首页 > 文库大全 > 精品范文库 > 15号文库

六年级奥数:路程问题

六年级奥数:路程问题



第一篇:六年级奥数:路程问题

路程问题

1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它? 解:

根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。

根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。

可以得出马与狗的速度比是21x:20x=21:20 根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米? 答案720千米。

由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

答案为两人跑一圈各要6分钟和12分钟。解:

600÷12=50,表示哥哥、弟弟的速度差 600÷4=150,表示哥哥、弟弟的速度和

(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数 600÷100=6分钟,表示跑的快者用的时间 600/50=12分钟,表示跑得慢者用的时间

4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间? 答案为53秒

算式是(140+125)÷(22-17)=53秒 可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米? 答案为100米

300÷(5-4.4)=500秒,表示追及时间

5×500=2500米,表示甲追到乙时所行的路程 2500÷300=8圈„„100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒

算式:1360÷(1360÷340+57)≈22米/秒

关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。正确的答案是猎犬至少跑60米才能追上。解:

由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟? 答案:18分钟

解:设全程为1,甲的速度为x乙的速度为y 列式40x+40y=1 x:y=5:4 得x=1/72 y=1/90 走完全程甲需72分钟,乙需90分钟 故得解

9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米? 答案是300千米。

解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米

从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米

10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离? 解:(1/6-1/8)÷2=1/48表示水速的分率 2÷1/48=96千米表示总路程

11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。解:

相遇是已行了全程的七分之四表示甲乙的速度比是4:3 时间比为3:4 所以快车行全程的时间为8/4*3=6小时 6*33=198千米

12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米? 解:

把路程看成1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30

两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75 路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)

第二篇:小学六年级奥数行程问题

行程问题(一)【知识点讲解】

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;

路程÷时间=速度;

路程÷速度=时间

关键:确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)主要方法:画线段图法

基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

相遇问题:

1、甲乙两车同时从AB两地相对开出,第一次相遇后两车继续行驶,各自到

1达对方出发点后立即返回,第二次相遇时离B地的距离是AB全程的。已知甲

5车在第一次相遇时行了120千米。AB两地相距多少千米?

2、甲、乙两车分别从A、B两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点35千米,已知甲车比乙车每小时多行10千米。问A、B两城相距多少千米?

3、甲、乙和丙同时由东、西两城出发,甲、乙两人由东城到西城,甲步行每小时走5千米,乙骑自行车每小时行15千米,丙也骑自行车每小时20千米,已知丙在途中遇到乙后,又经过1小时才遇到甲,求东、西城相距多少千米?

4、甲乙两站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车下午2时30分从乙站开出,下午6时两车相遇,求乙站开出的那辆火车的速度是多少?

5、小李从A城到B城,速度是50千米/小时,小兰从B城到A城,速度是40千米/小时。两人同时出发,结果在距A、B两城中点10千米处相遇。求A、B两城间的距离。

6、绕湖的一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以每小时4千米的速度每走1小时休息5分钟,小张以每小时6千米的速度每走5分休息10分钟.两人出发后多长时间第一次相遇?

家庭作业

1、一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知两地相距1488千米,货车每小时比客车少行8千米,货车每行驶3小时要停驶1小时,客车每小时行多少千米?

2、一个600米长的环形跑道上,兄弟两人如果同时从同一起点按顺时针反方向跑步,每隔12分钟相遇一次;如果两人同从同一起点反方向跑步,每隔4分中相遇一次。兄弟两人跑一圈各要几分钟?

3、A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?

4、一辆小轿车,一辆货车两车分别从A、B两地出发,相向而行。出发时,小轿车,货车的速度比是5:4相遇后,小轿车的速度减少了20%,货车的速度增加20%,这样,当小轿车到达B地时,货车距离A地还有10千米,那么A、B两地相距多少千米?

5、一辆汽车在甲乙两站之间行驶.往返一次共用去4小时.汽车去时每小时行45米,返回时每小时行驶30千米,那么甲,乙两站相距多少千米?

追及问题

7、甲、乙两人同时从A地到B地,乙出发3小时后甲才出发,甲走了5小时后,已超过乙2千米,已知甲每小时比乙多行4千米。甲、乙两人每小时各行多少千米?

8、猎犬发现在离它9米远有一只奔跑的兔子,立刻追赶,猎犬的步子大,它跑5步的路程,兔要跑9步,但兔子的动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少米才能追上兔子?

9、甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?

10、两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63 千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?

11、一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?

家庭作业

1、哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80米的速度先去学校,3分钟后,哥哥骑车以每分钟200米的速度也向学校骑去,那么哥哥几分钟追上弟弟?

2、两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?

3、姐妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?

4、龟兔进行10000米跑步比赛.兔每分钟跑400米,龟每分钟跑80米,龟每跑5分钟歇25分钟,谁先到达终点?

5、在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶,问2小时内,甲追上乙多少次?

6、甲乙两地相距48千米,其中一部分是上坡路,其余是下坡路,某人骑自行车从甲地到乙地后沿原路返回。去时用了4小时12分,返回时用了3小时48分。已知自行车的上坡速度是每小时10千米,求自行车下坡的速度。

行程问题(二)【知识点讲解】

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.关键:确定运动过程中的位置和方向。顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速

逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2

水速=(顺水速度-逆水速度)÷2 流水问题:关键是确定物体所运动的速度,参照以上公式。过桥问题:关键是确定物体所运动的路程。

流水问题:

1、一船逆水而上,船上某人于大桥下面将水壶遗失被水冲走,当船回头时,时间已过20分钟.后来在大桥下游距离大桥2千米处追到了水壶.那么该河流速是每小时多少千米?

2、一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米?

3、(14广益)一架飞机所带燃料最多可以用7.5小时。飞机去时顺风,每小时可以飞行1200千米;回时逆风,每小时可以飞行800千米。那么这架飞机最多飞出多远就要返航?

4、(14广益)自动扶梯以均匀的速度由下往上行驶,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20阶,女孩每分钟走15阶。结果,男孩用了5分钟到达,女孩用了6分钟到达楼上。扶梯露在外面的部分共有多少阶?

5、只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

6、一船从甲港顺水而下到乙港,马上又从乙港逆水行回甲港,共用了8小时。已知顺水每小时比逆水多行20千米,又知前4小时比后4小时多行60千米,那么,甲、乙两港相距多少千米?

家庭作业

1、一艘货轮顺流航行36千米,逆流航行12千米共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时。顺流航行12千米,又逆流航行24千米要用多少小时?

2、从甲地到乙地的路程分为上坡、平坡、下坡三段,各段路程之和比1:2:3,某人走这三段路所用的时间之比是4:5:6。已知他上坡时的速度为每小时2.5千米,路程全长为20千米。此人从甲地走到乙地需要多长时间?

3、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?

4、一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?

5、在商场里,小明从正在向上移动的自动扶梯顶部下120 级台阶到达底部,然后从底部上90 级台阶回到顶部。自动扶梯从底部到顶部的台阶数是不变的,假设小明单位时间内向下的台阶数是他向上的台阶数的2倍.则该自动扶梯从底到顶的台阶数为多少?

过桥问题

1、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。求这列火车的速度是每秒多少米?车长多少米?

2、一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.例

3、一支队伍1200米长,以每分钟80米的速度行进。队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令。问联络员每分钟行多少米?

4、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?

5、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?

家庭作业

1、一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?

2、人以每分钟60米的速度沿铁路边步行,一列长144米的客车从他身后开来,从他身边通过用了8秒钟,求列车的速度。

3、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。这列火车的车身总长是多少米?

4、已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是多少秒?

第三篇:六年级奥数教学计划

教学计划

一. 指导思想

以基础知识为主线,在帮助学生形成基本技能的同时拓宽延伸学生的思维

开阔学生的视野,培养学生的计算能力 抽象思维能力和空间想象能力。教会学生用不同的 灵活的解题方法去解决一些典型的题目,促进学生思维品质的提高,使学生在做题时达到举一反三 触类旁通的效果。

二. 教学目标

1. 使学生会使用一些运算定律 运算性质 进行简便运算,培养学生的知识运用能力和仔细观察 推敲能力,让学生在题目中探索规律,并运用规律去解决问题。2. 教会学生解决一些典型应用题,例如和倍 差倍 倍比

归一 归总 重叠 盈亏问题等等。使学生在练习中提高发现问题 分析问题 解决问题的能力,能用学到的理论知识去解决生活中的实际问题,体现数学从生活中来又到生活中去的理念。

3. 在几何的初步认识中,挖掘 延伸周长 面积 的知识体系,使学生掌握组合图形的面积计算方法,同时对圆柱 圆锥的认识 以及体积计算进一步拓宽探索,为初中学习几何打下坚实基础。三

方法措施

1.做好充分的课前准备,认真备课,理清每一课时的知识体系,找准知识的重 难点 易混点,教师做到心中有每一节课的整体教学思路 教学设计 教学方法。

2.精讲精练,针对每一题型,教师应先引导学生观察 分析,让学生自己探索出规律,找出解题方法,教师是导演,学生是演员,让学生处于主体地位。

3针对不同学生的不同情况采取不同的指导方法,让学生感受到老师在时时关注自己,对学生的情况老师应做到了如指掌,并做好成长记录。

4对学生的练习情况老师要及时反馈,争取做到面批面改,不遗漏任何小差错。

5对于学习优秀的学生可以尝试同学之间互相出题,第一锻炼了所学知识,对知识有更深一步了解,第二还可以调动学生的学习积极性,提高学习兴趣。

6对于当天没有完全消化的知识,还可以适当补充一两道练习题回家做,达到巩固提高的目的。四

课时安排(每讲2课时)第一讲-------第八讲

简便计算 第九讲

和倍应用题

第十讲

差倍应用题 第十一讲

倍比应用题 第十二讲

归一应用题 第十三讲

归总应用题 第十四讲

重叠应用题 第十五讲

盈亏应用题 第十六讲

行程应用题 第十七讲

鸡兔同笼应用题

第十八讲

最大公约数和最小公倍数 第十九讲

第二十讲

第二十一讲

第二十二讲

第二十三讲

第二十四讲

第二十五讲

第二十六讲

第二十七讲

第二十八讲

第二十九讲

第三十讲

第三十一讲

分数 百分数应用题 比的典型问题 转化单位“1” 牛吃草问题

浓度应用题

工程问题

还原问题

价格与利润

周长问题

面积问题

组合图形的面积问题

圆柱体

圆锥体

第四篇:六年级奥数教案

思源学校第二课堂(第六周)

判断与推理 2 授课人:雍尧

教学要求:(1)理解逻辑推理的四条基本规律,学会运用分析、推理方法解决问题。

(2)培养学生逻辑推理能力.教学重点:学会运用分析、推理方法解决问题。

教学难点: 理解、掌握分析、推理方法。

教学方法:讲解法、图表法、练习法。

(一)教学过程:

一、复习。

上节课的习题例2

二、教学新课 教学例3

甲乙丙三人被蒙上眼睛,告诉他们每个人头上都戴了一顶帽子,帽子的颜色不是红的就是绿的。然后,就去掉蒙眼睛的布,要求每个人如果看见别人(一个或两个)戴的是红帽子就举手,并且谁能断定自己头上帽子的颜色,谁就马上离开房间。三人碰巧戴的都是红帽子,因此三个人都举了手,几分钟后,丙首先走开了,他是怎么推导出自己头上帽子的颜色的?

(1)学生审题,理解题意。(2)同座位讨论。

(3)分析:此题关键:注意到甲乙两人没有立即离开房间这个事实。丙推理,我的帽子如果是绿的,甲根据乙举手立即知道自己的帽子是红的,那他应走出房间,乙会做同样的推理离开房间。甲乙不能很快判断自己帽子的颜色,说明我的帽子不是绿的,而是红的。(4)说说你的推理过程。

3、比较前面例2例3有什么相同不同之处。

三、巩固练习。教学例4 学田小学举行科技知识竞赛,同学们对一贯刻苦学习爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二;

(2)丙得第二,丁得第三;(3)甲得第二,丁得第四。

比赛结果一公布,果然是这四名学生获得前四名。但以上三种估计,每一种都对了一半错一半。他们各得第几名?(1)学生审题,理解题意。(2)同座位讨论。(3)分析:利用图表帮助学生去推理判断。

第一种假定“丙第一错,乙第二对”出现矛盾。照此推理“丙第一对,乙第二错”没有出

现矛盾。所以丙第一,甲第二,丁第三,乙第四。(4)每人口述推理过程。

四、小结。

这节课你学会了什么?

第五篇:六年级奥数题

六年级奥数题

1、晶晶三天看完一本书,第一天看 了全书的1/4,第二天看了余下的 2/5第二天比第一天多看了15页,这本书共有多少页?

2、有一批货物,第天运了这批货物的1/4第二天运的是第一天的 3/5剩90吨没有运,这批货物有多少吨?

3、修路队在一条公路上施工,第一天修了这条公路的 1/4第二天修了余下的2/3,已知这两天共修路1200米,这条公路全长多少米?

4、加工一批零件,甲先加工了这批零件的 2/5接着乙加工余下的 4/9 ,已知乙加工个数比甲少200个,这批零件共有多少个?

5、某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的 3/4知第一车间比第二车间少40人,三个车间共有多少人?

6、某小学五年级三个班植树,一班植树棵数占三个班总棵数的1/5,二班与三班植树棵数的比是3:5,二班比三班少植树40棵,这三个班共植棵多少棵?

7、图书角有故事书、科技书、文艺书这三种书,故事书的本数占总数的 2/5技书的本数是文艺书的3/4,文艺书比故事书少20本,图书角共有书多少本?

8、食堂买来萝卜、青菜和土豆三种蔬菜,萝卜的重量占三种蔬菜总量的 2/5青菜的重量比土豆少3/4,萝卜比土豆少360千克,食堂买来萝卜多少千克?

9、牛的头数比羊的头数多25%,羊的头数比牛的头数少百分之几?

10、甲粮库存粮的吨数比乙粮库少40%,乙粮库存粮比甲粮库存粮的吨数多百分之几?

11、男生比女生少 2/7,女生比男生多几分这几?

12、水结成冰体积增加 1/10,冰化成水体积减少几分之几?

13、甲数是乙的2/3,乙数是丙数的3/4,甲、乙、丙的和是216,甲、乙、丙各是多少?

14、甲数是乙的5/6,乙数是丙数的3/4,甲、乙、丙的和是152,甲、乙、丙各是多少? 15.桔子的千克数是苹果的2/3,香蕉的千克数是桔子的1/2,香蕉和苹果共有220千克,桔子有多少千克?

16.某中学初中部三个年级中.初一的学生数是初二学生数的9/10,初二的学生数是初三学生数的5/4,这个学校里初三的学生数占初中部学生数的几分之几?

17、某班共有学生51人,男生人数的3/4等于女生人数的2/3。男、女学生各有多少人?

18、图书馆买来科技书和文艺书共340本,文艺书本数的1/3等于科技书本数的4/5,两种书各买来多少本?

19、学校合唱团比舞蹈队多24人,合唱团人数的2/5 等于舞蹈队人数的6/7。合唱团和舞蹈队各有多少人?

20、粮店里有大米、面粉和玉米共900吨,大米重量的1/4 等于面粉重量的1/3,玉米重200吨。大米和面粉的重量各是多少吨?

21、已知甲校学生数是乙校学生数的2/5,甲校女生数是甲校学生数的3/10,乙校男生数是乙校学生数的21/50。那么两校女生总数占两校学生总数的几分之几?

22、在一城市中,中学生数是居民的1/5,大学生数是中学生数的1/4,那么占大学生总数的2/5的理工科大学生是居民数的几分之几?

23、某人在一次选举中,需3/4的选票才能当选,计算2/3的选票后,他得到的选票已达到当选票数的5/6,他还要得剩下选票的几分之几才能当选?

24、某校有3/5的学生是男生,男生的1/20想当医生,全校想当医生的学生的3/4是男生,那么全校女生的几分之几想当医生?

25、某厂男职工比全厂职工人数的3/5多60人,女职工人数是国职工的1/3,这个厂共有职工多少人?

26、一筐苹果卖掉1/5后,又卖掉6千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?

27、甲乙两车共运一堆煤,运完时,甲车运了总数的7/15多12吨,比乙车多运1/2,甲车运了多少吨?

28、纺织厂女工人数比全厂人数的75%还多100人,男工人数是女工人数1/5,这个纺织厂有男工人多少人?

29、有两筐梨,乙筐是甲筐的3/5,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐7/9,甲乙两筐梨共有多少千克? 30、某小学低年级原有少先队员是非少先队员的1/3,后来又有39名同学加入了少先队组织。这样少先队员的人数是非少先队员的7/8,低年级有学生多少人?

31、王师傅生产一批零件,不合格产品是合格产品的1/19,后来从合格产品中又发现2个不合格产品,这时算出产品合格率是94%,合格产品有多少个?

32、某校六年级上学期男生占总人数的54%,本学期初转进3名女生,转走3名男生,这时女生占总人数的48%,现有男生多少人?

33、某学校原有长跳绳的根数占长、短跳绳总数的3/8,后来又买进20根长跳绳,这时长跳绳根数占长,短跳绳总数的7/12。这个学校现有长、短跳绳的总数是多少根?

34、阅览室看书的同学中,女同学占3/5,从阅览室走出5位女同学,看书的同学中,女同学占4/7,原来阅览室里一共有多少名同学在看书?

35、一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,这堆糖中奶糖多少千克?

36、数学课外小兴趣小组,上学期男生占5/9,这学期增加21名女生后,男生只占2/5了,这个小组现有女生多少人?

37、有两段布,一段布长40米,另一段布长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布所剩下长度的3/5,每段布用去多少米?

38、有两根绳子,一根长80米,另一根长40米,如果从两根绳上各剪去同样长一段后,短绳剩下的长度是长绳剩下的2/7,两根绳各剪去多少米?

39、今年父亲40岁,儿子12岁,当儿子的岁数是父亲的5/12时,儿子多少岁?

40、仓库里原来存大米和面粉袋数相等,运出800袋大米和500袋面粉后,仓库里所剩的大米袋数是面粉的3/4,仓库里原有大米和面粉各多少袋?

41、甲乙丙丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三队的1/2,乙队筑的路是其他三队的1/3,丙队筑的路是其他三队的1/4,丁队筑了多少米?

42、某商店有黑白、彩色电视机630,其中黑白电视机占1/5,后来又运进一些黑白电视机。这时黑白电视机占两种电视机总台数的30%,问。又运进黑白电视机多少台?

43、书店运来科技书和文艺书共240,科技书占1/6,后来又运来一批科技书,这时科技书占两种书总和的3/11,现在两种书各有多少包?

44、某市派出60名选 手参加田径比赛,其中女选手占1/4,正式比赛时,有几名女选手因故缺席,这样女选手人数占参赛选手总数的2/11,总:正式参赛女选手有多少人?

45、把12克盐溶解于120克水中,得到132盐水,如果要使盐水中含盐8%,要往盐水中加盐还是加水?加多少克?

46、东风水果店上午运进梨和苹果共1020千克,其中梨占水果总数的1/5,下午又运进梨若干千克,这时梨占这两种水果总数的2/5,下午运进梨多少千克?

47、甲数是乙数、丙数、丁数之和的1/2, 乙数是甲数、丙数、丁数之和的1/3, 丙数是乙数、甲数、丁数之和的1/4,已知丁数是260,求甲、乙、丙、丁四数之和?

48、甲、乙、丙、丁四个筑路队共筑1200米长的一条公路,甲队筑的路是其他三个队的1/2, 乙队筑的路是其他三个队的1/3,丙队筑的路是其他三个队的1/4,丁队筑路多少米?

49、甲乙丙三人共同购买一艘游艇,甲支付的钱是其余两人的1/2, 乙支付的钱是其余两人的1/3,丙支付的钱恰好是5000元.这艘游艇的单价是多少元? 50、学校里买回四种图书,科技书是文艺书的3/4,连环画是其余三种书的1/3,史地书是其余三种书的1/4, 史地书比文艺书少80本,买回的四种书共多少本?

51、有一块合金,是由银和铜组成,其中银的重量比总重量的5/12多30克,铜的重量比总重量的7/16多5克,这块合金的总重量是多少克?

52、甲乙两个仓库存放一批化肥.甲仓库比乙仓库多120袋,如果从乙仓库运出25袋放入甲仓库,乙仓库化肥的袋数就是甲仓库的3/5,甲乙仓库原来各有化肥多少袋?

53、某校五年级共有学生152人,选出男同学的1/11和5 个女同学参加科技小组,剩下的男女同学人数刚好相等,这个年级男女同学各有多少人?

54、一筐苹果分给甲乙丙三人,甲分得全部苹果的1/5加5个苹果, 乙分得全部苹果的1/4加7个苹果, 丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8.这筐苹果有多少个?

55、图书室有文艺书.科技书.连环画共1880本,文艺书借出2/5,科技书借出50本,又买来40本连环画,这时三类书的本数相等.原来三种书各有多少本?

56、苹果和梨共77个,若拿出苹果的5/11和12个梨,则剩下的苹果是剩下的梨的3倍,问原来苹果和梨各有多少个?

57、某小学五年级有三个班,一班和二班人数相等,三班人数占全年级的7/20,并且比一班多3人,问五年级共有多少人?

58、有两只桶,共装44千克油.若从第一桶里倒出1/5,第二桶里倒进2.5千克,则两只桶内油相等,原来每只桶各装油多少千克?

59、足球比赛门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?

60、某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么不及格同学的平均分是多少分? 61、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加20%,小学生占学生总数的40%,小学生增加几分之几?

62、五年级三个班人数相等,一班的男生人数和二班女生人数相等,三班的男生人数是全部男生人数的2/5,全部女生人数占全年级人数的几分之几?

63、小王在一个小山坡来回运动,先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,求小王的平均速度.64、小华上山的速度是每小时3千米,下山速度是每小时6千米,求上山后又沿原路下山的平均速度?

65、张师傅骑自行车往返A、B两地,去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?

66、小王骑摩托车往返A、B两地,平均速度为每小时48千米,如果他去时每小时行42千米,那么他返回时的平均速度是每小时多少千米?

67、某幼儿园中班的小朋友平均身高115米,其中男孩比女孩多1/5,女孩平均身高比男孩高16%,这个班男孩平均身高是多少?

68、某班男生人数是女生的2/3,男生平均身高138厘米.全班平均身高132厘米,问女生平均身高是多少厘米?

69、某班男生人数是女生的4/5,女生的平均身高比男生高15%,全班平均身高是130厘米,问男、女生的平均身高各是多少?

70、一长方形边长增加10%,那么,它的周长增加百分之几?它的面积增加百分之几?

71、一批零件,甲独做8天完成,乙独做10天完成,现在由两人合做这批零件,中途甲因事请假一天,完成这批零件共用多少天? 72、一件工作,甲独做15天完成,乙独做10天完成,两队合做若干天后甲休息了几天,结果共用8天才完成了任务,甲休息几天?

73、一项工作,甲乙合做12天可以完成,中途甲因事停工5天,因此用15天完成,甲独做这项工作要用多少天?

74、一项工程,甲乙合做4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30,甲乙单独做这项工程各需多少天?

75、彩色电视机和黑白电视机共250台,如果彩色电视机卖出1/9,则比黑白电视机多5台,问两种电视机原来各有多少台?

76、姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔? 77、学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来足球和篮球各有多少个?

78、小明家养的鸡和鸭共100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?

79、甲乙两数和是300,甲数的2/5比乙数的1/4多55,甲乙两数各是多少?

80、畜牧场有绵羊山羊共800只,山羊的2/3比绵羊的1/2多50只,这个畜牧场有绵羊山羊各多少只?

81、师傅和徒弟共加工零件840个,师傅加工零件个数的5/8比徒弟加工零件的2/3多60个, 师傅和徒弟各加工零件多少个?

82、某校六年级甲乙两个班共种 100棵树,乙班种的1/10比甲班种的1/3少16棵,现两个班各种多少棵?

83、育红小学上学期共有学生750人,本学期男生增加1/6,女学生减少1/3,共有710人,本学期男、女学生各有多少人?

84、袋子里原有红球和黄球共119个,将红球增加3/8,黄球减少2/5后, 红球和黄球的总数变为121个,原来袋子里有红球和黄球各有多少个? 85、金放在水里称,重量减轻1/19.银放在水里称,重量减少1/10,一块重770克金银合金,放在水里称是720克,这块合金含金、银各多少克?

86、某中学去年共招新生475人,今年共招新生640人,其中初中招的拳生比去年增加48%,高中招的新生比去年增加20%,今年初、高中生各招收新生多少人? 87、水果店里西瓜个数与白兰瓜个数比是7:5.如果每天卖白兰瓜40个,西瓜50个,若干天后,白兰瓜正好卖完,西瓜还剩36个。水果店里原有西瓜多少个?

88、红星幼儿园里白皮球个数与红皮球个数比是3:5,给每个班发4个白皮球和10个红皮球,结果发现红皮球刚好发完,还多18个白皮球。红星幼儿园有多少个班?

89、食堂里面粉的重量是大米的1/2,每天吃去30千克面粉,45千克大米。若干天后,面粉正好吃完,大米还有15千克,食堂里原有面粉多少千克?

90、师徒两人加工一批零件,师傅的任务比徒弟多1/5,徒弟每天做7个,师傅每天做12个,若干天后,师傅正好完成任务,徒弟还有30个没做,这批零件共有多少个?

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jingpin/15/973962.html

相关内容

热门阅读

最新更新

随机推荐