首页 > 文库大全 > 精品范文库 > 15号文库

半导体三极管教案

半导体三极管教案



第一篇:半导体三极管教案

半导体三极管

学科:电子技术基础 班级:11秋电子技术应用9班 教师:胡明锋 授课类型:讲授 课时:一课时

一、教学目标:

知识目标 识记半导体三极管的定义、掌握三极管的结构、分类和符号。技能目标 能够画出半导体三极管的结构和符号,能够识别出三极管。情感目标 培养学生发现问题的能力,归纳知识的能力。

二、教学重点:

1.三极管的定义、结构、符号。2.三极管的NPN、PNP两种类型的认识。

三、教学难点

三极管的结构、符号、三极管的NPN、PNP两种类型的认识

四、教学媒体

多媒体课件、半导体三极管、半导体二极管、粉笔。

五、教学方法 讲授法、演示法。

六、教学过程

(一)、导入新课

1.复习内容:复习上节课半导体二极管的知识,重点复习半导体的定义、PN结的定义和特性,半导体二极管的符号和主要特性。

2.导入新课:在半导体器件中,除了半导体二极管外还有一种广泛应用于各种电子电路的重要器件,那就是半导体三极管,通常也称为晶体管。半导体三极管在电子电路里的主要作用是放大作用

(二)、半导体三极管的结构和符号:

1.观察半导体三级管的结构并熟识该图,要求能完整画出该图。2.PNP型及NPN型三极管的内部结构及符号如图所示

半导体三极管的结构与符号

PNP型 NPN型

3.半导体三极管是一种有三个电极、两个PN结的半导体器件。三区:发射区、基区、集电区。三极:发射极E、基极B、集电极C。

两结:发射结(发射极与基极之间的PN结)、集电结(集电极与基极之间的PN结)。

4.根据半导体基片材料不同,三极管可分为PNP型和NPN型两大类。

5.两者的符号区别在于发射极的箭头方向不同。箭头方向就是发射极正向电流的方向。

(三)、半导体三极管的分类

1.按半导体基片材料不同:NPN型和PNP型。2.按功率分:小功率管和大功率管。3.按工作频率分:低频管和高频管。4.按管芯所用半导体材料分:锗管和硅管。5.按结构工艺分:合金管和平面管。6.按用途分:放大管和开关管。

(四)、外形及封装形式

三极管常采用金属、玻璃或塑料封装。常用的外形及封装形式如图所示。

七、作业

1.画出PNP型及NPN型三极管的内部结构及符号并指出三个电极、两个PN结。2.半导体三极管的分类有哪几种?

八、板书设计 1.半导体三极管的结构 2.半导体三极管的符号 3.半导体三极管的定义 4.NPN型和PNP型半导体三极管 5.半导体三极管的分类

6.半导体三极管的外形及封装形式

九、教学后记

1.通过学生自主活动及多媒体课件演示,不仅使各教学内容有机的结合,而且丰富了教学手段,增强了教学的直观性,达到良好的教学效果,从而增强了学生的自信心。

2.遵循学生的认知规律,坚决贯彻“学做合一”或“做、学、做”的双向程序模式,学生学会在活动过程中获取新知识的乐趣和能力。

3.透过活动项目过程,表明教学效果良好,同学们加深了对所学知识的理解和记忆,灵活运用所学知识解决实际问题的能力显著提高。部分学生自主活动能力还是有所欠缺,通过教师引导和讲解能够有较大的提高,另一个问题是学生对活动内容的熟练程度不够,应该增加练习的时间。

第二篇:半导体三极管交流放大电路解读

《电子技术基础》教案

第2章

半导体三极管交流放大电路

本章重点

1.掌握共发射极放大电路、分压式偏置电路的工作原理和静态工作点估算; 2.了解负反馈在放大电路中的应用;

3.掌握共发射极放大电路的图解分析法和估算法。4.掌握功率放大电路的分析法。

本章难点

1.共发射极电路的工作原理。

2.估算静态工作点,电压放大倍数、输入电阻和输出电阻。3.分压式偏置电路的工作原理。4.功率放大电路。放大器的基本概念 放大器概述

放大器:把微弱的电信号放大为较强电信号的电路。基本特征是功率放大。扩音机是一种常见的放大器,如图3.1.1所示。

声音先经过话筒转换成随声音强弱变化的电信号;再送入电压放大器和功率放大器进行放大;最后通过扬声器把放大的电信号还原成比原来响亮得多的声音。

图3.1.1 扩音机框图 放大器的放大原理框图

放大器的框图如图3.1.2所示。左边是输入端,外接信号源,vi、ii分别为输入电压和输入电流;右边是输出端,外接负载,vo、io分别为输出电压和输出电流。

图3.1.2 放大器的框图

第一节 共发射机交流电压放大电路

《电子技术基础》教案

一、电路的组成和电路图的作用 1.电路组成

共发射极放大电路如图所示。2.元件作用

VT——三极管,起电流放大作用 GB——基极电源。通过偏置电阻Rb,保证发射结正偏。

GC——集电极电源。通过集电极电阻RC,保证集电结反偏。

图2.2 共发射极放大电路

Rb——偏置电阻。保证由基极电源GB

向基极提供一个合适的基极电流。

RC——集电极电阻。将三极管集电极电流的变化转换为集电极电压的变化。

C1、C2——耦合电容。防止信号源以及负载对放大器直流状态的影响;同时保证交流信号顺利地传输。即“隔直通交”。

3.电路图的画法

如图所示。“⊥”表示接地点,实际使用时,通常与设备的机壳相连。RL为负载,如扬声器等。

电路中电压和电流符号写法的规定

1.直流分量:用大写字母和大写下标的符号,如IB表示基极的直流电流。2.交流分量瞬时值:用小写字母和小写下标的符号,如ib表示基极的交流电流。

3.总量瞬时值:是直流分量和交流分量之和,用小写字母和大写下标的符号,如iBIBib,即表示基极电流的总瞬时值。

二、共射放大电路的静态分析

(一)直流通路

静态:无信号输入(vi0)时电路的工作状态。直流通路和交流通路画法

(1)直流通路:电容视为开路,电感视为短路,其它不变。(2)交流通路:电容和电源视为短路。

例:放大电路的直流通路和交流通路如图(b)、(c)所示。

直流分量反映的是直流通路的情况;交流分量反映的是交流通路的情况。

《电子技术基础》教案

静态工作点Q

如图2.4所示,静态时晶体管直流电压VBE、VCE和对应的IB、IC值。分别记作VBEQ、IBQ、VCEQ和ICQ。

IBQVGVBEQRb

(3.2.1)ICQIBQ

(3.2.2)

VCEQVGICQRc

(3.2.3)

VBEQ:硅管一般为0.7V,锗管为0.3V。

[例.2.1]在所示单级放大器中,设VG12V,Rc2k,Rb220k,60。求放大器的静态工作点。

从电路可知,晶体管是NPN型,按照约定视为硅管,则VBEQ0.7V,则

12V07V51ARb220k ICQIBQ6050A3mAVCEQVGICQRc12V3mA2k6VIBQ(二)、用图解法分析静态工作点

图解法:利用晶体管特性曲线,通过作图分析放大器性能。1.直流负载线

电路如图3.3.1(a)所示,直流通路如图3.3.1(b)所示。

由直流通路得VCE和IC关系的方程为

VCEVGICRc

(3.3.1)

根据式3.3.1在图3.2晶体管输出特性曲线族上作直线MN,斜率是是直流负载电阻,所以直线MN称为直流负载线。VGVBEQ1。由于RcRc《电子技术基础》教案

2.静态工作点的图解分析

如图3.3.2所示,若给定IBQIB3,则曲线IBQIB3与直线MN的交点Q,即为静态工作点。过Q点分别作横轴和纵轴的垂线得对应的VCEQ、ICQ。由于晶体管输出特性是一组曲线,所以,对应不同的IBQ,静态工作点Q的位置也不同,所对应的VCEQ、ICQ也不同。

图.3.2 静态工作点的图解分析

UCEUccICQRc

坐标点: M(UCC,0)N(0,UCC/RC)

Tga =--1/RC

IBQ UccVBEQRb

ICQIBQ

三.共射极放大电路的动态分析

(一).信号放大原理

交流信号电压vi [如图3.2.7(a)所示]经过电容C1作用在晶体管的发射结,引起基极电流的变化,这时基极总电流为

《电子技术基础》教案

iBIBQib,波形如图3.2.7(b)所示。

由于基极电流对集电极电流的控制作用,集电极电流在静态值ICQ的基础上跟着ib变化,波形如图3.2.7(c)所示。

即iCICQic。

同样,集电极与发射极电压也是静态电压VCEQ和交流电压vce两部分合成,即

vCEVCEQvce(3.2.4)

由于集电极电流iC流过电阻Rc时,在Rc上产生电压降iCRc,则集电极与发射极间总的电压应为

vCEVGiCRcVG(ICQic)Rc

(3.2.5)

比较式(3.2.5)与式(3.2.4)可得

VGICQRcicRcVCEQicRc

vceicRc 

(3.2.6)

式中负号表示ic增加时ce将减小,即ce与ic反相。故CE的波形如图3.2.7(d)所示。

经耦合电容C2的“隔直通交”,放大器输出端获得放大后的输出电压,即

oce(3.2.7)

波形如图3.2.7(e)所示。由图可见,vo与vi反相。位相反。

(二).静态工作点与动态范围之间的关系 放大器的静态工作点(见L2)若把图3.2.4中的Rb除掉,电路如图3.2.5所示,则IBQ0,当输入端加正弦信号电压vi时,在信号正半周,发射结正偏而导通,输入电流ib随vi变化。在信号负半周,发射结反偏而截止,输入电流ib等于零。即波形产生了失真。

vvicRc

从信号放大过程来看,在共射放大电路中,输入电压与输出电压频率相同,相

图3.2.5 除去Rb时放大器工作不正常

图3.2.6 基极电流的合成

如果Rb阻值适当,则IBQ不为零且有合适的数值。当输入端有交流信号vi通过C1加到晶体管的发射结时,基极电流在直流电流IBQ的基础上随vi变化,即交流ib叠加在直流IBQ上,如图3.2.6所示。如果IBQ的值大于ib的幅值,那么基极的总电流IBQib始终是单方向的电流,即它只有大小的变化,没有正负极性的变化,这样就不会使发射结反偏而截止,从而避免了输入电流ib的波形失真。

综上可见,一个放大器的静态工作点是否合适,是放大器能否正常工作的重要条

《电子技术基础》教案

件。

设置静态工作点的目的: 使输入信号工作在三极管输入特性的线形部分,避开非线形部分给交流信号造成的失真。

静态工作点与波形失真的图解

1.饱和失真

如果静态工作点接近于QA,在输入信号的正半周,管子将进入饱和区,输出电压vce波形负半周被部分削除,产生“饱和失真”。

2.截止失真

如果静态工作点接近于QB,在输入信号的负半周,管子将进入截止区,输出电压vce波形正半周被部分削除,产生“截止失真”。

3.非线性失真

非线性失真是由于管子工作状态进入非线性的饱和区和截止区而产生的。从图3.3.5可见,为了获得幅度大而不失真的交流输出信号,放大器的静态工作点应设置在负载线的中点Q处。

静态工作点引起的非线性失真 负反馈在放大电路中的应用 反馈及其分类

反馈:把放大器输出端或输出回路的输出信号通过反馈电路送到输入端或输入回路,与输入信号一起控制放大器的过程。

反馈电路:由电阻或电容等元件组成。如图4.2.1所示。图中vi为输入信号,vo为输出信号,vf为反馈信号。

反馈的分类及判别方法:

一、正反馈和负反馈

正反馈:反馈信号起到增强输入信号的作用。

判断方法:若反馈信号与输入信号同相,则为正反馈。负反馈:反馈信号起到削弱输入信号的作用。

判断方法:若反馈信号与输入信号反相,则为负反馈。

图4.2.1 反馈放大器框图

《电子技术基础》教案

二、电压反馈和电流反馈

电压反馈:如图(a)所示,反馈信号与输出电压成正比。判断方法:把输出端短路,如果反馈信号为零,则为电压反馈。电流反馈:如图(b)所示,反馈信号与输出电流成正比。

判断方法:把输出端短路,如果反馈信号不为零,则为电流反馈。

电压反馈和电流反馈框图

串联反馈和并联反馈框图

三、串联反馈和并联反馈

串联反馈:如图(a)所示,净输入电压由输入信号和反馈信号串联而成。判断方法:把输入端短路,如果反馈信号不为零,则为串联反馈。并联反馈:如图(b)所示,净输入电流由反馈电流与输入电流并联而成。判断方法:把输入端短路,如果反馈信号为零,则为并联反馈。[例] 判别图(a)和(b)电路中反馈元件引进的是何种反馈类型。解(1)电压反馈和电流反馈的判别

当输出端分别短路后,图(a)中vf消失,而图(b)中,管子V2的iE2不消失,即vf不等于零,所以图(a)是电压反馈,图(b)是电流反馈。

(2)串联反馈和并联反馈的判别

当输入端分别短路后,图(a)中vf不消失,图(b)中的vf消失,所以图(a)是串联反馈,图(b)是并联反馈。

(3)正反馈和负反馈的判别

采用信号瞬时极性法判别,设某一瞬时,输入信号vi极性为正“”,并标注在输入端晶体管基极上,然后根据放大器的信号正向传输方向和反馈电路的信号反向传输方向,在晶体管的发射极、基极和集电极各点标注同一瞬时的信号的极性。可见,图(a)中反馈到输入回路的vf的极性是“+”,与输入电压vi反相,削弱了vi的作用,所以是负反馈;而图(b)中,反馈到输入端的if极性是“”,它削弱了vi的作用,所以也是负反馈。

《电子技术基础》教案

2负反馈对放大器性能的改善

一、提高了放大倍数的稳定性

以图4.2.5电压串联负反馈电路为例作简要说明。由图可知,反馈电压

vf反馈系数

R2vo

R1R

2Fvf

vo(4.2.1)

设Av——放大器无反馈时的放大倍数;

Vi ——净输入电压;

Avf——加入负反馈后的放大倍数,则

vov;Avo vivi'因为

vivi'vf;vfFvoFAvvi'

Avf所以

vivi'FAvvi' 于是有

(4.2.2)

AvfAv

可见,Av是Avf的(1FAv)倍,(1FAv)愈大,Avf比Av就愈小。(1FAv):放大器的反馈深度。如果负反馈很深,即(1FAv)1时,则

AvA1v

Avf1FAvFAvFAvfAvvi'1Av

(1FAv)vi'1FAv(4.2.3)

可见,在深度负反馈条件下,反馈放大器的放大倍数Avf仅取决于反馈系数F,而与Av无关。当晶体管参数、电源电压、环境温度及元件参数发生变化时,负反馈放大器的放大倍数受其影响很小,基本不变,从而使放大倍数稳定性获得了提高。

结论:负反馈使放大器放大倍数减小(1FAv)倍;在深度负反馈条件下负反馈放大器的放大倍数很稳定。

二、改善了放大器的频率特性

由图4.2.6可见,无反馈时,中频段的电压放大倍数为Avo,其上、下限频率分别为fH和fL。加入负反馈后,中频段的电压放大倍数

负反馈对频响的改善

o。而高频段和低频段由于原放大倍数较小其反馈量相对于中频段要小,下降到Av因此放大倍数的下降量相对中频段要少,使放大器的频率特性变得平坦。即通频带展宽了,使放大器的频率特性得到改善。

三、减小了放大器的波形失真

在图中。设无反馈时,输入信号vi为正弦波(A半周与B半周一样大),由于

《电子技术基础》教案

晶体管特性曲线的非线性,放大器输出信号vo发生了失真,出现了A半周大、B半周小的波形。加入负反馈后,反馈信号vf与输入信号vi进行叠加产生一个A半周小、B半周大的预失真信号vi,再经放大器放大,由于放大器对A半周放大能力较大,从而使输出信号vo中A半周与B半周的差异缩小了,因此放大器的输出波形得到了改善。

四、改变了放大器的输入电阻、输出电阻

放大器引入负反馈后,输入电阻的改变取决于反馈电路与输入端的联接方式;输出电阻的改变取决于反馈量的性质。1.输入电阻的改变

对于串联负反馈,在输入电压vi不变时,反馈电压vf削减了输入电压vi对输入回路的作用,使净输入电压vi减小,致使输入电流ii减小,相当于输入电阻增大。即串联负反馈增大输入电阻。

对于并联负反馈,在输入电压vi不变时,反馈电流if的分流作用致使输入电流ii增加,相当于输入电阻减小。即并联负反馈减小输入电阻。

2.输出电阻的改变

电压负反馈维持输出电压不受负载电阻变动的影响而趋于恒定,说明输出电阻比无反馈时输出电阻要小;而电流负反馈维持输出电流不受负载电阻变动的影响而趋于恒定,说明输出电阻比无反馈时输出电阻要大。即电压负反馈使输出电阻减小;电流负反馈使输出电阻增大。

结论,放大器引入负反馈后,使放大倍数下降;但提高了放大倍数的稳定性;扩展了通频带;减小了非线性失真;改变了输入、输出电阻。

3射极输出器

一、反馈类型

电路如图4.2.8所示。其反馈信号vf取自发射极,若输出端短路,则vf 0,所以是电压反馈。用瞬时极性法判别,可得vb和ve(即vf)极性相同,反馈信号削弱了输入信号的作用,所以是负反馈。在输入回路中vi vbe vf,所以是串联反馈。综合看来,电路的反馈类型为电压串联负反馈放大器。

由于信号是从晶体管基极输入、发射极输出,集电极作为输入、输出公共端,故为共集电极电路,又称为射极输出器。

《电子技术基础》教案

射极输出器

交流通路

二、性能分析 交流通路如图所示。1.电压放大倍数 由图4.2.9可知,vbevivo

Vbe一般很小,则

vovi

于是电压放大倍数为

Avvo

1

vi(4.2.4)

可见,射极输出器的输出电压近似等于输入电压,电压放大倍数约等于1,而且输出电压的相位与输入电压相同,故又称射极跟随器。

2.输入电阻和输出电阻

(1)输入电阻

Re//RL,忽略Rb的分流作用,则输入电阻为 设RLriviibrbeieRLibibibrbe(1)ibRL ibrbe(1)RL,如果考虑Rb的分流作用,则实际的输入电阻为 ,于是riRL由于rbe(1)RL//Rb

riRL(4.2.6)

由此可见,与共射极放大电路相比,射极输出器的输入电阻高得多。为了充分利用输入电阻高的特点,射极输出器一般不采用分压式偏置电路。(2)输出电阻

Rs//Rb,不电路如图4.2.10所示,设vs0,令Rs计Re,则输出端外加交流电压vo产生的电流ie为

voieibibib(1)(1)

rbeRs于是得该支路的输出电阻为

vrRsroobe

ie1考虑Re时,射极输出器的输出电阻为

分析ro示意图

《电子技术基础》教案

roro//Re(4.2.7)

rbeRs//Re

1rbe,则射极输出器的输出电阻近1如果信号源内阻很小Rs0,则Rs0;若Re似为

rorbe

1(4.2.8)

上式表明,输出电阻ro比rbe还要小几十倍。所以射极输出器的输出电阻是很小的。

三、结论

射极输出器具有输入电阻大,输出电阻小;电压放大倍数略小于但近似等于1;输出电压的相位与输入电压相同的特点。输出电流是输入电流的(1)倍,所以具有电流放大和功率放大能力。

四、应用

利用输入电阻大的特点,作为多级放大器的输入级,以减小对信号源的影响;利用输出电阻小的特点,作为多级放大器的输出级,以提高带负载的能力;还可用

作阻抗变换器,以实现级间阻抗匹配;作为隔离级,减少后级对前级的影响。

第4节 功率放大器

重点

1.了解功率放大电路的任务、特点和要求。

2.理解无输出变压器功率放大电路(OCL、OTL)的组成和工作原理。3.掌握OCL、OTL电路的分析方法;Pom、PG、PCM的估算和功率管的选管条件。

4.理解典型集成功率放大电路。5.了解功率管的安全使用知识。

难点

1.功率放大器工作原理及性能特点。

2.Pom、PCM的估算方法和功率管的选管条件。低频功率放大器概述

1.1低频功率放大器及其要求

低频功率放大器:向负载提供足够大低频信号功率的放大电路。

对功放的要求:信号失真小;有足够的输出功率;效率高;散热性能好。

1.2 低频功率放大器的分类

《电子技术基础》教案

一、以晶体管的静态工作点位置分类

1.甲类功放:Q点在交流负载线的中点,如图7.1.1(a)所示。电路特点:输出波形无失真,但静态电流大,效率低。

2.乙类功放:Q点在交流负载线和IB0输出特性曲线交点,如图7.1.1(b)所示。

电路特点:输出波形失真大,但静态电流几乎等于零,效率高。

3.甲乙类功放:Q点在交流负载线上略高于乙类工作点处,如图7.1.1(c)所示。电路特点:输出波形失真大,静态电流较小,效率较高。

图7.1.1 三种工作状态

二、以功率放大器输出端特点分类 1.有输出变压器功放电路。

2.无输出变压器功放电路(OTL功放电路)。3.无输出电容功放电路(OCL功放电路)。

2推挽功率放大器

1乙类推挽功率放大器

动画

乙类推挽功率放大器

一、电路及其工作原理 典型电路如图7.3.1所示。

V1、V2为功率放大管,组成对管结构。在信号一个周期内,轮流导电,工作在互补状态。T1为输入变压器,作用是对输入信号进行倒相,产生两个大小相等、极性相反的信号电压,分别激励V1和V2。T2为输出变压器,作用是将V1、V2输出信号合成完整的正弦波。

图7.3.1 乙类推挽功率放大器及其波形

图7.3.2 乙类推挽功放电路的图解分

《电子技术基础》教案

工作原理:输入信号vi经T1耦合,次级得两个大小相等、极性相反的信号。在信号正半周,V1导通(V2截止),集电极电流iC1经T2耦合,负载上得到电流io正半周;在信号负半周,V2导通(V1截止),集电极电流iC2经T2耦合,负载上得到电流io负半周。即经T2合成,负载上得一个放大后的完整波形io。

由输出电流io波形可见,正、负半周交接处出现了失真,这是由于两管交接导通过程中,基极信号幅值小于门槛电压时管子截止造成的。故称为交越失真。

二、输出功率和效率

由于两管特性相同,工作在互补状态,因此图解分析时,常将两管输出特性曲线相互倒置,如图7.3.2所示。

1.作直流负载线,求静态工作点。

静态时,管子截止IBQ0,当ICEO很小时,ICQ0。过点VG作vCE轴垂线,得直流负载线。它与作IBQ0特性曲线的交点Q,即为静态工作点。

2.作交流负载线,画交流电压和电流幅值。

过点Q作斜率为1/RL的直线AB,即交流负载线。其中RL为单管等效交流负载电阻。在不失真情况下,功率管V1、V2最大交流电流iC1、iC2和交流电压vCE1、vCE2波形如图所示。

3.电路最大输出功率

若忽略管子VCES,交流电压和交流电流幅值分别为

VcemVG(7.3.1)

则最大输出功率

Pom2VG1VGVG2R 2RLL2VG

2RL;

IcmVG

RL即

Pom(7.3.2)

式中,在输出变压器的初级匝数为N1,次级匝数为N2时,RL应为

12N112RnRL

RLLN42(7.3.3)

式中nN1/N2。

4.效率

2图7.3.3 乙类推挽功率放大电路

理想最大效率为m78%。若考虑输出变压器的效率T,则乙类推挽功放的总

效率为

Tm(7.3.4)

总效率约为60%,比单管甲类功放的效率高。

电路优点:总效率高。电路缺点:存在交越失真,频率特性不好。

7.3.2 甲乙类推挽功率放大器

如图7.3.3所示。图中,Rb1、Rb2、Re组成分压式电流负反馈偏置电路。静态时,34

《电子技术基础》教案

V1、V2处于微导通状态,从而避免了交越失真。由于静态工作点处于甲、乙类之间,所以叫作甲乙类推挽功率放大器。

7.4 无输出变压器的推挽功率放大器(OTL)

7.4.1 输入变压器倒相式推挽OTL功放电路

一、电路结构

如图7.4.1所示。图中,V1、V2为参数一致的NPN型功率管。R1、R2和Re1为V1的偏置电阻;R3、R4和Re2为V2的偏置电阻,保证管子静态时处于微导通状态,以克服交越失真。Re1和Re2为电流负反馈电阻,稳定静态工作点,并减小非线性失真。输入变压器用作信号倒相耦合,在次级N1、N2上产生大小相等、相位相反的信号vb1和vb2。CL为耦合电容,作用是隔直通交,并兼作V2管的电源。

二、工作原理

静态时,A点电位为VG/2。由于CL隔直流,则RL上无电流。vi正半周,vb10,V1导通(V2截止),ic1流过负载RL;vi负半周,vb20,V2导通(V1截止),iC2流过负载RL。在输入信号vi一个周期内,两管轮流工作,RL上得到完整的放大信号。输出端交流通路如图7.4.2所示。

图7.4.1 输入变压器倒相式OTL功放电7.4.2 互补对称式推挽OTL功放电路

一、电路结构

如图7.4.3所示。V2、V3为特性对称的异型功放管;V1为激励放大管,推动V2、V3功放管。RP1作用是调节A点电位保持VG/2。RP2作用是调节V2、V3管偏置电流,克服交越失真。C4为自举电容。使V2、V3工作时为共射组态,提高功率增益。R4为隔离电阻:对交流而言把B点电位和“地”点电位分开。

二、信号的放大过程

输入信号vi负半周时,V1输出正半周信号,V2导通(V3截止),i2通过RL;vi正半周时,V1输出负半周信号,V3导通(V2截止),i3流过RL。在vi一周期内,V2、V3轮流导电,RL上得到完整的信号。

三、最大输出功率

图7.4.2 输出端交流

通路简化图

图7.4.3 互补对称式推挽

OTL功放电路

因C3的作用,单管电源电压为VG2。则输出最大功率时,输出管的集电极电压和集电极电流峰值分别为

1VVVG;

IcmVcemcemG

2RL2RL

《电子技术基础》教案

忽略饱和压降和穿透电流,则最大输出功率为

Pom11VG1 VcemIcmVG222RL2即

Pom2VG

8RL(7.4.1)

[例7.4.1]

设图7.4.3互补对称OTL功放电路中,VG6V,RL8,求该电路的最大输出功率?

2VG62解

Pom0.56W

8RL88W7.5 无输出电容功率放大器(OCL)

“OCL”功放电路:无输出耦合电容的功率放大器。

7.5.1 OCL功放电路简析

一、中点静态电位必须为零(VA0)

如图7.5.1所示。为了防止因输出端A与负载RL直接耦合,造成直流电流对扬声器性能的影响,则A点静态电位必为零。采用的办法是:

1.双电源供电:电压大小相等,极性相反的正负电源。

2.采用差分放大电路。

二、最大输出功率

输出最大功率时,集电极电压和电流的峰值分别为

VVVG,IcmcemG VcemRLRL则最大输出功率为

11VGVcemPomIcmVG 22RL即

Pom(7.5.1)

图7.5.1 OCL输出级示意图

2VG

2RL7.5.2 OCL电路实例

OCL电路实例如图7.5.2所示。

一、电路组成说明

1.用复合管提高功率输出级的电流放大倍数

V4、V6组成NPN型复合管,V5、V7组成PNP型复合管,见图7.5.3。二者组成复合互补功率输出级。从而提高了输出级的电流放大倍数,同时也减小了前级的推动电流。

《电子技术基础》教案

图7.5.2 OCL功放电路实例

2.用差分放大输入级抑制零漂

V1、V2组成差分输入级,控制输出级A点电位不受温度等因素的影响而保证静态零输出。同时提高电路对共模信号的抑制能力。

3.其它元件的作用

V3为激励级,推动功率输出级,使其输出最大功率。C5为高频负反馈电容,防止V3高频自激。

R7、V8、V9组成V4、V6和V5、V7复合管基极偏置电路,静态时,使其工作在微导通状态,防止产生交越失真。

R5、C3、R6组成电压串联负反馈电路,稳定电压增益,并减小非线性失真。

R16、C6组成避免感性负载引起高频自激的中和电路。R4、C2是差放电源滤波电路。

C4为自举电容,提高输出级的增益,并使输出电压正负半周对称,提高不失真输出功率。

二、信号放大过程

vi正半周时,经V1、V3两次放大和反相,v3为正半周,则V4、V6导通,i1经R14、RL、地、VG返回V4、V6形成回路,RL有信号输出。

vi负半周时,v3为负半周,则V5、V7导通,i2经R15、VG、地、RL、R12返回V5、V7形成回路,RL有信号输出。这样经轮番推挽,RL上得功率放大后的完整信号。

图7.5.3 复合管的接法

7.6

集成电路功率放大器简介

《电子技术基础》教案

集成功率放大器具有体积小、工作稳定、易于安装和调试的优点,了解其外特性和外线路的连接方法,就能组成实用电路,因此,得到广泛的应用。

7.6.1 LM386集成功率放大器的应用电路

LM386是小功率音频集成功放。外形如图7.6.1(a)所示,采用8脚双列直插式塑料封装。管脚如图7.6.1(b)所示,4脚为接“地”端;6脚为电源端;2脚为反相输入端;3脚为同相输入端;5脚为输出端;7脚为去耦端;

1、8脚为增益调节端。外特性:额定工作电压为416V,当电源电压为6V时,静态工作电流为4mA,适合用电池供电。频响范围可达数百千赫。最大允许功耗为660mW(25C),不需散热片。工作电压为4V,负载电阻为4时,输出功率(失真为10%)为300mW。工作电压为6V,负载电阻为4、8、16时,输出功率分别为340mW、325mW、180mW。

一、用LM386组成OTL应用电路

如图7.6.2所示。4脚接“地”,6脚接电源(69V)。2脚接地,信号从同相输入端3脚输入,5脚通过220F电容向扬声器RL提供信号功率。7脚接20F去耦电容。

1、8脚之间接10F电容和20k电位器,用来调节增益。

图7.6.1 LM386外形

图7.6.2 用LM386组成OTL电路

图7.6.3 用LM386组成BTL电路

二、用LM386组成BTL电路

如图7.6.3所示。两集成功放LM386的4脚接“地”,6脚接电源,3脚与2脚互为短接,其中输入信号从一组(3脚和2脚)输入,5脚输出分别接扬声器RL,驱动扬声器发出声音。BTL电路的输出功率一般为OTL、OCL的四倍,是目前大功率音响电路中较为流行的音频放大器。图中电路最大输出功率可达3W以上。其中,500k电位器用来调整两集成功放输出直流电位的平衡。

7.6.2TDA2030集成功率放大器的应用电路

1.TDA2030简介

外引线如图7.6.4所示。1脚为同相输入端,2脚为反相输入端,4脚为输出端,3脚接负电源,5脚接正电源。电路特点是引脚和外接元件少。

外特性:电源电压范围为6V18V,静态电流小于60A,频响为10Hz140kHz,38

《电子技术基础》教案

谐波失真小于0.5,在VCC14V,RL4时,输出功率为14W。

图7.6.4 TDA2030的外引线排列

图7.6.5 TDA2030接成OCL功放电

2.TDA2030应用电路

如图7.6.5所示。V1、V2组成电源极性保护电路,防止电源极性接反损坏集成功放。C3、C5与C4、C6为电源滤波电容,100F电容并联0.1F电容的原因是100F电解电容具有电感效应。信号从1脚同相端输入,4脚输出端向负载扬声器提供信号功率,使其发出声响。

TDA2030是一种超小形5引脚单列直插塑封集成功放。由于具有低瞬态失真、较宽频响和完善的内部保护措施,因此,常用在高保真组合音响中。

本章小结

1.单级低频小信号放大电路是最基本的放大电路,表征放大器的放大能力是放大倍数,即电压、电流和功率三种放大倍数。放大器常采用单电源电路。要不失真地放大交流信号必须使放大器设置合适的静态工作点,以保证晶体管放大信号时,始终工作在放大区。

2.图解法和估算法是分析放大电路的两种基本方法。用图解法可直观地了解放大器的工作原理,关键是会画直流负载线和交流负载线。用估算法可以简捷地了解放大器的工作状况,分析计算放大器的各项性能指标。

3.在放大器中,为了稳定静态工作点,常采用分压式稳定工作点偏置电路。4.功率放大器的主要任务是在不失真前提下输出大信号功率。功放有甲类、乙类和甲乙类三种工作状态。电路形式有OTL、OCL、BTL功放电路。

5.为了减少输出变压器和输出电容给功放带来的不便和失真,出现了单电源供电的OTL和双电源供电的OCL功放电路。

第三篇:三极管的伏安特性曲线教案(定稿)

三极管的伏安特性曲线

教学目的:

1、了解三极管的输入、输出特性曲线。

2、掌握三极管的输特性和工作状态的判别。教学重点:

1、三级管的输出特性。

2、三级管的三种工作状态的判别。教学难点:三极管的输出特性和工作状态的判别。教学设想:

1、教法

(1)复习提问:复习前面小灯泡的伏安特性曲线,那么三极管的输出特性曲线与小灯泡的伏安特性曲线类似吗?那么三极管的输入特性曲线又是怎样的呢?

教学过程:

一、情景创设,提出问题。提出问题:复习前面小灯泡的伏安特性曲线,那么三极管的输出特性曲线与小灯泡的伏安特性曲线类似吗?那么三极管的输入特性曲线又是怎样的呢?

二、新课讲解:

三极管的伏安特性

以共发射极接法的电路来讲解三极管的输入输出特性曲线。

1、输入特性

(1)观察输入特性曲线

说明:ib是输入电流,Vbe是加在B、E两极间的输入电压。共发射极三极管输入特性曲线:在Vce一定时,三极管的输入电压Vbe和输入电流Ib之间的相应数量关系。引导学生观察:

1)Vce=0时,输入特性曲线I和二极管正向伏安特性曲线很相似。

2)Vce=2V时,输入特性曲线如图上曲线II,当Vce=3V、5V时,相应的曲线和Vce=2时的很接近,几乎是重合的,因此用Vce=2V时的曲线II表示它们。(2)结论:

Vbe很小时,Ib=0,三极管截止;

Vbe大于某值时(门坎电压,硅管约0.5v,锗管约0.2v),三极管中产生Ib,开始导通;

Ib在很大范围内变动,Vbe变化很小,近于常数,此数称为三极管工作时的正向压降

(硅管约0.7v,锗管约0.3V)。

因此可以用Vce=2V时的曲线来表示三极管的输入特性曲线。

2、输出特性

三极管的输出特性曲线:在Ib一定时,三极管的输出电压Vce和输出电流Ic之间的相应数量关系。

(一个固定的IB对应一条输出特性曲线,先一条一条的讲曲线,然后再讲输出特性线簇,讲三种工作区域)Ic是输出电流,Vce是输出电压。

(主要让学生知道三个工作区域及其特点,这是学生第一次接触这些内容,以老师为主教授这些内容。让学生知道三个区域的特点和在这三种工作状态下发射结,集电结怎样偏置。)(1)放大区:

1)Ic受Ib控制,Ic=Bib。且

=

2)发射结正偏、集电结反偏 3)NPN Vc>Vb>Ve

PNP Ve>Vb>Ve 三极管工作在这个区域,放大信号,这就是三极管的放大特性。(2)饱和区:

1)Ic受Vce的控制,三极管没有放大作用。2)硅Uces=0.3V 锗Uces=0.1v。

3)集电极和发射极相当于短路,集电极和发射极之间的内阻最小。4)发射结和集电结均为正偏。

饱和时,Vce=Vces=0,相当于C、E极间“开关“被接通(ON)。(3)截止区:

1)Ib<0的区域,发射结电压Ube<死区电压,Ib=0,Ic=Iceo=0 Vc=Vcc。

2)发射结和集电结均为反偏。

截止时,Ic=Iceo=0,相当于C、E极间“开关“被关断(OFF)。

总结:三极管三种工作状态:

饱和:发射结正偏,集电结正偏。截止:发射结反偏,集电结反偏。放大:发射结正偏,集电结反偏。

3、三极管三种工作状态的判别

运用三极管的三种工作状态的发射结集电结偏置特点,来判断三极管的工作状态。讲解a图,教授方法,然后让学生练习巩固。

方法:三极管的三种工作状态的偏置特点为:放大状态——发射结正偏,集电结反偏;饱和状态——发射结正偏,集电结正偏;截止状态——发射结反偏,集电结反偏。正偏时三极管的发射结电压为:硅管0.7V,锗管0.3V(a)PNP型三极管,发射结:UEB=VE-VB=3V-2.3V=0.7V 正偏 集电结:UCB=VC-VB=0V-2.3V

反偏 三极管工作在放大状态。硅管。

三、小结:

1、三极管的输入特性曲线。

2、三极管的三个工作区域及其特点。

3、三极管三种工作状态的判别。

第四篇:三极管基本认识(教案)

【教学内容】

晶体三极管教案

本课学习的是“中等职业教育规划教材”电子工业出版《电子技术基础》的第一章第三节的第一部分内容。这节课内容包括三极管的结构,三极管的类型符号、三极管的分类方法和三极管的放大作用。【地位和作用】

这节课是在学生学习了半导体、PN结和二极管之后安排的,也是为今后学习三极管工作原理打下理论基础。三极管是电子电路中最重要的电子元器件。【教学目标】

1.知识目标:

①、了解三极管的概念、分类、符号。

②、掌握晶体三极管的结构及类型的判断。③、了解三极管内部载流子的运动。④、掌握晶体三极管的电流放大作用。

2.能力目标:

①培养学生分析问题及解决问题的能力。②培养学生的实际动手操作能力。

③激发学生创新精神和创造思维,以达到知识探索、能力培养、素质提高的目的。3.情感目标:

①激发学生学习这门课程的兴趣及热情,学以致用。

②培养学生事实求是的科学态度和一丝不苟的严谨作为和主动探索的精神 【课堂类型】 精讲型(理论基础课)【教学重/难点】

重点:三极管的结构及类型的判断,三极管电流的放大条件。难点:晶体三极管的电流放大作用及内部载流子的运动。【学生情况分析】

学生基础相对薄弱,初中刚刚毕业,且物理学习成绩很差。【教学工具】

教材 电子元器件三极管若干个 粉笔 【教学方法】

引导思考法 互动教学法 类比推理法 【课时安排】

二节课 【教学过程】

一、课前复习

1、PN结

①提问:什么是PN结?

答:把P型半导体和N型半导体制作在同一硅片或锗片上,所形成的交接面。②提问:PN结具有什么特性? 答:单向导电性

2、二极管

③提问:二极管与PN结有什么联系?

答:PN结用外壳材料封装起来,并加上电极引线就形成了二极管。P区接阳极,N区接阴极。

④提问:二极管的导电性是否与PN结一样了? 答:是

二、新课导入

如图所示是一个扩音器的示意图:

声音信号转换为电信号声音放大电路电信号转换为声音信号声音话筒图 1 扩音器示意图

扬声器其中如图所示:话筒是将声音信号转换为电信号,经放大电路放大后,变成大功率的电信号,推动扬声器,再将其还原为声音信号。

放大电路又称放大器,是指能把微弱的电信号转换为较强的电信号的电子线路。放大器的核心元件(即放大元件)是半导体三极管。

这节课我们就来学习三极管的基础知识。

三、新授课

(一)晶体三极管的概念、分类、结构、符号及类型判断

1、晶体管的概念

在一块硅片或者锗片上根据不同的掺杂方式制造出三个掺杂区域,并形成两个PN结,就构成了晶体三极管。晶体三极管中有两种带有不同极性电荷的载流子参与导电,故也称之为双极性晶体管(BJT)。它主要的功能是电流放大和开关作用,配合其他元器件还可以构成振荡器

2、晶体管分类

三极管的种类很多。

按功率分有:按半导体所用材料分有:硅管和锗管 按三极管的导电极性分有:NPN型管和PNP型管 按功率分有:小功率管,中功率管和大功率管; 按频率分有:低频管和高频管; 按用途分有:放大管和开关管;

按三极管的封装材料分有:金属封装和玻璃封装等

3、晶体管结构

在一块极薄的硅或锗材料的半导体基片上,经过特殊的工艺加工,制造出两个PN结,这两块PN结将整个半导体基片分为3个区域:集电区,基区和发射区。

如图所示:

C集电极N集电区B基极P基区B基极C集电极P集电区N基区N发射区发射极ENPN型P发射区发射极EPNP型图 2 三极管结构(3区2结)示意图

其中:基区相对很薄,集电区面积很大,发射区载流子的掺杂浓度很高。

对应着三个区分别引出三个电极;即:基极,集电极和发射极。分别用英文字母B,C和E来表示。

三极管是由两个PN结组成的。我们把基极和发射极之间的PN结称作发射结,基极和集电极之间的PN结称作集电结。

3、三极管的类型符号

由于半导体材料的不同,按照两个PN结的组合方式的不同,可以将三极管分为PNP和NPN两大类。

其符号如图所示:

CCBVTBVTEPNP图 3 三极管符号ENPN

4、三极管的分类

三极管的种类很多。

按功率分有:按半导体所用材料分有:硅管和锗管 按三极管的导电极性分有:NPN型管和PNP型管 按功率分有:小功率管,中功率管和大功率管; 按频率分有:低频管和高频管; 按用途分有:放大管和开关管;

按三极管的封装材料分有:金属封装和玻璃封装等

3.小结

本节课作为电子元器件晶体三极管理论基础课。分别从晶体三极管的结构,符号和分类等三个方面进行了学习。通过动画演示让学生们更直观的了解了三极管的组成结构特点;然后通过让学生们传着看电子元器件三极管的实物,使学生们对本课的学习更有收获。4.知识拓展

三极管的命名方法:

我国生产的晶体管有一套命名规则,其型号命名由五部分组成。其中:

第一部分用数字来表示半导体器件的电极的数目; 第二部分用字母来表示器件的材料和结构及极性; A: PNP型锗材料 B: NPN型锗材料 C: PNP型硅材料 D: NPN型硅材料 第三部分用字母来表示功能或类别: U:光电管 K:开关管

X:低频小功率管 G:高频小功率管 D:低频大功率管 A:高频大功率管。

另外,3DJ型为场效应管,BT打头的表示半导体特殊元件。第四部分用数字来表示器件的序号;第五部分用字母来表示代号。5.作业布置(2分钟)

1.画出三极管的符号

2.说出三极管的内部结构特点 6.课后反思

晶体三极管是我们这本教材的核心元件,它的学习贯穿整个教材的始终。所以有关三极管的基础理论知识显得尤为重要。

第五篇:常用半导体器件教案

第一章

常用半导体器件

1.1 半导体基础知识

1.1.1 本征半导体

一、半导体

1. 概念:导电能力介于导体和绝缘体之间。2. 本征半导体:纯净的具有晶体结构的半导体。

二、本征半导体的晶体结构(图1.1.1)

1. 晶格:晶体中的原子在空间形成排列整齐的点阵。2. 共价键

三、本征半导体中的两种载流子(图1.1.2)

1. 本征激发:在热激发下产生自由电子和空穴对的现象。2. 空穴:讲解其导电方式; 3. 自由电子

4. 复合:自由电子与空穴相遇,相互消失。5. 载流子:运载电荷的粒子。

四、本征半导体中载流子的浓度

1. 动态平衡:载流子浓度在一定温度下,保持一定。2. 载流子浓度公式:

nipiK1T3/2eEGO/(2kT)

自由电子、空穴浓度(cm5-

3),T为热力学温度,k为波耳兹曼常数(8.6310eV/K),EGO为热力学零度时破坏共价键所需的能量(eV),又称禁带宽度,K1是与半导体材料载流子有效质量、有效能级密度有关的常量。

1.1.2 杂质半导体

一、概念:通过扩散工艺,掺入了少量合适的杂质元素的半导体。

二、N型半导体(图1.1.3)

1. 形成:掺入少量的磷。2. 多数载流子:自由电子 3. 少数载流子:空穴

4. 施主原子:提供电子的杂质原子。

三、P型半导体(图1.1.4)

1. 形成:掺入少量的硼。2. 多数载流子:空穴 3. 少数载流子:自由电子

4. 受主原子:杂质原子中的空穴吸收电子。

5. 浓度:多子浓度近似等于所掺杂原子的浓度,而少子的浓度低,由本征激发形成,对温度敏感,影响半导体的性能。

1.1.3 PN结

一、PN结的形成(图1.1.5)

1. 扩散运动:多子从浓度高的地方向浓度低的地方运动。2. 空间电荷区、耗尽层(忽视其中载流子的存在)3. 漂移运动:少子在电场力的作用下的运动。在一定条件下,其与扩散运动动态平衡。4. 对称结、不对称结:外部特性相同。

二、PN结的单向导电性

1. PN结外加正向电压:导通状态(图1.1.6)正向接法、正向偏置,电阻R的作用。(解释为什么Uho与PN结导通时所表现的外部电压相反:PN结的外部电压为U即平时的0.7V,而内电场的电压并不对PN结的外部电压产生影响。)

2. PN结外加反向电压:截止状态(图1.1.7)反向电压、反向偏置、反向接法。形成漂移电流。

三、PN结的电流方程

1. 方程(表明PN结所加端电压u与流过它的电流i的关系):

iIS(euUT1)

UTkT

q为电子的电量。q2.平衡状态下载流子浓度与内电场场强的关系: 3. PN结电流方程分析中的条件:

4. 外加电压时PN结电流与电压的关系:

四、PN结的伏安特性(图1.1.10)

1. 正向特性、反向特性

2. 反向击穿:齐纳击穿(高掺杂、耗尽层薄、形成很强电场、直接破坏共价键)、雪崩击穿(低掺杂、耗尽层较宽、少子加速漂移、碰撞)。

五、PN结的电容效应

1. 势垒电容:(图1.1.11)耗尽层宽窄变化所等效的电容,Cb(电荷量随外加电压而增多或减少,这种现象与电容器的充放电过程相同)。与结面积、耗尽层宽度、半导体介电常数及外加电压有关。2. 扩散电容:(图1.1.12)

(1)平衡少子:PN结处于平衡状态时的少子。

(2)非平衡少子:PN结处于正向偏置时,从P区扩散到N区的空穴和从N区扩散到P区的自由电子。

(3)浓度梯度形成扩散电流,外加正向电压增大,浓度梯度增大,正向电流增大。

(4)扩散电容:扩散区内,电荷的积累和释放过程与电容器充放电过程相同。i越大、τ越大、UT越小,Cd就越大。

(5)结电容CjCbCd

pF级,对于低频忽略不计。

1.2 半导体二极管

(几种外形)(图1.2.1)

1.2.1 半导体二极管的几种常见结构(图1.2.2)

一、点接触型:电流小、结电容小、工作频率高。

二、面接触型:合金工艺,结电容大、电流大、工作频率低,整流管。

三、平面型:扩散工艺,结面积可大可小。

四、符号

1.2.2 二极管的伏安特性 一、二极管的伏安特性

1. 二极管和PN结伏安特性的区别:存在体电阻及引线电阻,相同端电压下,电流小;存在表面漏电流,反向电流大。

2. 伏安特性:开启电压(使二极管开始导通的临界电压)(图1.2.3)

二、温度对二极管方案特性的影响

1. 温度升高时,正向特性曲线向左移,反向特性曲线向下移。

2. 室温时,每升高1度,正向压降减小2~2.5mV;每升高10度,反向电流增大一倍。

1.2.3 二极管的主要参数

一、最大整流电流IF:长期运行时,允许通过的最大正向平均电流。

二、最高反向工作电压UR:工作时,所允许外加的最大反向电压,通常为击穿电压的一半。

三、反向电流IR:未击穿时的反向电流。越小,单向导电性越好;此值对温度敏感。

四、最高工作频率fM:上限频率,超过此值,结电容不能忽略。

1.2.4 二极管的等效电路 一、二极管的等效电路:在一定条件下,能够模拟二极管特性的由线性元件所构成的电路。一种建立在器件物理原理的基础上(复杂、适用范围宽),另一种根据器件外特性而构造(简单、用于近似分析)。

二、由伏安特性折线化得到的等效电路:(图1.2.4)

1. 理想二极管:注意符号 2. 正向导通时端电压为常量

3. 正向导通时端电压与电流成线性关系 4. 例1(图1.2.5)三种不同等效分析:(1)V远远大于UD,(2)UD变化范围很小,(3)接近实际情况。5. 例2(图1.2.6)三、二极管的微变等效电路(图1.2.7)(图1.2.8)(图1.2.9)

动态电阻的公式推倒:

1.2.5 稳压二极管

一、概念:一种由硅材料制成的面接触型晶体二极管,其可以工作在反向击穿状态,在一定电流范围内,端电压几乎不变。

二、稳压管的伏安特性:(图1.2.10)

三、稳压管的主要参数

1. 稳定电压UZ:反向击穿电压,具有分散性。2. 稳定电流IZ:稳压工作的最小电流。

3. 额定功耗PZM:稳定电压与最大稳定电流的乘积。4. 动态电阻rZ:稳压区的动态等效电阻。

5. 温度系数α:温度每变化1度,稳压值的变化量。小于4V为齐纳击穿,负温度系数;大于7V为雪崩击穿,正温度系数。

四、例(图1.2.11)

1.2.6 其他类型二极管

一、发光二极管(图1.2.12)可见光、不可见光、激光;红、绿、黄、橙等;开启电压大。

二、光电二极管(图1.2.13)远红外接受管,伏安特性(图1.2.14)光电流(光电二极管在反压下,受到光照而产生的电流)与光照度成线性关系。

三、例(图1.2.15)

1.3 双极型晶体管

双极型晶体管(BJT: Bipolar Junction Transistor)几种晶体管的常见外形(图1.3.1)

1.3.1 晶体管的结构及类型(图1.3.2)

一、构成方式:同一个硅片上制造出三个掺杂区域,并形成两个PN结。

二、结构:

1. 三个区域:基区(薄且掺杂浓度很低)、发射区(掺杂浓度很高)、集电区(结面积大);

2. 三个电极:基极、发射极、集电极; 3. 两个PN结:集电结、发射结。

三、分类及符号:PNP、NPN 1.3.2 晶体管的电流放大作用

一、放大:把微弱信号进行能量的放大,晶体管是放大电路的核心元件,控制能量的转换,将输入的微小变化不失真地放大输出,放大的对象是变化量。

二、基本共射放大电路(图1.3.3)

1. 输入回路:输入信号所接入的基极-发射极回路;

2. 输出回路:放大后的输出信号所在的集电极-发射极回路; 3. 共射放大电路:发射极是两个回路的公共端; 4. 放大条件:发射结正偏且集电结反偏;

5. 放大作用:小的基极电流控制大的集电极电流。

三、晶体管内部载流子的运动(图1.3.4)分析条件uI0

1. 发射结加正向电压,扩散运动形成发射极电流IE,空穴电流IEP由于基区掺杂浓度很低,可以忽略不计;IEIENIEP

2. 扩散到基区的自由电子与空穴的复合运动形成电流IBN;

3. 集电结加反向电压,漂移运动形成集电极电流IC,其中非平衡少子的漂移形成ICN,平衡少子形成ICBO。

ICBO4. 晶体管的电流分配关系:ICICNICBO,IBIBNIEPICBOIB,IEIBIC

四、晶体管的共射电流放大系数

1. 共射直流电流放大系数:ICNICICBO IBIBICBO2. 穿透电流ICEO:ICIB(1)ICBOIBICEO

基极开路时,集电极与发射极之间的电流;

3. 集电结反向饱和电流ICBO:发射极开路时的IB电流; 4.近似公式:ICIB,IE(1)IB

5. 共射交流电流放大系数:当有输入动态信号时,ic iB6. 交直流放大系数之间的近似:若在动态信号作用时,交流放大系数基本不变,则有iCICiCIBICEOiB(IBiB)ICEO因为直流放大系数在线性区几乎不变,可以把动态部分看成是直流大小的变化,忽略穿透电流,有:,放大系数一般取几十至一百多倍的管子,太小放大能力不强,太大性能不稳定;

7. 共基直流电流放大系数:ICN,,

1IE1iC, iE8. 共基交流电流放大系数:

1.3.3 晶体管的共射特性曲线

一、输入特性曲线(图1.3.5)iBf(uBE)u的能力有关。

二、输出特性曲线(图1.3.6)iCf(uCE)IB常数CE常数,解释曲线右移原因,与集电区收集电子

(解释放大区曲线几乎平行于横轴的原因)

1. 截止区:发射结电压小于开启电压,集电结反偏,穿透电流硅1uA,锗几十uA;

2. 放大区:发射结正偏,集电结反偏,iB和iC成比例;

3. 饱和区:双结正偏,iB和iC不成比例,临界饱和或临界放大状态(uCB0)。

1.3.4 晶体管的主要参数

一、直流参数

1. 共射直流电流系数 2. 共基直流电流放大系数 3. 极间反向电流ICBO

二、交流参数 1. 共射交流电流放大系数 2. 共基交流电流放大系数

3. 特征频率fT:使下降到1的信号频率。

三、极限参数(图1.3.7)

1. 最大集电极耗散功率PCM;

2. 最大集电极电流ICM:使明显减小的集电极电流值;

3. 极间反向击穿电压:晶体管的某一电极开路时,另外两个电极间所允许加的最高反向电压,UCBO几十伏到上千伏、UCEO、UEBO几伏以下。

UCBOUCEXUCESUCERUCEO

1.3.5 温度对晶体管特性及参数的影响

一、温度对ICBO影响:每升高10度,电流增加一倍,硅管的ICBO要小一些。

二、温度对输入特性的影响:(图1.3.8)与二极管伏安特性相似。温度升高时,正向特性曲线向左移,反向特性曲线向下移,室温时,每升高1度,发射结正向压降减小2~2.5mV。

三、温度对输出特性的影响:(图1.3.9)温度升高变大。

四、两个例题

1.3.6 光电三极管

一、构造:(图1.3.10)

二、光电三极管的输出特性曲线与普通三极管类似(图1.3.11)

三、暗电流:ICEO无光照时的集电极电流,比光电二极管的大,且每上升25度,电流上升10倍;

四、光电流:有光照时的集电极电流。

1.4 场效应管

1.4.1 结型场效应管 1.4.2 绝缘栅型场效应管

一、N沟道增强型MOS管(图1.4.7)

1. 结构:衬底低掺杂P,扩散高掺杂N区,金属铝作为栅极; 2. 工作原理:

(1)栅源不加电压,不会有电流;

(2)(图1.4.8)uDS0且uGS0时,栅极电流为零,形成耗尽层;加大电压,形成反型层(导电沟道);开启电压UGS(th);

(3)(图1.4.9)uGSUGS(th)为一定值时,加大uDS,iD线性增大;但uDS的压降均匀地降落在沟道上,使得沟道沿源-漏方向逐渐变窄;当uGD=UGS(th)时,为预夹断;之后,uDS增大的部分几乎全部用于克服夹断区对漏极电流的阻力,此时,对应不同的uGS就有不同的iD,从而可以将iD看为电压uGSiD出现恒流。控制的电流源。

3. 特性曲线与电流方程:(1)特性曲线:(图1.4.10)转移特性、输出特性;

u(2)电流方程:iDIDOGS1

UGS(th)

二、N沟道耗尽型MOS管(图1.4.10)

1. 结构:绝缘层加入大量的正离子,直接形成反型层; 2. 符号

三、P沟道MOS管:漏源之间加负压

四、VMOS管

21.4.3 场效应管的主要参数

一、直流参数

1. 开启电压UGS(th):是UDS一定时,使iD大于零所需的最小UGS值;

2. 夹断电压UGS(off):是UDS一定时,使iD为规定的微小电流时的uGS;

3. 饱和漏极电流IDSS:对于耗尽型管,在UGS=0情况下,产生预夹断时的漏极电流; 4. 直流输入电阻RGS(DC):栅源电压与栅极电流之比,MOS管大于10。

二、交流参数

1. 低频跨导:gm9iDuGS

UDS常数2. 极间电容:栅源电容Cgs、栅漏电容Cgd、1~3pF,漏源电容Cds0.1~1pF

三、极限参数

1. 最大漏极电流IDM:管子正常工作时,漏极电流的上限值; 2. 击穿电压:漏源击穿电压U(BR)DS,栅源击穿电压U(BR)GS。3. 最大耗散功率PDM:

4. 安全注意:栅源电容很小,容易产生高压,避免栅极空悬、保证栅源之间的直流通路。

四、例

1.4.4 场效应管与晶体管的比较

一、场效应管为电压控制、输入电阻高、基本不需要输入电流,晶体管电流控制、需要信号源提供一定的电流;

二、场效应管只有多子参与导电、稳定性好,晶体管因为有少子参与导电,受温度、辐射等因素影响大;

三、场效应管噪声系数很小;

四、场效应管漏极、源极可以互换,而晶体管很少这样;

五、场效应管比晶体管种类多,灵活性高;

六、场效应管应用更多。

1.5 单结晶体管和晶闸管 1.6 集成电路中的元件

相关内容

热门阅读

最新更新

随机推荐