首页 > 文库大全 > 精品范文库 > 3号文库

2024年高一数学教案(优秀8篇)

2024年高一数学教案(优秀8篇)



作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

高一数学教案篇一

(2)理解逻辑联结词“或”“且”“非”的含义;。

(3)能用逻辑联结词和简单命题构成不同形式的复合命题;。

(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;。

(5)会用真值表判断相应的复合命题的真假;。

(6)在知识学习的基础上,培养学生简单推理的技能.

二、教学重点难点:

重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

三、教学过程。

1.新课导入。

在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)。

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)。

学生举例:平行四边形的对角线互相平.……(1)。

两直线平行,同位角相等.…………(2)。

教师提问:“……相等的角是对顶角”是不是命题?……(3)。

(同学议论结果,答案是肯定的.)。

教师提问:什么是命题?

(学生进行回忆、思考.)。

概念总结:对一件事情作出了判断的语句叫做命题.

(教师肯定了同学的回答,并作板书.)。

由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

(教师利用投__,和学生讨论以下问题.)。

例1判断以下各语句是不是命题,若是,判断其真假:

命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

2.讲授新课。

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)。

(1)什么叫做命题?

可以判断真假的语句叫做命题.

判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

(2)介绍逻辑联结词“或”、“且”、“非”.

“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

对“或”的理解,可联想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一个是成立的,即且;也可以且;也可以且.这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.

对“且”的理解,可联想到集合中“交集”的概念.中的“且”,是指“”、“这两个条件都要满足的意思.

对“非”的理解,可联想到集合中的“补集”概念,若命题对应于集合,则命题非就对应着集合在全集中的补集.

命题可分为简单命题和复合命题.

不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.

(4)命题的表示:用,,,,……来表示.

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)。

我们接触的复合命题一般有“或”、“且”、“非”、“若则”等形式.

给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.

对于给出“若则”形式的复合命题,应能找到条件和结论.

在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

3.巩固新课。

例2判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

(1);。

(2)0.5非整数;。

(3)内错角相等,两直线平行;。

(4)菱形的对角线互相垂直且平分;。

(5)平行线不相交;。

(6)若,则.

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)。

例3写出下表中各给定语的否定语(用课件打出来).

若给定语为。

等于。

大于。

都是。

至多有一个。

至少有一个。

至多有#formatimgid_0#个。

其否定语分别为。

分析:“等于”的否定语是“不等于”;。

“大于”的否定语是“小于或者等于”;。

“是”的否定语是“不是”;。

“都是”的否定语是“不都是”;。

“至多有一个”的否定语是“至少有两个”;。

“至少有一个”的否定语是“一个都没有”;。

“至多有个”的否定语是“至少有个”.

(如果时间宽裕,可让学生讨论后得出结论.)。

置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)。

4.课堂练习:第26页练习1,2.

5.课外作业:第29页习题1.61,2.

高一数学教案篇二

1.注重书写,忽视新思想、新方法的体现。检查与评价教案设计的好坏,往往凭着书写工整、结构完整、环节清楚、字数多少、板书设计、教学随笔数量等来评定教案的优劣,而其中先进的教学理念和先进的教学方法这些本质的东西,往往被忽略,有个性的教案往往得不到公正的肯定和倡导,"逼迫"教师随"大流",不敢站到课改的前沿,久而久之教师的教案就还原到管理者的意识上来,迎合理管者的要求。

2.注重格式,忽视差异性、个性的体现。目标、重难点、提问、板书、课时、教具等均作统一要求。

不考虑教师的个性、教学经验与能力、学科的差异、内容的侧重,不顾教师、班级的实际情况,追求统一的检查与评定,束缚了教师的创造性的发挥,导致了教案形式上的"八股文",使本来很严肃、很有创意的编写变成抄写,丧失了教案设计的意义。

3.注重详案,忽视合理性、操作性的体现。检查者只关注教案本身编写的页数、书写工整程度、环节结构完整程度。而不与教师的教、学生的学结合,不与教学过程结合,不与教学效果结合,教案设计的合理性与操作性缺乏深入细致的检查。

高一数学教案篇三

3.会求抛物线的标准方程。

1.完成下表:

标准方程。

图形。

焦点坐标。

准线方程。

开口方向。

2.求抛物线的焦点坐标和准线方程。

3.求经过点的抛物线的标准方程。

二、问题探究。

探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?

探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较。

例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程。

例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程。

例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为。求该抛物线的方程,并写出其焦点坐标与准线方程。

三、思维训练。

1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为。

2.抛物线的焦点到其准线的距离是。

3.设为抛物线的焦点,为该抛物线上三点,若,则=.

4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是。

5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。

四、课后巩固。

1.抛物线的准线方程是。

2.抛物线上一点到焦点的距离为,则点到轴的距离为。

3.已知抛物线,焦点到准线的距离为,则。

4.经过点的抛物线的标准方程为。

5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是。

6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程。

7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。

高一数学教案篇四

会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

函数单调性的证明及判断。

函数单调性证明及其应用。

1、函数的定义域、值域、图象、表示方法。

2、函数单调性。

(1)单调增函数。

(2)单调减函数。

(3)单调区间。

例1、画出下列函数图象,并写出单调区间:

(1)(2)(2)。

例2、求证:函数在区间上是单调增函数。

例3、讨论函数的单调性,并证明你的结论。

变(1)讨论函数的单调性,并证明你的结论。

变(2)讨论函数的单调性,并证明你的结论。

例4、试判断函数在上的单调性。

1、判断下列说法正确的是。

(1)若定义在上的函数满足,则函数是上的单调增函数;

(2)若定义在上的函数满足,则函数在上不是单调减函数;

(4)若定义在上的函数在区间上是单调增函数,在区间上也是单调增函数,则函数是上的单调增函数。

2、若一次函数在上是单调减函数,则点在直角坐标平面的()。

a.上半平面b.下半平面c.左半平面d.右半平面。

3、函数在上是______;函数在上是______。

3、下图分别为函数和的图象,求函数和的单调增区间。

4、求证:函数是定义域上的单调减函数。

1、函数单调性的判断及证明。

1、求下列函数的单调区间。

(1)(2)。

2、画函数的图象,并写出单调区间。

3、求证:函数在上是单调增函数。

4、若函数,求函数的单调区间。

5、若函数在上是增函数,在上是减函数,试比较与的大小。

6、已知函数,试讨论函数f(x)在区间上的单调性。

变(1)已知函数,试讨论函数f(x)在区间上的单调性。

高一数学教案篇五

本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。所以在人们的日常生活中有着重要意义。

(1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。

(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。

(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。

本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。

教学的重点、难点。

(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。

(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。

本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。投影和三视图虽为高中新增内容,但学生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近了高中的三视图定义,只是在名字上略有差异。初中叫做主视图、左视图、俯视图。进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了一定的提高,所以,给出了正视图、侧视图、俯视图的概念。这些概念的变化也说明了学生年龄特点和思维差异。

(1)教学方法及教学手段。

针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、启导发现法。

在教学中,通过创设问题情境,充分调动学生学习的积极性和主动性,并引导启发学生动眼、动脑、动手、同时采用多媒体的教学手段,加强直观性和启发性,解决了教师“口说无凭”的尴尬境地,增大了课堂容量,提高了课堂效率。

(2)学法指导。

力争在新课程要求的大背景下组织教学,为学生创设良好的问题情境,留给学生充分的思考空间,在学生的辩证和讨论前提下,发挥教师的概括和引领的作用。

(一)创设情境,引出课题。

通过摄影作品及汽车设计图纸引出问题。

1、照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,我们需要学习这方面的知识。

设计意图:通过摄影作品及汽车设计图纸的展示引出问题1,2,从贴近生活的实例入手,给学生以视觉冲击,引领学生进入本节课的内容。

引出课题:投影与三视图。

知识探究(一):中心投影与平行投影。

光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影。其中的光线叫做投影线,留下物体影子的屏幕叫做投影面。

不同?

思考6:一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?师生活动:学生思考,讨论,教师归纳总结。

设计意图:讲解投影,投影线,投影面,让学生了解投影式如何形成的。通过六个思考层层深入,学生在思考讨论的过程中总结出投影的分类及每种投影的特点。

知识探究(二):柱、锥、台、球的三视图。

把一个空间几何体投影到一个平面上,可以获得一个平面图形。但只有一个平面图形难以把握几何体的全貌,因此我们需要从多个角度进行投影,这样就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面。

从不同的角度看建筑。

问题1:要很好地描绘这幢房子,需要从哪些方向去看?

问题2:如果要建造房子,你是工程师,需要给施工员提供哪几种图纸?

设计意图:通过观察大楼的图片,提出问题1,2,这种设计更易于让学生接受,说明数学与生活密不可分。

给出三视图的含义:

(1)光线从几何体的前面向后面正投影得到的投影图,叫做几何体的正视图;

(2)光线从几何体的左面向右面正投影得到的投影图,叫做几何体的侧视图;

(3)光线从几何体的上面向下面正投影得到的投影图,叫做几何体的俯视图;

(4)几何体的正视图、侧视图、俯视图统称为几何体的三视图。

思考2:如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?

一个几何体的正视图和侧视图的高度一样,俯视图和正视图的的长度一样,侧视图和俯视图的宽度一样。

思考3:圆柱、圆锥、圆台的三视图分别是什么?

思考4:一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度有什么关系?师生活动:分小组讨论,动手操作来完成思考题。

设计意图:通过多媒体的动态演示,对学生的结论进行验证,大概花15分钟的时间来完成这部分的教学。学生自主归纳总结将本节课的重点化解。

长对正,高平齐,宽相等。

高一数学教案篇六

活动目标:

1、使幼儿知道乘法的含义,认识到“求几个相同加数的和”用乘法计算比较简便.。

2、认识乘号,会读、写乘法算式。

3、培养幼儿观察比较的能力.。

活动重点:

知道乘法的含义,了解到“求几个相同加数的和”,用乘法计算比较简便.。

活动难点:

乘法算式所表示的意思.。

活动教具:

课件、字条、题卡、插板、电脑、铅笔、纸张作业。

活动过程:

一、开始部分。

1、复习准备。

口算两组题(要求读出算式,说出得数).。

第一组第二组。

7+83+3。

6+4+35+5+5。

7+2+6+14+4+4+4。

1+3+4+5+22+2+2+2+2。

幼儿按要求口答后,教师引导幼儿观察:

2、提问:

1)这两组题都是加法,但是它们有什么不同的地方?

(第一组每道题的加数不相同,第二组的`每道题的加数都相同)。

2)像第二组这样,加数都相同的加法,我们叫它“求相同加数的和”,也叫做“同数组成”。(出示字条)。

3、(出示题卡)第1题3+3,相同加数是几,有几个3相加,这就是2个3.2个3是6,6里面有2个3。

第3题4+4+4+4,相同加数是几,有几个4相加,由幼儿说出4个4.4个4是(),16里面有()个4。

二、基本部分:

1.启发性谈话。

像上面这样求几个相同加数的和,除了用加法计算外,还可以用一种简便方法,这种简便方法是什么呢?(引出乘法)。

教师边展示边讲解边提问:

(1)这个符号叫什么?

怎样写乘法算式呢?先看一看相同加数是几,相同加数是2,就写在乘号的前面,再数一数是几个2连加,把相同加数的个数5写在乘号的后面,2×5表示5个2连加,因此算式是2×5=10,读作2乘以5等于10.乘法口诀念做:二五一十。

4、拍手游戏.老师每次拍4下,拍3次.(由幼儿说出加法算式和乘法算式)。

5、教师出应用题幼儿插棋子列算式。

教师提出要求:

(1)每行摆3个棋子,摆5行,这是几个几?(5个3)。

(2)怎样用加法算式表示,怎样列乘法算式,这个乘法算式表示什么意思?

(33333=153×5=15表示5个3连加)。

(3)大二班小朋友去栽树,一行栽4棵树,问5行一共栽几棵树?(4×5=20表示:5个4连加)。

(4)图书馆书柜一层放6本书,问3层一共放多少本书?

(6×3=18表示:3个6连加)。

(5)小朋友架椅子一组架4把,问4组一共架多少把椅子?

(4×4=16表示:4个4连加)。

6、教师出示课件图片:《快乐的游乐场》引导幼儿了解生活中到处都有数字,都可以进行计算。幼儿看图在插板上列乘法算式。

活动结束:

幼儿人手一份纸张作业,进行巩固练习。

高一数学教案篇七

本学期,根据需要,学校安排我上高一(5)、(6)两个班的数学。在学校领导的正确领导下,我圆满完成了本学期的教学任务,我对一学期来的教学工作总结如下:

本学期我根据教材内容及学生的实际情况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先考虑到,认真写好教案。首先,我认真阅读新课标,钻研新教材,熟悉教材内容,查阅教学资料,适当增减教学内容,认真细致的备好每一节课,真正做到重点明确,难点分解。遇到难以解决的问题,就向老教师讨教或在备课组内讨论。其次,深入了解学生,根据学生的知识水平和接受能力设计教案,每一课都做到"有备而去"。

我能积极参加各种教研活动,如集体备课,校内听课,教学教研活动,不断提高课堂教学的操作调控能力,语言表达能力。我追求课堂讲解的清晰化,条理化,准确化,情感化,生动化;努力做到知识线索清晰,层次分明,教学言简意赅,深入浅出。我深知学生的积极参与是教学取得较好的效果的关键。所以在课堂上我特别注意调动学生的积极性,加强师生交流,充分体现学生在学习过程中的主动性,让学生学得轻松,学得愉快。在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分考虑每一个层次的学生学习需求和接受能力,让各个层次的学生都得到提高。同时更新理念,坚持采用多媒体辅助教学,深受学生欢迎。每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作好总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。

在每个章节的学习上都积极征求其他有经验老师的意见,学习他们的方法。同时,多听课,学习别人的优点,克服自己的不足。做到边听边学,给自己不断充电,弥补自己在教学上的不足,并常请其他教师来听课,征求他们的意见,改进教学工作。

学生在从初中到高中的过渡阶段,往往会有些不能适应新的学习环境。例如新的竞争压力,以往的学习方法不能适应高中的学习,不良的学习习惯和学习态度等一些问题困扰和制约着学生的学习。为了解决这些问题,我从下面几方面下功夫。

1、改变学生学习数学的一些思想观念,树立学好数学的信心。在开学初,我就给他们指出高中数学学习较初中的要难度大,内容多,知识面广,让他们有一个心理准备。对此,我给他们讲清楚,大家其实处在同一起跑线上,谁先跑,谁跑得有力,谁就会成功。对较差的学生,给予多的关心和指导,并帮助他们树立信心;对骄傲的学生批评教育,让他们不要放松学习。

2、改变学生不良的学习习惯,建立良好的学习方法和学习态度。开始,有些学生有不好的学习习惯,例如作业字迹潦草,不写解答过程;不喜欢课前预习和课后复习;不会总结消化知识;对学习马虎大意,过分自信等。为了改变学生不良的学习习惯,我要求统一作业格式,表扬优秀作业,指导他们预习和复习,强调总结的重要性,并有一些具体的做法,如写章节小结,做错题档案,总结做题规律等。对做得好的同学全班表扬并推广,不做或做得差的同学要批评。通过努力,大多数同学能很快接受,慢慢的建立起好的学习方法和认真的学习态度。

为了做到这点,我常常通过互联网搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在写作业过程出现的问题做出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。

在课后,利用自习时间,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,我并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度的一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的绊脚石,在后进生的转化工作中,我特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。

一份耕耘,一份收获。教学工作苦乐相伴。我将本着"勤学、善思、实干"的准则,一如既往,再接再厉,把工作搞得更好。

高一数学教案篇八

1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数确定的.

(2)了解数列的各种表示方法,理解通项公式是数列第。

与项数。

的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

3.通过由。

的过程,培养学生严谨的科学态度及良好的思维习惯.

教学建议。

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

(5)对每个数列都有求和问题,所以在本节课应补充数列前。

项和的概念,用。

表示。

的问题是重点问题,可先提出一个具体问题让学生分析。

相关内容

热门阅读

最新更新

随机推荐