将仪表的数值记录在数据库中。当数据记录完毕,点击“查看数据”按钮,屏幕上显示10组数据以及由公式计算得出的“扬程”、“有效功率”、“效率”数值。点击“绘图”按钮,可直接绘制出H-Q、P-Q及η-Q三条特性曲线。无论是实验结束还是中途关闭实验窗体,都将出现一个对话框以提示实验者“是否保存当前数据?”操作者可根据提示对实验数据进行取舍。集合Flash动画和C#语言优点开发的化工原理实验仿真系统,具有界面直观、操作简单、支持人机交互、占用空间小等特点,能显著提高化工原理实验教学的效果,减少实验设备投资和损坏,降低实验投入成本,避免实验事故的发生。计算机辅助教学,特别是计算机仿真实验在化工教学过程中的应用,使学生接触了一种全新的实验手段,激发了学生学习的积极性和主动性,使学生创新意识得到培养,从而提高了整体教学质量。

第三篇:化工原理变压吸附论文(本站推荐)

变压吸附

摘要

介绍了变压吸附技术的基本原理及其开发与应用,并对今后变压吸附空气分离技术的发展方向提出了看法。关键词

空气分离 变压吸附 制氧

1.引言

变压吸附(PSA 3技术是近几十年崛起的气体分离技术,PSA用于制氧是近来发展起来的新技术。它与传统的已有近百年历史的深冷法制氧工艺相比,两者各有千秋,在制氧领域各自发挥独自的优势,又彼此激烈竞争。近几年,由于变压吸附空分制氧工艺具有操作灵活方便、投资少、性能好等优点,使其在中小规模空分领域确立了优势,并正不断向大型化发展,对它的研究也成为化工领域的一个热点。

2.变压吸附基本原理

2.1吸附的定义

当两相组成一个体系时,两相界面处的成分与相内成分是不同的,在两相界面处会产生积蓄,这种现象称为吸附;而被吸附的原子或分子返回到液相或气相的过程,称为解吸。在两相界面处,被吸附的物质称为吸附质,吸附相称为吸附剂。

2.2常用的吸附剂

主要有活性白土、硅胶、活性氧化铝、活性炭、碳分子筛、合成沸石分子筛等。2.3变压吸附工作的基本步骤

单一的固定吸附床操作,无论是变温吸附还是变压吸附,由于吸附剂需要再生,吸附是间歇式的。因此,工业上都是采用两个或更多的吸附床,使吸附床的吸附和再生交替(或依次循环)进行,保证整个吸附过程的连续。

对于变压吸附循环过程,有三个基本工作步骤: 1.压力下吸附

吸附床在过程的最高压力下通入被分离的气体混合物,其中强吸附组分被吸附剂选择性吸收,弱吸附组分从吸附床的另一端流出。

2.减压解吸

根据被吸附组分的性能,选用前述的降压、抽真空、冲洗和置换中的几种方法使吸附剂获得再生。一般减压解吸,先是降压到大气压力,然后再用冲洗、抽真空或置换。

3.升压

吸附剂再生完成后,用弱吸附组分对吸附床进行充压,直到吸附压力为止。接着又在压力下进行吸附。

3变压吸附空气分离技术应用与开发

3.1变压吸附工艺发展现状

变压吸附空分制氧工艺技术的进展与分子筛研制的成就息息相关。初期的PSA制氧装置大多为高压吸收,常压解吸,后来在中大型装置上采用了略高于常压下吸附在真空下解吸的方法。目前工业上操作状况如表3所示。一般来讲,若提高吸附压力,则吸附剂吸附的氮量增加,因此能减少吸附剂用量,但由于解吸排气的气量增加,所以氧收率降低。为了提高氧气回收率,减少电耗,工艺上将吸附压力降至略高于大气压,解吸采用抽真空,这是目前大型工业制氧装置的主流。3.2从空气中制取富氧

传统的制氧方法是空气的深冷分馏,此法可制取高纯度的氧、氮和惰性气体,也是大规模生产这些气体的最经济的方法。但在许多场合,如废水处理、金属冶炼、医疗供氧、化工造气等等并不需要象深冷分馏法所制得的高纯度氧气,而且富氧的需用量相对高纯度氧要更多些。为此人们很早就企图实现用比深冷法更简便的方法富集氧气。对分子筛的研究发现,在5A型分子筛上空气中的氮是被优先选择吸附的分子,自此注意到应用分子筛分离富氮的可能性。变压吸附法制取富氧与变压吸附本身的开发一样,是沿着两条途径进行的:一方面是改善吸附剂的性能,以增大氮的吸附能力和富氮的分离系数;另一方面是改进工艺流程,根据富氧生产能力、纯度即吸附剂性能开发有各种二床、三床流程,前面介绍的多床制氢工艺也适用于生产富氧,吸附床数增加可提高产氧能力、降低总耗电量,但额外投资和床数增加的复杂性在经济上导致过于昂贵。所以目前工业上开发应用较多的是二、三床流程。

此法在吸附压力0.025MPa、抽空最终压力190乇下操作时,生产富氧纯度93%,氧的回收率为36~39%。近年来,随着吸附剂制氧能力提高和工艺流程回收死空间气体的改进,所得富氧纯度大于90%时,回收率为50%,消耗能量小于0.5kwh/m3-O2,这个能耗已经与深冷空分制氧相接近。

3.3PSA制氧技术开发

3.3.1 新的制氧工艺——真空变压吸附

通常PSA采用的工艺是0.3-0.4MP加压吸附和常压解吸。1983年A.G Bager首先开发了真空变压吸附(VPSA)工艺,并申请了专利。所谓VPSA的制氧工艺就是在压力小于0.1MPa下吸附,真空下解吸。实践表明,真空再生法的性能优于常压再生法,又由于解吸用真空泵的能耗要比原料空气压缩机能耗低得多,从而降低了单位能耗。在这以后所公布的很多专利,都是以提高氧纯度及回收率为目的的。日本酸素工业株式会社即开发了低压吸附、均压、抽空、产品冲洗再说的生产 工艺。据报道,用该工艺制取的氧气纯度为93%-95%,产量为1000m3/h时的单耗为0.42kWh/Nm3。

3.3.2VPSA的操作条件

再生压力:再生压力对产品氧气的回收率影响最大,用高真空再生可得到较好的回收率,然而单纯提高真空度是不经济的;最佳压力变化范围取决于原料空气压缩所需能耗、真空泵的能耗及产品氧的回收率,对于一定的吸附剂还需通过试验加以决定。

4结束语

随着科学技术的发展,对氧气产品的需求量也在不断增长。从世界范围看变压吸附制氧装置的能力仍处于扩大的趋势,扩大的领域和速度与PSA法技术不断取得的新进展密切相关。由于新型分子筛的开发和工艺技术的日臻完善,结果使产品氧纯度提高,氧回收率增加,投资和能耗下降,无形中增加了它的竞争力。这就是将它列入高新技术并至今十分活跃的原因。利用当代前沿科学已取得的新成就研制性能优良的吸附剂,精心设计、优化流程是开发的方向和重点课题,年轻的PSA法制氧技术方兴未艾。

第四篇:化工原理

比容:单位质量的流体所具有的体积,用v表示

剪应力:单位面积上的内摩擦力,以τ

压强:流体的单位表面积上所受的压力,称为流体的压力强度,简称压强

流量:单位时间内通过管道任一截面的流体量

体积流量:单位时间内流体流经管道任一截面的体积,质量流量:单位时间内流体流经管道任一截面的质量,流速:单位时间内流体质点在流动方向上所流经的距离,稳态流动:流体在各截面上的有关物理量仅随位置而变,不随时间改变。

流动边界层:流体流经固体壁面时,由于粘性力的存在,在壁面附近产生了速度梯度,这一存在速度梯度的区域称为流动边界层。

局部阻力:流体流经一定管件、阀门及管截面的突然扩大及缩小等局部地方所引起的阻力。直管阻力:流体流经一定管径的直管时由于流体的内摩擦而产生的阻力。

绝对粗糙度:壁面凸出部分的平均高度,相对粗糙度:绝对粗糙度与管道直径的比值

水力半径:流体在流道里的流通截面与润湿周边长度之比,(当量直径为4倍的水力半径)气缚:离心泵启动时,泵内存有空气,由于空气密度很低,旋转后产生的离心力小,因而叶轮中心区所形成的低压不足以将贮槽内的液体吸入泵内,虽启动离心泵也不能输送液体。轴功率N:单位时间电动机输入泵轴的能量。

压头:也叫扬程,是离心泵对单位重量流体所提供的有效能量。

容积损失:叶轮出口处高压液体因机械泄漏返回叶轮入口所造成的能量损失。

水力损失:黏性液体流经叶轮通道蜗壳时产生的摩擦阻力以及在泵局部处因流速和方向改变引起的环流和冲击而产生的局部阻力。

机械损失:由泵轴和轴承之间,泵轴和填料函等产生摩擦引起的能量损失。

均相物系:物系内部各处组成均匀且不存在相界面。

床层的自由截面积:单位床层截面上未被颗粒占据的面积,流体可自由通过的面积。床层的比表面积:单位体积床层中所具有的固体颗粒表面积。

自由沉降:单一颗粒在粘性流体中不受其他颗粒干扰的沉降。

离心沉降:依靠惯性离心力的作用而实现的沉降过程。

过滤:利用重力或压差使悬浮液通过多孔性过滤介质,将固体颗粒截留,从而实现固液分离。过滤速率:单位四级获得的滤液体积

过滤速度:单位时间通过单位过滤面积的滤液体积。

热传导:物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热能传递。

热对流:流体各部分之间发生相对位移所引起的热传递过程

稳态传热:传热过程中,如果传热系统中各处温度只随位置而变,不随时间而变。等温面:温度场中同一时刻下温度相同的各点组成的面。

温度梯度:等温面法线方向上的温度变化率。

第五篇:化工原理教学改革探究论文

【摘要】化工原理是高等学校应用化学专业的一门主干专业必修课。在高校创新创业教育迅猛发展的新形势下,如何改革化工原理这门基础课程的教学,为大学生开展创新创业教育提供强有力的理论支持,已成为化工原理课程教学的一个重要研究方向。本论文从化工原理创新创业教学的现状,探索一套适合高校在创新创业过程中构建和实践化工原理创新教育体系的教学方法。

【关键词】创新;应用化学;教学改革

1化工原理创新创业教学的现状

1.1教学理念落后

首先,受到传统教学理念落后的影响,应用化学专业的化工原理课程仍然以教师课堂讲授为主。教师按照自己的学识和经验来制定教学计划和教案,在课堂上主要讲清楚重、难知识点,课后做好练习和总结,通常与创新创业教育难以联系,导致化工原理中创新教学内容的缺乏。使得化工原理的专业知识教学和创新创业教育基本处于割裂的状态,化工原理专业知识具有独立的培养体系,而创新教育尚未很好地融入化工原理课程的教学过程中,如何将化工原理基础理论与创新创业过程中面临的问题联系起来,学生知之甚少。其次,化工原理专业教育大部分都是遵循传统的教育规律和模式,以创新教育的形式在专业学校进行的单一,主要是讲解理论开展教学活动,甚至在一些实验、实训课教学环节,都局限于对传统实训项目的验证。学生缺乏实践锻炼,创新创业能力没有得到提高。为了更好的推行创新创业教学改革,教师应具备创新意识,转变传统的教学思想,树立创新教学的理念。

1.2创新教育效果不佳

如今,高校已将创新型人才的培养纳为主要的发展方向和重要的培养目标,尽管相关政策和制度陆续颁布,但在实施方面,由于经费、设备、师资等多种因素限制,常常流于表面形式而没有得到实质的推进。另外,化工原理课程因缺乏有创新特色的教材指导,上课的内容相对枯燥单一,导致化工原理教学内容显得没有新意,不能激起大学生对化工原理课程学习的兴趣,学生的创新能力没能得到实质的提高。同时,高校的创新平台大多分散在各专业课程的实践中,基本是学生感兴趣与相关教师自发接触,在专业实验室开展一些小规模的创新创业活动,由于受到制约,学生缺乏良好的平台,也没有形成创新团队,能得到锻炼的学生也很少,创新教育效果不佳。

1.3考核形式单一

传统的化工原理课程的考试形式过于单一,如闭卷考试或者是开卷考试,并且大部分以闭卷考试为主,而这只是要求学生正确的记忆、理解和掌握订制的化工原理教材内容。这不仅会影响学生学习化工原理的积极性,学生的个人能力和综合素质是没办法在考试中得以呈现出来。另外,教师有时会布置一些形式单

一、内容陈旧、答案固定的课后作业,这些作业通常以教材、教参的习题和简单训练题为主,部分学生会直接抄袭别人作业或者网上答案敷衍了事,学生没办法掌握所学知识,分析和解决实际问题的能力都得不到有效提升。这都无益于学生创新能力的提高,也制约了学生的个性化发展,难以培养适应新时代综合素质全面发展的新型人才[2,3]。因此培养创新型化工人才必需改革形式单一的考核方式。

2化工原理教学方式转变的建议

2.1课堂教学与科学研究有机结合,培养学生的创新思维

课堂教学与科学研究两者互为“源头”、二元并重。通过科研实验中的实例进行分析,结合化工原理课堂教学实际,可以促进学生创新能力的发展和拓宽学生学术视野和知识面,全面提升其综合素质[4]。教师的课堂教学的讲解如果与自己的科学研究相结合,可以提高学生的学习兴趣和主动性,进而提升教学的质量。正如爱因斯坦所说兴趣和爱好是最好的老师,学生学习的最主要的动力往往就是他们的兴趣。这要求每个教师在讲解化工原理专业课之前,可以通过自己科研实例,为学生阐明这门课程实际领域的重要性及其广泛应用,激发学生的好奇心和求知欲[5]。这样不仅可以有效的调动学生的积极性,进而主动的学习化工原理知识,还能在相应的学习情境中能够利用科学的方法来学习理解事物进和解决实际问题,以此达到知识和能力辩证统一的目标。同时,在探索未知的科学研究中,高校教师所形成的学术品位和创新精神,结合课堂的讲授会对学生产生深刻的影响,这将成为学生学习和效仿的榜样。因此,高校教师的科研方法对培养学生的研究能力、创新思维能力会起到直接的教育作用。

2.2加强实验教学与实践,提高学生的创新能力

化工原理实验是应用化学专业化工原理课程的重要教学环节,在实验教学中可以改变传统化工原理实验教材,使得实验课与理论课的结合更为紧密。化工原理实验课程的教学环节不仅可以培养学生解决实际工程问题的能力,而且能培养学生的实践和动手能力、团队协作和沟通能力。在掌握了实验原理、实验装置和实验操作的基础上,多涉及一些自主开放性的实验课。增强学生创新实践能力,提升大学生的综合素质,培养学生的创新思维。此外,现今已经有很多高校开始实行全程导师制,即在大学一年级就开始确定一名专业指导老师,学生指导老师完成他们所承担的科研项目和科研实践,并取得相应的学分[6]。此方法不仅使学生增强了科研实践的技能,更使学生提早接触科研创新团队,有利于学生的创新能力的提高[7]。

2.3改革考试方法,探寻和构建多元化的考核方式

应用化学专业化工原理核心课程的考核方式,应该重在评价学生全面发展的综合素质,必需改变以往应试教育的模式,以培育创新型人才为主要导向,针对如何比较合理、全面、真实地体现学生的综合素质。可采用多元化的考核方式,尝试利用课堂提问、开放性小测试、设计型作业、实验和期末考试等考核方式对学生进行综合评价,探寻和构建既能体现学生对所学知识的掌握程度,又能促进学生创新能力和个性化发展的考试方式[8]。还可以合理利用实验技能大赛、化学化工类学术创新成果大赛、化工设计竞赛、互联网+创新创业大赛等多种竞赛资源,以赛促学、以赛促教,适当地将竞赛成果纳入化工原理课程考核成绩的评定,多方面有效推动创新创业化学化工人才培养的改革。

3总结

综上所述,随着高校创新创业意识的不断提高,创新人才的培养已成为高校教学改革的出发点和归宿。因此,在高校化工原理教学改革中,应转变教学观念,创新教学方法和手段,提高教学效果和改进考核方式,从而提升高校化工原理教学质量,为国家培养更多优秀的高素质创新人才。

参考文献

[1]郑大锋,王秀军.创新导向下化工原理课程教学方法研究[J].化工高等教育,202_(2):6-10.[2]荣海平,武伟强.大学生创新精神与创业能力培养[J].大学教育,202_(4):47-48.[3]李雷,贺楠.中外高校创新创业教育课程体系的比较研究[J].职业教育与培训,202_(9):160-164.[4]李万成.教学与科研相结合是培养创新人才的重要途径[J].前沿,202_(4):26-28.[5]钟星,胡彩霞,刘星,等.基于应用技术型大学有机化学教学方式转变的探索[J].广东化工,202_,43(1):173.[6]章嫦华,高来健.高校创业导师队伍建设的研究与思考[J].教育评论,202_(3):77-81.[7]杨颖,史克英.基于有机化学教学的大学生科学素养提升路径[J].黑龙江教育(高教研究与评估),202_(9):15-16.[8]王艳力,刘琦,宋莎,等.“化工原理”考核方式改革实践与效果[J].化学教育,202_,38(6):55-59.

相关内容

热门阅读

最新更新

随机推荐