首页 > 文库大全 > 精品范文库 > 2号文库

溪洛渡水电站抗冲耐磨水泥混凝土性能试验研究

溪洛渡水电站抗冲耐磨水泥混凝土性能试验研究



第一篇:溪洛渡水电站抗冲耐磨水泥混凝土性能试验研究

溪洛渡水电站抗冲耐磨水泥混凝土性能试验研究

来源:国家电力公司成都勘测设计研究院

202_年07月08日

前言

溪洛渡水电站装机12600MW,位于四川省雷波县和云南省永善县接壤的金沙江溪洛渡峡谷,是一座以发电为主,兼有防洪、拦沙和改善下游航运等综合利用效益的特大型水利水电枢纽工程。溪洛渡水电站具有“高水头、大泄量、窄河谷”特点,泄洪洞最大流速接近50m/s,泄洪功率约为9500MW,为二滩水电站的2.5倍。多年平均含沙量1.72 kg/m3,为二滩水电站的3倍多。坝址处多年平均推移质输沙量180万t,多年平均悬移质输沙量2.47万t。这样大的挟沙水流通过电站泄洪排沙建筑物,对建筑物表面材料的磨损破坏是一个急待解决的技术问题。为此,本文结合溪洛渡水电站工程,对各种抗冲耐磨混凝土的特性进行研究,从而优选出抗冲耐磨性能优良的材料供电站施工采用。2 影响混凝土抗冲耐磨性能的主要因素

混凝土是由胶凝材料和沙石骨料组成的多相复合材料。在悬移质和推移质泥沙的冲磨作用下,组成材料中抗冲耐磨性能较差的部分将首先被磨掉,抗冲耐磨性能较强的部分则凸现出来,并承受较多的冲磨作用。显然,提高混凝土内各组分的抗冲耐磨性能,提高耐磨性较高的组分在混凝土内所占比例及改善各组分之间的界面结合状况,都有利于混凝土抗冲耐磨性能的提高,其中水泥品种与骨料品种是影响混凝土抗冲耐磨性能的主要因素。2.1 水泥品种对混凝土抗冲耐磨性能的影响

水泥的各项力学性能,主要决定于组成它的矿物成分及其含量。对合成单矿物熟料的水泥进行的相同稠度浆体的单矿物水泥石及沙浆的磨损试验结果表明,C3S抗冲磨强度最高,C2S的抗冲磨强度最低,C3A及C4AF的抗冲磨强度较接近。结合溪洛渡水电站的实际情况进行的不同品种水泥的抗冲耐磨性能试验研究结果表明:在相同条件下,采用江津中热525号水泥的混凝土抗冲耐磨性能优于采用水城普硅525号水泥的混凝土。用单位强度的混凝土抗冲耐磨强度指标来衡量,也可以得出这个结论。这是由于江津中热525号水泥与水城普硅525号水泥相比,其C3S的含量较高、C2S含量较低的缘故。水泥的基本性能及不同品种水泥混凝土抗冲耐磨性能见表

1、表2。

2.2 骨料品种对混凝土抗冲耐磨性能的影响

一般情况下,挟沙石的水流首先将混凝土表面水泥石的分子与母体分离,使水泥石逐渐成凹坑,而骨料逐渐凸出来。在挟沙石水流的继续冲击下,凸出的骨料所承受的冲磨作用力大于凹陷下去的水泥石,因而骨料的品种以及骨料的自身耐磨性能对混凝土的抗冲耐磨性能的影响是不容忽视的。

溪洛渡水电站工程区域内天然沙砾石质次、量少,大坝混凝土需采用当地的灰岩和玄武岩加工人工骨料。鉴于溪洛渡水电站的实际情况,对玄武岩和灰岩人工骨料进行了耐磨性能试验,并对不同品种人工骨料混凝土的抗冲耐磨性能进行了试验研究。

2.2.1 人工骨料的耐磨性能

采用ASTM标准中C131和C535方法对灰岩和玄武岩人工骨料分别进行耐磨性能试验。试验结果表明(见表3):灰岩和玄武岩的磨损率均未超过ASTM标准中C131和C535的规定,不同粒径的玄武岩耐磨性能都优于相应的灰岩。在对ASTM标准中C131和C535方法进行修改和补充的基础上,进行了不同组合人工骨料的耐磨性能试验。试验结果表明(见表4):玄武岩人工骨料的耐磨性能最好,灰岩人工骨料的耐磨性能最差,玄武岩粗骨料与灰岩细骨料组合的耐磨性能介于两者之间。

2.2.2 不同品种人工骨料对混凝土抗冲耐磨性能的影响

在水泥品种及混凝土配合比相同的情况下,玄武岩混凝土的抗冲磨强度比灰岩混凝土的提高1倍多。当保持混凝土粗骨料品种(玄武岩)不变时,仅改变细骨料品种(将玄武岩人工砂代替灰岩人工砂),混凝土抗冲磨强度提高73%;在保持细骨料品种(灰岩)不变情况下,仅改变粗骨料品种(将玄武为岩代替灰岩作粗骨料),混凝土的抗冲磨强度可提高28%。由此可见,骨料的品种对混凝土的抗冲耐磨性能具有显著的影响,其中细骨料品种的影响要大于粗骨料品种的影响。由试验结果可以看出(见表5),不同一试验条件下,骨料的耐磨性能与混凝土的抗冲磨强度有明显的关系,耐磨性能好(骨料磨耗率小)的骨料,其混凝土的抗冲磨能力就强。对溪洛渡水电站有抗冲耐磨要求的部位,其混凝土应选用玄武岩人工骨料。武岩人工骨料。

溪洛渡水电站抗冲耐磨混凝土的性能试验研究

减轻或防止推移质及悬移质破坏水工建筑物的途径,可以从两个方面着手:一是设计时,在工程布置和工程结构上尽可能使水流顺直,消能工应避免采用使水流紊乱的结构形式,以减轻推移质的撞击;二是在水工建筑物过流部位采用抗冲耐磨性能优良的材料加以保护。针对溪洛渡水电站的实际情况分别进行了玄武岩人工骨料混凝土、硅粉混凝土、聚丙烯纤维混凝土、铁矿石混凝土和矿渣微粉混凝土抗冲耐磨性能的试验研究。通过试验研究,推荐适合溪洛渡水电站的抗冲耐磨混凝土,以减轻和防止溪洛渡水电站水工建筑物发生冲磨破坏。

高速挟沙水流及推移质沙石对混凝土材料的冲磨试验方法及抗冲磨性能的评定标准,至今未统一。为了客观地评定各种抗冲耐磨材料的性能,采用了圆环法(以抗冲磨强度表示)、水下钢球法(以抗磨损强度表示)、圆盘耐磨仪法(以耐磨硬度表示)和冲击法(以抗冲击韧性表示)等多种试验方法对混凝土抗冲耐磨性能进行试验研究。

3.1玄武岩人工骨料混凝土的抗冲耐磨性能

玄武岩人工骨料自身坚硬致密(密度为2.96g/cm3,吸水率为0.52%),耐久性能好,其混凝土基本性能及抗冲耐磨特性见表6。试验表明,随着混凝土水灰比的减小,玄武岩人工骨料混凝土的密实性提高,抗冲磨强度增大。但抗冲磨强度随着水灰比减小逐渐增大的规律是有一定区限的。当水灰比过小时,水泥浆过于黏稠,致使在相同坍落度条件下,混凝土内水泥浆量过多,骨料含量相对较少,混凝土抗压强度虽然有所增加,但抗冲磨强度反而可能下降。因此在抗冲耐磨混凝土配合比设计时,不能无限制地减小水灰比,否则不仅不能达到提高混凝土抗冲磨强度的目的,反而会产生浪费水泥、增大混凝土发热量及干缩率等一系列弊病。

3.2 硅粉混凝土的抗冲耐磨特性

硅粉的主要成分为无定形氧化硅,其颗粒为极细小的球形微粒,比表面积达20m2/g,具有很高的活性。试验研究表明:硅粉掺入混凝土中,可显著改善水泥石的孔隙结构,使大于320A的有害孔显著减少,可使水泥石中力学性能较弱的Ca(OH)2晶体减少、C-S-H凝胶体增多;同时也可改善水泥石与骨料的界面结构,增强了水泥石与骨料的界面黏结力,从而提高混凝土的各项力学性能。本次试验研究采用昆明铁合金厂生产的硅粉,其SiO2含量为88.9%,密度为2.28g/cm。硅粉掺入混凝土的方法为内掺法(取代同重量水泥),掺量分别为8%、10%和12%。与普通混凝土相比,掺8%硅粉时,抗压强度增加4%左右;掺10%硅粉时,抗压强度增加9%左右;掺12%硅粉时,抗压强度增加18%左右。

由硅粉混凝土抗冲耐磨特性试验结果可以看出(见表7),硅粉混凝土与普通混凝土相比,抗冲磨强度明显提高。掺8%硅粉时提高22%,掺10%硅粉时提高28%,掺12%硅粉时提高69%。加入硅粉能改善混凝土的抗冲耐磨性能是由于改善了浆体自身的抗磨性和硬度,以及水泥浆与骨料界面的黏结,从而使粗骨料在受到磨损作用时难以被冲蚀。由硅粉混凝土冲磨失重率与冲磨时间的关系曲线可见(见图1),普通混凝土各时段的冲磨失重率明显高于硅粉混凝土,在冲磨早期阶段(水泥石磨蚀阶段,见图2),硅粉混凝土的抗冲磨强度较普通混凝土提高了78.0%-94.5%,掺入硅粉对混凝土水泥石抗冲磨强度的改善可见一斑。

3在冲击荷载作用下,硅粉混凝土的能力比普通混凝土增加53.8%-200.0%,并随着硅粉掺量的增加而增大。在模拟高速水流下推移质对混凝土表面的冲磨情况下,硅粉混凝土的抗磨损强度较普通混凝土提高了78%~92%。由圆盘耐磨仪法试验结果来看,在同等条件下,硅粉混凝土的耐磨硬度比普通混凝土提高174%~246%。从硅粉混凝土的抗冲耐磨特性来看,掺入硅粉对混凝土整体抗冲击能力的提高幅度要大于对混凝土表面抗冲磨能力的提高幅度,说明掺入硅粉有利于混凝土整体增强。

3.3 聚丙烯纤维混凝土的抗冲耐磨特性 在混凝土中掺入一定量的聚丙烯纤维具有防止或减少混凝土裂缝、改善混凝土长期工作性能、提高变形能力和耐久性等优点,因而在工程上得到广泛的应用。本次试验研究采用四川华神建材有限公司研制开发的“好亦特”聚丙烯纤维,试验中聚丙烯纤维采用的三种掺量分别为0.6kg/m3、0.9kg/m3和1.2kg/m3。由聚丙烯纤维混凝土的基本性能可以看出(见表8),同不含纤维的普通混凝土相比,聚丙烯纤维混凝土的脆性指数有所降低,弹性模量降低,极限拉伸变形增大。聚丙烯纤维所具有的这些特征,有利于提高混凝土的延性,改善混凝土变形性能,这对约束混凝土裂缝的扩展以及提高混凝土裂后的承载能力都起很大的作用。混凝土的收缩试验结果表明,掺入一定量的聚丙烯纤维可以明显地减少混凝土的收缩变形,随着纤维掺量的增加,其收缩变形减少的幅度加大。

从混凝土在高速挟砂水流下所测试验结果来看(见表

9、图3),在混凝土中掺入一定量的聚丙烯纤维可以提高混凝土的抗冲磨强度(24%~45%),其抗冲磨强度随着聚丙烯纤维掺量的增加而增大。由聚丙烯纤维混凝土抗冲磨强度时段曲线可以看出(见图4),在冲磨的初期,由于聚丙烯纤维的掺入,水泥石的整体性能增强,抗冲磨强度提高了38.8%~69.4%。随着磨蚀的不断增加,混凝土中的骨料不断裸露,骨料开始承担着大部分的冲磨作用。由于两种混凝土的骨料相同,此时聚丙烯纤维混凝土和普通混凝土两者抗冲磨强度的差异逐渐减小,仅相差18.6%-31.4%。对聚丙烯纤维砂浆表面进行的耐磨硬度测定结果表明,在同等条件下,聚丙烯纤维可使砂浆表面耐磨硬度提高37%。在冲击荷载的作用下,掺入一定量的聚丙烯纤维可以明显提高混凝土的抗冲击韧性(提高26.9%-57.7%),并随着掺量的增加而增大。

第二篇:溪洛渡水电站泄洪洞时均压力特性试验研究

溪洛渡水电站泄洪洞时均压力特性模型试验

查高速水力学书,脉动压强及时均压强的基本情况及研究的现状。

本文通过水工模型试验,对溪洛渡水电站3#泄洪洞优化体型的时均压力特性进行了研究。工程概况

1.1 泄洪洞优化体型

溪洛渡水电站位于金沙江中段,是一座以发电为主,兼有拦沙、防洪和改善下游河道航运条件等综合利用的大型水电站。水电站采用坝身孔口与岸边泄洪洞相结合的泄洪消能方式,约60%的洪水通过坝身宣泄,40%的洪水通过左、右岸各2条的常规“龙落尾”泄洪洞宣泄,泄洪洞采用有压弯洞后接无压泄洪洞方案布置,出口最大单宽流量达278m3/s.m,上、下游落差近190m,是目前国内最大规模的泄洪隧洞。通过模型试验发现,溪洛渡3#泄洪洞原设计体型存在反弧末端附近掺气浓度低和出口挑流水舌冲击河道对岸这两个主要问题。通过增设掺气坎【1】、修改挑坎体型【2】和洞身曲线,对泄洪洞体型进行了优化。1.2 泄洪洞优化体型简介

泄洪洞进口为长25.0m的渐变段,将矩形断面过渡为圆形断面,圆形隧洞直径15.0m,长562.05m,底坡0.00817。进口段后在桩号0+330.873m~0+547.224m之间的压力隧洞平面转弯,弯道隧洞中心线圆弧半径200.0m,圆心角61.98°。在压力隧洞出口采用圆变方的渐变段将过水断面收缩成14.0m×12.0m的矩形断面,其后设置弧形工作门控制水流。工作闸门闸室下游接城门洞型明流隧洞,底坡0.023,断面尺寸14.0m×18.0m(宽×高)。桩号1+036.961后为渥奇曲线段,水平长度为58.55m。抛物线段末端接一长23.2m与抛物线相切的直线段,直线段末端设第1道掺气坎,第1道掺气坎的桩号是1+116.961m。下游85m处设第2道掺气坎,第2道掺气坎的桩号是1+201.961m。其后接半径300m,圆心角为15.1455°的反弧段,反弧末端设置第3道跌坎。第3道跌坎的桩号为1+296.404m,第3道跌坎下游为长140m、底坡为0.08的直线段,在桩号1+436.404m处设置第4道跌坎。第4道跌坎下游是长175.856m、底坡0.08,断面尺寸为14.0m×

与泄洪流量有关,如校核洪水位工况,由于流速较高,时均压力下降的幅度稍大,最小压力为37.01kPa。

龙落尾的抛物线段,受底板凸曲率的影响,时均压力逐渐减小。测点PC32和PC33位于与抛物线相切的直线段内,其时均压力迅速增加,在直线段的末端受第1道掺气挑坎的影响,水位壅高,测点PC33的时均压力增加较大。

掺气挑坎下游泄洪洞底板中心线上的时均压力特性基本相同,即在水舌冲击区时均压力迅速增加,随后逐渐降低,冲击区下游底板时均压力趋于平缓,至掺气挑坎上游,受挑坎的影响,坎上水位增加,该部位的时均压力增大。以校核洪水位为例,第1道掺气挑坎下游水舌冲击区的最大时均压力是173.97kPa(测点PC36),冲击区下游的时均压力在75~81kPa范围内波动。校核洪水位工况下,渥奇面及掺气挑坎底板中心线上的时均压力分布见图2。

171.28kPa41.72kPa***0.07kPa177.74kPa102.93kPa11264.06kPa78akP701.11akP12.***.87kPa263.05kPa

图1 校核洪水位泄洪工况下压力隧洞时均压力分布

(1~11表示测量断面,上图为底板中心线和顶部的压力分布,下图为左、右边墙中线上的压力分布)

PC26PC27PC28PC29PC30PC31PC32PC33PC34PC3PC365PC37PC38PC39PC40PC41PC42PC43PC45PC47PC48PC49PC50PC51PC51PC52PC54PC56PC58PC53PC55PC59PC60PC61PC62PC63PC64PC66PC68PC65PC67PC69PC70PC71PC72PC73PC74PC75PC76

图2 校核洪水位明流段底板中心线时均压力分布

3.2.2 边墙时均压力分布

跌坎下游边墙压力测点布置见图3。

边墙压力测点均位于挑坎下游空腔范围内,各测点的时均压力具有如下特点:1)位于水舌核心区的时均压力变化不大,接近空腔内表面和水流表面测点的时均压力较小;2)水舌冲击区附近边墙测点的时均压力较大;3)冲击区附近边墙测点的时均压力符合上小下大的特点,但是不满足静压分布规律。接近空腔内表面测点,其时均压力为负值。库水位越高,水流的挟气能力越强,空腔中的负压越大,该测点的压力也越小。

图3 跌坎下游边墙压力测点布置

参考文献

第三篇:浅谈溪洛渡水电站右岸泄洪洞混凝土缺陷修补施工工艺

最新【精品】范文 参考文献

专业论文

浅谈溪洛渡水电站右岸泄洪洞混凝土缺陷修补施工工艺 浅谈溪洛渡水电站右岸泄洪洞混凝土缺陷修补施工工艺

溪洛渡水电站右岸泄洪洞设计具有大断面、大流量、高流速的特点,对过流面混凝土的抗冲耐磨要求高。混凝土工程不可避免的存在质量通病和不平整度偏差过大的缺陷,而这些缺陷在运行过程中易产生气蚀破坏,影响泄洪洞的正常使用寿命。因此,混凝土后期的缺陷处理也是非常重要的,主要对几种常见的混凝土缺陷处理的施工工艺进行了介绍。溪洛渡水电站泄洪洞混凝土缺陷修补

1工程概述

溪洛渡水电站右岸3#、4#泄洪洞结构形式为有压接无压,洞内龙落尾型式,两条泄洪洞轴线平行布置,中心间距5m,隧洞洞身段全长1433.549m、1633.611m,整个泄洪洞由岸塔式进水塔、有压段、工作闸门室、无压上平段、龙落尾段、出口明渠段及挑坎段组成。

右岸泄洪洞混凝土设计总量累计为52.4万m3,在施工过程中由于自然因素、施工条件及人为等因素的影响,其混凝土质量通病的发生不可避免。泄洪洞设计最大流速达50m/s,在这样流速下,混凝土过流面承受冲刷、磨损和撞击时,混凝土过流面存在的质量通病和不平整度容易产生气蚀破坏。因此,对过流面的质量及体型要求很高,存在的缺陷必须予以处理。考虑到缺陷处理的工程量比较大,要求又较高,所以要求施工工艺简单,可操作性强。

2泄洪洞混凝土质量标准

2.1不平整度要求(见表1)

2.2形体标准

右岸泄洪洞各部位混凝土形体偏差最大允许值为10mm。

2.3混凝土强度要求

有压段、无压段边墙、无压段底板、无压段边墙、中闸室下部过流面混凝土强度为40Mpa,无压段顶拱、龙落尾顶拱混凝土强度为25

Mpa,龙落尾底板、龙落尾边墙、出口明渠底板、明渠边墙、挑坎底板、挑坎边墙浇筑硅粉混凝土强度为60Mpa。

最新【精品】范文 参考文献

专业论文

2.4各段设计流速(见表2)

3缺陷情况

右岸泄洪洞缺陷处理主要针对混凝土表面气泡、麻面、施工缝、施工预留孔洞、形体标准较高部位混凝土体形负偏差等常见缺陷进行处理。

3.1气泡

混凝土表面气泡分为少量分散直径大于5mm气泡和气泡密集区,少量分散直径大于5mm气泡主要出现在泄洪洞有压段圆形衬砌断面反弧段区域,其它部位零散出现。气泡密集区存在部位主要集中在右岸泄洪洞有压段圆形衬砌断面反弧段区域、出口明渠段局部区域。

3.2施工缝

溪洛渡水电站右岸3#、4#泄洪洞隧洞洞身段全长1433.549m、1633.611m,浇筑时为了施工的方便,统一为9m一仓,两仓之间设置一道施工缝,施工缝深度在1m~1.2m,长度同断面周长。

3.3孔洞

预留孔洞主要是混凝土台车轨道孔,灌浆孔,特殊部位大模板浇筑时定位锥孔;孔径一般在10cm左右,孔深在30~120cm之间。台车轨道孔主要分布在有压段,灌浆孔主要分布在有压段、无压段,定位锥孔主要分布在掺气坎、出口挑坎等部位。

3.4混凝土欠浇

溪洛渡水电站右岸泄洪洞局部欠浇混凝土主要分布在工作闸门室闸门槽、掺气坎边墙等混凝土形体要求较高部位。

4缺陷处理工艺

4.1气泡及麻面缺陷处理

混凝土表面气泡分为少量分散气泡和气泡密集区,针对不同类型采用不同修补方案,两种缺陷处理工艺流程一样,主要区别在于一个为局部修补,一个为整体修补。

4.1.1施工程序

气泡普查→施工准备→打磨→清洗→清孔→点刮或面刮→养护

4.1.2处理方法

第一步:用打磨机打磨表面。

最新【精品】范文 参考文献

专业论文

第二步:用清水冲洗界面直到表面清洁无任何灰尘杂物。

第三步:用竹丝帚扫孔,除去气泡孔内不利于环氧胶泥粘接和填筑的深层灰尘杂物。

第四步:风干后涂刷修补材料施工,采用点刮或面刮方式,使其施工面光滑平整。

第五步:自然养护。

4.2施工缝缺陷处理工艺

施工缝缺陷处理主要采用化学灌浆法,对于小于0.1mm的施工缝不进行处理,大于0.1mm的施工缝进行主要进行化学灌浆法进行处理。

4.2.1施工程序

缝面清理→打孔→埋设注浆针头→封缝→检查密封效果→配浆→灌浆→缝面处理→灌后检查→质量检查与验收→养护

4.2.2处理方法

对于大于0.1mm的裂缝均采用直接化学灌浆处理方法,化学灌浆具体施工工艺如下:

A清缝。用角磨机磨除施工缝表面两侧残渣及灰尘,除去表面污物,为下一个工序作好准备。

B打孔。灌浆孔的间距根据裂缝粗细和深浅而定,一般情况下灌浆孔的间隔为20~25cm。灌浆孔打在裂缝两侧10~15cm处,孔斜穿至裂缝。为了达到更好的处理效果裂缝两侧的孔交叉分布。

C埋设注浆针头。在裂缝两侧打好的灌浆孔处埋设注浆针头。再对埋设的注浆针头做一些技术处理,防止注浆针头在灌浆时产生漏浆现象。

D封缝。裂缝槽内用封缝材料进行封闭,防止灌浆时出现漏浆及封缝材料开裂。

E检查密封效果。检查注浆针头及缝的密封效果,注浆针头需重新封闭或更换注浆针头;对于缝漏气处需重新密封。

F灌浆材料配制。根据施工当时的气温、湿度、温差等当地条件,配置灌浆用的材料。

G灌浆。用专业的高压灌浆设备进行灌浆。待嵌缝环氧砂浆固结

最新【精品】范文 参考文献

专业论文

达到设计强度后进行灌浆,设计灌浆压力暂定为0.3~0.5MPa,用压力表进行控制,直至达到标准结束灌浆。

H缝面处理。待浆液凝固后除去化学注浆针头,灌浆孔表面采用环氧砂浆压实抹平,确保混凝土外观质量。

I灌后检查。灌浆结束7天后,进行压水试验,28天后进行缝面取芯劈拉试验,由设计或监理确定检查位置,钻孔深度和角度同灌浆孔,以0.5MPa压力水检验,裂缝不吸水(透水率<0.3Lu)为合格,局部位置出现渗水,可作二次补强灌浆,直至合格为止,检查孔应控制在3%范围内;缝面取芯劈拉试验抗拉强度≥2.0MPa为合格。

J.养护:养护7天。

预留孔洞缺陷处理工艺

孔洞修补要求孔洞内部填充紧密,孔洞处理尽量避免损伤老混凝土,孔洞修补完成后外表面光滑平整。

.1施工程序

施工准备→基面处理→材料拌制→材料填充→材料养护

.2处理方法

第一步:角磨机将孔洞口破损处处理至0.5~1cm深,将孔内残物清理干净并清水湿润。

第二步:根据现场实际拌制修补材料。

第三步:人工将材料填充至孔内并夯实。

第四步:孔内密实后将修补区域刮平和老混凝土面形成一个平面。

第五步:自然养护。

4.4混凝土欠浇部位薄层贴补工艺

对欠浇混凝土缺陷处理,本着尽量不损伤老混凝土面、施工工艺简单贴合施工实际的原则,主要采用薄层贴补法。如图1所示。

.1施工程序

采用钢丝刷、錾子清除缺陷混凝土→冲洗基面→烘干基面→涂刷基液→填补修补材料→人工刮平→养护。

.2处理方法

第一步:打磨、冲洗混凝土表面使之清洁干燥;

最新【精品】范文 参考文献

专业论文

第二步:为确保混凝土面与环氧砂浆保持良好的粘结力,需先涂刷一薄层环氧基液,待基液用手触摸有显著的拉丝现象时再填补修补材料;

第三步:现场拌制修补材料,人工填补修补材料应使其平整光滑。

第四步:修补完后,夏天采用遮阳防晒,冬天采用保温被保温,养护期为5~7天,养护期内不得受水浸泡和外力冲击。

5结语

溪洛渡水电站右岸泄洪洞缺陷处理工作,根据不同施工方法和不同材料做了大量现场试验,为后期的混凝土缺陷处理奠定了良好的试验基础。本人全程参与整个实验的始终,建议类似的工程需注意以下两点:

(1)针对不同施工环境,施工前应先进行现场缺陷处理试验,考虑小规模试验到大规模处理的区别,施工方法操作上应具有针对性。

(2)材料的选取上要结合经济、施工方法、现场环境等因素综合考虑,不同的环境,材料的性能存在较大的差异。

------------最新【精品】范文

第四篇:金沙江溪洛渡水电站工程审计结果公告

金沙江溪洛渡水电站工程审计结果公告(第一阶段)

(二○○九年七月二十日公告)

根据《中华人民共和国审计法》的有关规定,审计署202_年和202_年连续对中国长江三峡开发总公司(以下简称三峡总公司)投资建设的金沙江溪洛渡水电站工程(以下简称溪洛渡工程)(编者注:溪洛渡电站是中国仅次于三峡的特大型工程,属世界第三大水电站,它位于金沙江下游云南省永善县与四川省雷波县相接壤的溪洛渡峡谷。溪洛渡水电站以发电为主,兼有防洪、拦沙和改善下游航运条件等巨大的综合效益。开发目标是实施“西电东送”,满足华东、华中经济发展的用电需求;配合三峡工程提高长江中下游的防洪能力。溪洛渡电站总装机容量 1260 万千瓦,坝高278 米,水库正常蓄 水位600m,相应库容 115.7 亿立方,防洪库容46.5 亿立方米。)建设管理、移民安置等情况进行了跟踪审计,第一阶段审计已经结束。现将审计结果公告如下:

一、溪洛渡工程基本情况

溪洛渡工程是三峡总公司在金沙江下游开发的4个大型水电站之一,也是国家实施“西电东送”的第一期工程,设计装机容量1260万千瓦。202_年原国家计委批准立项。202_年11月批准可研设计,可研总投资674.78亿元,其中静态总投资503.42亿元,建设期贷款利息171.36亿元。建设资金来源为企业自有资金、企业债券和银行贷款,建设总工期13年。溪洛渡工程202_年3月开始筹建,202_年11月完成大江截流。目前,场内外交通、施工营地、导流等工程已基本完工,地下厂房、大坝正在开挖施工。截至202_年8月,三峡总公司累计筹集建设资金158.68亿元,累计完成投资152.95亿元。

根据发展改革委批复的溪洛渡工程可行性研究阶段建设征地和移民安置规划,建设征地和移民安置补偿投资概算为77.8亿元。三峡总公司与四川、云南两省签订包干协议,分别为34.6亿元和43.2亿元。截至202_年8月底,两省累计收到三峡总公司拨付的移民资金20.74亿元,累计下拨14.17亿元,本级使用2.3亿元,余额为4.48亿元(含利息收入)。溪洛渡水电站水库淹没影响区涉及四川、云南两省8县1区,规划搬迁总人口61 035人。截至202_年8月底,施工区及围堰区已累计搬迁安置9639人,库区移民安置工作正在进行。

二、审计评价

审计结果表明,三峡总公司及各参建单位在“建设一座电站、带动一方经济、改善一片环境、造福一批移民”的开发理念下,克服建设周期长、技术复杂、移民安置任务重等困难,逐步建立健全各项内部控制制度,较好地完成了阶段性建设任务。

(一)建设资金管理使用情况较好。三峡总公司重视财务管理工作,按照可行性研究报告要求,根据工程进度需求及时筹集建设资金,内控制度比较健全,会计核算和财务管理比较规范,审计没有发现挪用和严重侵占建设资金的问题。

(二)工程建设管理不断加强并逐步规范。审计署202_年对三峡工程实施审计后,三峡总公司举一反三,加大了对溪洛渡工程的管理力度,细化工程组织、合同管理和质量安全管理流程,采用先进的信息化管理系统进行控制,工程建设管理水平逐步提高,已完工程质量优良率达90%。

(三)建立市场准入制度,不断规范施工企业行为。三峡总公司在总结三峡工程建设经验基础上,结合国内建筑市场现状和溪洛渡工程实际情况,制定了多项管理制度,实行了建筑市场施工单位准入制度,工程建设资金封闭运行,定期清理不合格施工队伍,有效保障了工程顺利实施。

(四)四川、云南两省政府积极组织协调,移民安置进展基本顺利。两省政府高度重视移民安置工作,建立和健全了移民管理机构,制定多项移民资金使用和管理规定。各级移民管理机构克服人员少、任务重、移民安置政策调整等困难,积极组织实施移民安置、实物指标调查复核等工作,保证了工程建设顺利进行。

审计也发现溪洛渡工程在投资控制、工期进度、招投标、关联企业管理等方面还存在一些影响项目投资效益的问题,四川、云南两省在移民安置进度、移民资金管理和使用上也还存在一些问题,需要加以改进。

三、审计发现的主要问题

(一)项目执行概算尚未编制完成,投资控制目标不够明确,投资控制管理尚待加强。

溪洛渡工程202_年开始筹建,已签订各类合同金额380亿元,累计完成投资152亿元,但三峡总公司至今尚未编制完成项目执行概算。因工程投资缺少分部门、分项目的控制标准和依据,建设中出现合同执行不严谨、工程造价审核把关不严等问题,导致工程建设成本增加,部分单项工程超过可研估算。统计264份完成比例在90%以上的建安工程合同,合同原始金额38.17亿元,截至202_年8月底,投资累计增加10.97亿元,增加比例达28.74%。由于没有执行概算,审计难以对投资总体控制作出评价。

(二)大幅压缩工期,一定程度上增加了工程建设风险。

根据可行性研究报告,溪洛渡工程计划202_年初开始筹建,202_年11月金沙江截流。而实际202_年3月开始筹建,202_年11月完成金沙江截流。筹建工作较原计划推迟15个月,截流提前12个月,合计压缩工期27个月,加大了工程建设风险和难度,也增加了项目建设成本。统计45个对外交通建安工程,合同金额20.14亿元,因赶工期等原因导致大量变更,最终结算金额26.85亿元,变更率达33.32%。对外交通工程202_年8月开始详勘,同年10月开工,由于勘察设计时间短,地质勘察不到位,发生F标大路梁子隧道突发瓦斯溢出并燃烧的重大安全事故,工程进口段停工34天。

(三)部分项目招投标管理不够规范。

溪洛渡工程应招标分项目464项,合同金额248.98亿元。实际执行中,未招标项目219项,占47.2%,合同金额16.79亿元,占6.74%。

(四)部分关联企业管理、履行职责不到位,获取不当收益。

审计抽查参与溪洛渡工程建设的部分三峡总公司下属企业,发现一些关联企业收费偏高,履行职责不到位。如三峡总公司将溪洛渡工程的招标代理直接委托给下属关联企业三峡国际公司。根据三峡总公司内部招标代理收费标准,三峡国际公司收取代理费2571万元,超出国家收费标准1010万元。经对审计抽查的91个项目进行统计,由于招投标文件的编制和审查以及清标工作不到位,部分项目招标文件技术条款和商务条款描述歧义,导致投资增加5000多万元。

202_年3月至202_年11月,三峡总公司将溪洛渡工程部分监理业务直接委托给下属企业三峡发展公司,并签订17份工程监理和其他服务合同协议,合同总价15 328.69万元,扣除成本费用,三峡发展公司取得收益3471.09万元。在实际监理过程中,三峡发展公司现场人员投入严重不足,资质偏低,审核把关不严。抽查22个工程监理日记发现,监理人员跨岗位、跨项目、跨专业上岗现象严重;抽查202_年8月份人员名单发现,无监理员资格证上岗49人,占该公司溪洛渡工程监理部人员的23%。

此外,审计还发现,溪洛渡工程建设中部分项目合同管理及结算管理不够严格,工程建设、生产、管理用房面积和投资超标,增大了工程建设成本;个别项目工程质量、安全管理还存在疏漏;概算多计列勘察设计费;部分环保项目未能达到规划要求等。

(五)移民安置未如期完成。

主要是施工区移民安置尚未全部完成。202_年,为满足工程建设需要,四川、云南两省采取临时过渡方式开始施工区移民搬迁。目前,四川省已完成施工区移民搬迁安置工作。云南省施工区移民安置实施规划尚未修编完成。

此外,审计发现有14.41亿元移民资金因管理环节多,拨付不及时。

四、审计发现问题的处理情况及建议

针对审计发现问题,审计署已依法出具审计报告,下达了审计决定书。同时建议:

(一)三峡总公司应尽快编制完成项目执行概算,加强对工程动态投资的有效控制,建立科学合理的工程价差测算、结算机制,完善投资控制管理体系,切实提高建设资金使用效益。

(二)三峡总公司应进一步加强工程建设管理,严格执行招投标法,确保招投标公开、公平、公正;加强合同管理,提高招投标文件和合同条款的严密性和可操作性,严格执行合同约定,减少不合理支出;加强对关联企业的管理,用市场机制引导其参与投标竞争,并监督下属企业履行合同约定的义务和责任。

(三)国家有关部门和地方政府应加强协调和领导,妥善处理发展地方经济与控制项目投资的矛盾,尽快完成移民安置实施规划,切实落实移民安置政策,完善相关措施,确保社会稳定。

五、审计发现问题的整改情况

三峡总公司及其相关单位高度重视审计提出的问题和意见,把落实整改与加强内部控制管理结合起来,进一步规范了工程计量和合同管理,纠正违规金额3600多万元。制定多项管理办法,调整机构、充实监理人员、明晰岗位职责、加强岗位知识和技术培训,完善了监理管理机制。对不合格施工企业及时清退,严格准入制度。四川、云南两省政府高度重视审计发现问题的整改工作,针对移民安置实施规划滞后和政策不够完善问题,积极研究妥善解决办法。云南省政府已责成省移民局对移民资金实施严格的限时拨付制度,加快移民安置进度。

第五篇:浅谈金沙江溪洛渡水电站的防洪作用

浅谈金沙江溪洛渡水电站的防洪作用

江志远

(中国三峡总公司计划合同部,湖北宜昌 443002)概述

长江在宜宾以上的河段称为金沙江,其主源沱沱河发源于青藏高原唐古拉山脉。沱沱河与当曲汇合后称通天河,通天河流至玉树附近与巴塘河汇合后始称金沙江。金沙江流经青、藏、川、滇四省(区),至宜宾接纳岷江后称为长江,宜宾至宜昌河段又称川江。金沙江从河源至河口长3364 km,天然落差5100 m,流域面积47.32万km2,占长江流域面积的26%。多年平均流量4920 m3/s,多年平均径流量1550亿m3,占长江宜昌站来水量的1/3。金沙江溪洛渡和向家坝水电站是金沙江下游河段的最后两个梯级,已经国务院批准立项,将于202_年开工建设。特别是溪洛渡水电站水库库容较大,建成后可以有效地提高川江河段沿岸宜宾、泸州、重庆等城市的防洪标准;配合三峡水库对长江中下游补偿调度,进一步提高荆江河段的防洪标准,减少中下游防洪损失。

1.1 长江防洪形势

长江是我国第一大河,长江中下游平原地区是我国工农业发达的精华地区。据1997年统计,长江流域总人口为4.18亿人,约占全国的34%;耕地面积2272万公顷,约占全国的24%;国内生产总值约占全国的1/3。长江流域属亚热带季风区,暴雨活动频繁,洪灾在流域内分布很广,特别是主要由堤防保护的中下游平原区最为严重。川江宜宾至重庆河段以及岷江、沱江、嘉陵江的中下游地区,是长江上游易受洪水灾害的重点区域。

正在建设的三峡工程防洪库容221.5亿m3,是长江中下游防洪体系的关键工程,建成后将使长江中下游的防洪能力大大改善,小于100年一遇的洪水,控制枝城流量不超其安全泄洪56700m3/s,使荆江河段防洪标准由10年一遇提高到100年一遇,根本改变了荆江河段的防洪紧张局面,但长江中下游特别是城陵矶以下河段洪水来量与河道泄量不平衡的矛盾依然存在,防洪问题仍然突出。一但分洪损失很大,实施困难,恢复不易。其中的重要措施就是继续结合兴利逐步建设上中游干支流水库,拦蓄洪水,以逐步减小中下游地区的分洪量。

1.2 长江防洪总体方案

长江总体防洪的重要措施之一,是结合兴利逐步兴建具有防洪能力的干支流水库工程。根据长江干支流的开发条件,加大上游干支流水库蓄洪能力是完善长江中下游防洪体系的根本措施,同时要加强上游水土保持、封? 街彩骱屯烁?还林。在上游的防洪治理中修建的水库工程,一方面要考虑解决本身的防洪问题,另一方面根据条件的可能应尽量能对长江中下游防洪起一定作用。金沙江下游紧临川江宜宾至重庆河段,重要城市和大片耕地现有防洪能力均较低,干支流建库是提高其抗洪能力的重要措施,而金沙江梯级对川江防洪又是主要的水库工程措施。长江中下游应合理地加高加固堤防、整治河道,结合三峡水库防洪作用逐步安排建设平原分蓄洪区,进行平垸行洪、退田还湖,逐步完善非工程措施建设,形成以堤防为基础,三峡水库为骨干,干支流水库、蓄滞洪区、河道整治相配套,结合封山植树、退耕还林,平垸行洪、退田还湖,水土保持及其它非工程措施的综合防洪体系。

国务院批准的《长江流域综合利用规划简要报告》(1990年修订)中,拟定金沙江开发主要任务为发电、航运、防洪、漂木和水土保持,推荐金沙江石鼓?宜宾河段分9级开发,总库容达800亿m3以上,兴利库容336.4亿m3,具有安排大规模防洪库容的潜力,梯级水库约控制了长江上游50%流域面积,完建后配合三峡水库对长江中下游防洪可以起到显著的作用。在《国务院批转水利部关于加强长江近期防洪建设若干意见的通知》(国发[1999]12号)中,提出“抓紧以三峡工程为重点的干支流水库的建设”,“要抓紧澧水皂市、岷江紫坪铺„„金沙江溪洛渡等干支流水库的前期工作,落实投资来源,按基本建设程序报批,逐步安排建设”。国家发展计划委员会在1999年以计办基础[1999]330号文批复三峡总公司时强调指出:“在勘测设计中,要高度重视工程的防洪作用,认真分析长江流域洪水的特性和组合,合理确定工程规模”。溪洛渡可行性研究报告阶段,中国长江三峡工程开发总公司委托长江水利委员会进行了溪洛渡水电站防洪专题研究,现对其主要成果进行介绍。溪洛渡水电站对川江及中下游防洪作用

2.1 金沙江溪洛渡水电站来水基本情况

溪洛渡水电站位于四川省雷波县和云南省永善县境内的金沙江干流上。上接白鹤滩电站尾水,下与向家坝水库相连。坝址距离宜宾市河道里程184 km,距离三峡、武汉距离分别为770 km、1065 km。溪洛渡水电站控制流域面积45.44万km2,占金沙江流域面积的96%。溪洛渡水库正常蓄水位为600 m,电站总装机容量1260万 kW,死水位高程540 m,汛期防洪限制水位高程560 m。正常蓄水位下大坝壅高水位约230 m,形成一座长约208 km,平均宽度690 m的大水库,库容为115.7亿m3。水库总库容129.14亿m3,其

中死库容51.1亿m3,调节库容64.6亿m3,防洪库容46.5亿m3。

溪洛渡下游屏山水文站(距坝址124km)资料作为水文设计的依据,该站具有1939年?1992年的实测系列资料。金沙江径流主要来自降水,上游有部分融雪补给,推算出多年平均流量4620 m3/s,折合年径流量1460亿m3。金沙江流域洪水主要由降雨形成,由于流域面积大,雨区分散,汇流历时长,洪水多连续发生,洪水过程呈多峰过程叠加的复式峰型,一般历时30?50天。频率计算得出:千年一遇洪水(设计洪水)洪峰流量43700 m3/s;万年一遇洪水(校核洪水)洪峰流量52300 m3/s。

2.2 防护对象及其防洪代表站

根据川江河段水文测站分布情况,主要防护对象有宜宾、泸州和重庆市,分别选择宜宾市下游的李庄站、朱沱站、寸滩站为防洪代表站。由于长江洪水干支流遭遇组合复杂,河道宽阔,槽蓄能力大,洪水对防护对象的威胁主要是洪量。

川江河段整体设计洪水:洪水描述采用整体设计洪水。根据控制流域面积分布情况和水文测站的分布,选择控制干流和岷江的李庄站、控制干流和嘉陵江的寸滩站为防洪控制站,分别采用两站3?7天的设计洪量控制同倍比放大各控制点的设计洪水,组成两组整体设计洪水。设计洪水放大范围(控制站点)包括:干流屏山站(代表溪洛渡枢纽)、李庄站(代表宜宾市防洪控制站)、朱沱站(代表泸州市防洪控制站)、寸滩站(代表重庆市防洪控制站)。

2.3 溪洛渡水库调度方式

金沙江流域来水量约占宜昌水量的1/3以上,来水量相对上游其他大的支流来说,是比较稳定的,金沙江的来水往往是长江洪水的“基流”部分。

溪洛渡初步拟定的水库调度方式:6月在死水位540 m基础上,电站按保证出力发电,余水蓄存;7月初将库水位抬至汛期排沙限制水位560 m;

7、8月水库水位维持在560 m运行;9月初水库开始蓄水,水库水位逐步抬高到正常蓄水位600 m;10?12月水库一般维持在正常蓄水位600 m运行;次年1?5月为供水期,水库水位逐渐消落至死水位540 m。

汛期当川江及长江中下游均无防洪要求时,维持在规定的各时期防洪限制水位运行;当川江(或长江中下游)要求溪洛渡水库防洪蓄水时,即按照规定的相应防洪调度规则进行,蓄水至593m为止(库水位593m至600m之间库容为10亿m3)。

当另一防洪对象长江中下游(或川江)再要求溪洛渡水库防洪蓄水时,或荆江河段遇到特大洪水要求蓄洪时,则在593m水位以上继续蓄洪,直至达到正常蓄水位(防洪高水位)600m? S捎谖纯悸呛樗?けǎ?鞫确绞搅粲薪洗蟮挠嗟亍? 溪洛渡水库对川江河段的防洪作用

1994年国家颁布了国标《防洪标准》(GB50201-94),按照这一规定,川江上的宜宾、泸洲、重庆等城市,要争取达到规定的50?100年一遇的标准。但目前宜宾、泸洲等城市仅达到5~20年一遇标准,普遍低于国家规定。溪洛渡水库配合其他措施,可使川江沿岸的宜宾、泸州、重庆等城市的防洪标准逐步达到城市防洪规划拟定的目标。溪洛渡对川江防洪效果见表1。

根据溪洛渡水库消减洪峰后,不同频率洪水在各站流量的变化,推测出各防洪控制点调洪前后洪水标准。对应的洪水批准提高比较见表2。溪洛渡水电站对中下游防洪作用

溪洛渡水库对长江中下游起防洪作用,必须通过与三峡工程联合调度来实现,因而其防洪调度方式要与三峡防洪调度方式相协调。

4.1 溪洛渡水库对长江中下游减少分洪洪作用

长江中下游洪流演进范围包括宜昌至沙市、沙市至城陵矶、城陵矶至汉口、汉口至湖口等4个河段。洪流演进方法采用适用于长江中下游的江湖演算模型,演算考虑顶托、分流以及涨落率的影响。根据洪流演进成果,得出各控制站的设计洪水过程及满足堤防控制水位条件下的安全泄量过程,两者之差即为超额洪水过程。假设超额洪水均由分蓄洪区分蓄,分蓄后的超额洪量为分洪量,各河段分洪量之和即为总分洪量。根据预留防洪库容46.5亿m3方案对长江中下游防洪调度方式的比选,两级控制等蓄量方式为基本形式,对各不同防洪库容方案的蓄水速度进行比较和优化,作为各方案的防洪调度方式。对长江中下游分洪量的减少见表3。

可以看出:在长江中下游遭遇100年一遇洪水时,溪洛渡预留36.2亿m3时,与三峡联合调度,可减少下游分洪量20.6亿m3,防洪效果系数达到57%;溪洛渡预留46.5亿m3时,溪洛渡与三峡联合调度,可减少下游分洪量27.4亿m3,防洪效果系数达到59%。

溪洛渡防洪效果系数=溪洛渡减少分洪量/溪洛渡防洪库容

4.2 溪洛渡水库对荆江地区防洪能力提高

三峡工程建成后荆江地区的防洪标准将达到100年一遇,溪洛渡建库后,在荆江遭遇特大洪水时,溪洛渡水库配合三峡水库蓄洪,减少了进入三峡的洪量,再由三峡水库使用原定相同库容对荆江补偿调节,可使荆江地区的防洪标准(即使用荆江分洪区的机率减小)进一步提高。经研究,溪洛渡水库预留36.2亿m3、41.4亿m3、46.5亿m3配合三峡水库对荆江补偿调度,分别可防御荆江地区151、161、169年一遇洪

水;若考虑水库预留10亿m3后备库容,则分别可防御荆江地区140、147、153年一遇洪水。

4.3 溪洛渡对遭遇1870年特大洪水作用的

根据三峡初步设计报告,荆江地区遭遇1000年一遇或1870年洪水,三峡水库按对城陵矶补偿调度,可做到枝城流量不超过80000m3/s。溪洛渡建库配合三峡对长江中下游防洪,荆江地区遭遇类似1870年洪水,如动用溪洛渡预留的10亿m3后备库容配合三峡水库运用,可使枝城控制流量由80000m3/s降至78000m3/s,减轻荆江地区的防洪压力。

4.4 溪洛渡工程总体防洪经济效益

根据川江及长江中下游地区在遭遇不同典型洪水情况下,可能遭受的损失,在考虑溪洛渡水库不同防洪库容的作用,推测川江及长江中下游淹没和防洪损失,以建库前后洪灾损失的差值求得溪洛渡水库的防洪效益。溪洛渡水库溪洛渡工程不同防洪库容方案总的防洪经济效益如表4。从表中可以看出:溪洛渡工程防洪效益主要在长江中下游地区,其防洪效益占溪洛渡工程总防洪效益的78.5%?82.6%。一场洪水灾害不仅给淹没区当前的经济造成很大损失,而且还将影响该地区今后经济的发展,洪水灾害还将影响社会的稳定与人群的健康,这些都难以用经济价值表述。结语

溪洛渡水电站防洪任务主要是提高川江河段沿岸宜宾、泸州、重庆等城市的防洪标准;配合三峡水库对长江中下游补偿调度,进一步提高荆江河段的防洪标准,减少中下游防洪损失。它是长江中下游整体防洪系统的重要组成部分。此外,溪洛渡有效拦截进入三峡库区的泥沙,减少重庆港和三峡库尾的泥沙淤积。随着上游乌东德、白鹤滩及中上游等梯级水库的建设,川江及长江中下游防洪紧张局面有望根本的根本。参考文献:

1长江水利委员会长江勘测规划设计研究院 金沙江溪洛渡水电站防洪专题研究报告 202_.4.国家电力公司成都勘测设计研究院 金沙江溪洛渡水电站可行性研究报告202_.12.□

(编辑:寇卫红)

收稿日期:202_-07

作者简介:江志远,中国三峡总公司计划合同部,高级工程师。

相关内容

热门阅读

最新更新

随机推荐