第一篇:没有定理的中国古代数学,如何站在世界之巅
没有定理的中国古代数学,如何站在世界之巅
不同于希腊数学的公理化论证(以欧几里得《几何原本》为代表),中国古代数学是算法式的数学。它注重通用的方法,而不是特殊的技巧。
最近读到物理学家和科技史家程贞一教授的访谈录(标题是“我的人生经历与学术生涯”,作者郭金海),他提到早年的一段感受:
另一件印象比较深刻的事,是上初中时,我对中国古代数学萌发了兴趣。记得那时我们在念代数,教科书是《范氏大代数》。那时一直困惑我的一个问题是:为什么我们的数学教科书上没有一个来自中国文明的定理和成就?
正是这个疑问引导程贞一后来慢慢走向了科学史的研究,最终取得了杰出的成就。
与他相仿,我在年少时也渴望了解中国古代数学,然而教科书上很少提及这段历史。即便到了大学、上了数学系、念了研究生、翻了好多书,我对中国古代数学的认识还是很模糊。直到工作之后,我偶然读到吴文俊先生的几篇分析中国古代数学的文章,才豁然开朗。
照我的解读,吴文俊先生的意思是,中国古代数学其实只有一个关键字:术。吴先生在《对中国传统数学的再认识》中的原话如下:
大体说来,中国数学的古典著作大都以依据不同方法或不同类型分成章节的问题集的形式出现。每一个别问题又都分成若干个条目。条目一是“问”,提出有具体数值的问题。条目二是“答”,给出这一问题的具体数值解答。条目三称为“术”,一般来说乃是解答与条目一同一类型问题的普遍方法,实际上就相当于现代计算机科学中的“算法”,但有时也相当于一个公式或一个定理。条目四是“注”,说明“术”的依据或理由,实质上相当于一种证明。宋元以来,可能是由于印刷术的发达,往往加上条目五“草”,记述依据“术”得出答案的详细计算过程。
这里应特别提出条目三“术”的作用。虽然条目一、二中的问与答都以具体数值表达,有时甚至术文本身也是如此,但不难看出所有术文都具有普遍意义。术文中即使带有具体数值,这些数值并不起重要作用。如果以其他同类型的数值来代替,术文也依然行之有效。条目四的“注”或即证明也是如此。论证的正确性完全不依赖于原设数值的特殊性。例如,《九章算术》第九章勾股的第一、二、三的三个问题,都是以勾
三、股
四、弦五为例,知其二求其第三者。求法名为勾股术,术文曰:“勾、股各自乘,并而开方除之,即弦。”显然,这是从勾股求弦的一般方法,与具体数值三、四、五无关。勾股术的注或即证明也是如此。因此,问、答或术文中的具体数值,只起着一种举例说明的作用,同时也指出了术即一般方法的来历或动机。
在最近出版的《走自己的路——吴文俊口述自传》(湖南教育出版社,2015年)中,吴文俊先生着重指出:
机械化,贯穿中国古代数学的思想是机械化,中国古代数学的特点就是构造性和机械化。中国古代数学是着重解决实际问题,它的方法是“机械”的,跟西方数学的证明不一样,灵机一动什么的。中国古代数学不讲这个,没有什么灵机一动,都是死板的。这是我的发现,这是我真正读懂了中国古代数学。吴先生这里所谓的机械化,就体现在“术”的作用,相当于现代计算机科学中的“算法”。读到这里,就容易明白,为什么一直以来我们称数学为“算术”了:因为“术”正是中国古代数学的精髓。改称“算学”为“数学”,还是近代的事情。民国时期,北大有“数学系”,而清华的则叫作“算学系”。他们认为是一样的,但不想用同样的名字,因为互相不服气。
吴文俊先生一直强调,不同于希腊数学的公理化论证(以欧几里得《几何原本》为代表),中国古代数学是算法式的数学。这不难理解,只要看看我们的前辈创造了多少“术”:
更相减损术(《九章算术》,求两个整数的最大公因子)
盈亏术(《九章算术》,线性插值法)
方程术(《九章算术》,解线性方程组的方法,国外称高斯消去法)
割圆术(刘徽、祖冲之,用圆的内接正多边形的面积作为圆面积的近似,从而得到圆周率的近似值)
球积术(刘徽、祖暅,计算球的体积)
天元术(李冶,设未知数解方程)
大衍求一术(秦九韶、黄宗宪,解同余方程,主要结果表述为中国剩余定理)增乘开方术(贾宪、杨辉)
正负开方术(刘益、秦九韶,英国数学家霍纳后独立发现)
四元术(朱世杰,天元术的推广,解四个未知数的方程组)
隙积术(沈括)、垛积术(杨辉、朱世杰)
招差术(王恂、郭守敬、朱世杰)
尖锥求积术(李善兰)
正如吴文俊先生所总结的:“中国古代数学,就是一部算法大全。”所以要了解中国古代数学,就要了解一些代表性的算法。以下我们选取其中几项,略为介绍。
1更相减损术
第一个例子是吴文俊先生本人举的,即求两个正整数的最大公因子的“更相减损术”。
一个典型的例子是求最大公约数,中国古代叫“更相减损术”。中国古代数学中,把最大公约数叫做“等数”,术曰:以少减多,更相减损,求其等也。就这么几句话!比如说,要求24和15的最大公约数,也就是 “等数”,“更相减损术”的步骤如下:
(24,15)→(9,15)→(9,6)→(3,6)→(3,3)因此“等数”为 3。真漂亮!
“更相减损术”来自《九章算术》,一般简称《九章》,它是中国第一部数学专著,一共有九章内容。《九章》定型不晚于公元100年,但其作者不可考,后世流行的版本是经三国时期数学家刘徽加工之后的《九章算术注》(公元263年出版)。刘徽在《九章算术注》中曾明确指出,“更相减损术”的原理在于:在运算过程中,整数逐步减小,但其等数却始终保持不变。顺便提一句,《九章》中主要是利用“更相减损术”来约分,所以它完全包含在“约分术”中:“副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”就是求出分子、分母的最大公因子(等数),然后分子分母同除以最大公因子。
在现代教科书中,通常用“辗转相除法”(也称为欧几里得算法)来求两个正整数的最大公因子。它是“更相减损术”的一个变体,其基础是所谓的带余除法。
带余除法定理:设a和b是两个整数,其中b0,则存在唯一的整数q和r使得
a=qb+r,(其中r满足0≤rb)。
定理中的q称为a除以b的商,可以用下述性质刻画:qb是b的所有的倍数中不超过a最大的一个;r称为a除以b的余数,由r=a-qb确定。带余除法名称的由来,在于等式右边有余数r。当余数r=0时,称b整除a,而且b就是a,b的最大公因子。我们不拟介绍欧几里得算法,是因为在解决另一个与求最大公因子问题关系非常密切的问题时,中国古代的数学家本质上也创造了同样的算法,只不过它换了一个名字,叫“求一术”。
2大衍求一术
简单地说,求一术,就是求解下述方程
ax≡1(mod b)的算法。这里a,b是给定的非零整数,x是要求的整数,它满足方程ax≡1(mod b)是指,ax除以b的余数为1。
北宋数学家秦九韶发明了一种求一术,他在1247年出版的《数书九章》中命名为“大衍求一术”(“大衍”的来由:在序言中,秦九韶把这一方法与《周易》“大衍之数”附会)。后来,清代数学家黄宗宪进一步简化了秦九韶的方法。我们现在介绍的,是这个简化的版本。
不同于欧几里得的辗转相除,秦九韶‐黄宗宪的方法是用矩阵。首先写出一个 2 行 2 列的阵
其中a,b,1都是源自方程(1),只有0是补充进来的。秦九韶‐黄宗宪的方法(求一术)如下:对第一列的数a,b使用带余除法(较大的数除以较小的数)。设得到的商为q,则较大的数那一行减去较小数的那一行对应元素的q倍。于是新得到的矩阵的第一列两个元素替换为第一次带余除法的除数与余数。重复之前的操作,直到某一步带余除法得到的余数为 1(算法结束)。此时1正右方的数,即为所求的x。求一术,实际上就是“得1”的方法,因此又名“得一术”。
作为例子,我们用秦九韶‐黄宗宪的方法来求
5x≡1(mod 7)的一个解。
解:求一术步骤如下:
根据求一术,1的右边的数,就是x的一个解,即x=3。这是很容易验证的:
5·3=15≡1(mod 7)当然,你或许以为我是把问题搞复杂了,你甚至在一开始就试出来x=3是一个解。然而,正如吴文俊先生多次强调的,中国古代数学讲究的是一种算法,是一种威力极强的基本功夫。毫不夸张地说,简直可以遇妖除妖遇魔降魔。简单的例子你用技巧可以解决,但如果我换成一个稍微复杂一点的例子,如解方程
250x≡1(mod 2017)你若是还想故技重施,就没那么幸运了!说到这里,我想起著名数学家、数学教育家波利亚(George Pólya)的一句名言:“使用过一次的是技巧,使用过两次以上的技巧就有可能发展为一种方法。”正所谓“大智若愚,大巧若拙”,中国古代数学,注重的是通用的方法(“法”“术”同义),而不是特殊的技巧。读者若想领教秦九韶‐黄宗宪的求一术的威力,不妨用上面的方程250x≡1(mod 2017)一试!
不难发现,秦九韶‐黄宗宪的求一术与求最大公因子的欧几里得算法是相通的。作为例子,我们用矩阵格式写出求250与2017的最大公因子的过程如下:
在上述欧几里得算法中,直到某一步带余除法得到的余数为 0(算法结束),此时另一个数(这里就是1)即为最大公因子。当然,在我们的例子中验证十分容易,通过分解因子250=2×5×5×5,不难发现2017和250的公因子只有1。(事实上,2017是素数,但要徒手确认这一点,比上述求公因子的问题困难多了!)
3方程术
学过线性代数的读者应该会想起来,求一术本质上就是解线性方程组的初等行变换法,也称高斯消去法。因此,可以想见,秦九韶的求一术可能脱胎于“方程术”。“方程术”出自《九章算术》第八章,这一章详述了线性联立方程组的解法并引进了负数。按现代语言,“方程”这一术语的最好解释就是“方阵”。实际上,“方”的字面意义为正方形或矩形。“程”,按刘徽在《九章算术注》里的解释, 就是把数据在盘上摆成矩阵:“并列为行, 故谓之方程”。因此,解法便是纵横移动算筹,如我们上面所展示的那样。
4天元术与四元术
中国古代数学的高峰是在宋元时代,其代表人物是秦九韶、李冶和朱世杰。前面我们介绍了秦九韶和黄宗宪的大衍求一术,接下来我们介绍一下李冶的天元术和朱世杰的四元术。天元术其实就是设未知数解方程的方法。元就是未知数,“天元”就是未知数的名称。打个比方,“天元”相当于“嫌疑人X”,其中“元”相当于“嫌疑人”,“天”相当于“X”。
我相信每个人都对这种方法的威力深有体会,尤其是刚接触这个方法的小学生。其实,我们每个人在小学就已经接触到中国古代数学的杰出成就了,只是我们没有被告知而已!
国家自然科学基金中有个数学专项基金名叫“数学天元基金”,命名就来自“天元术”。
四元术,是天元术的推广。四元是指“天、地、人、物”四元,相当于说四个未知数x,y,z,w。天元术是求解带有一个未知数的方程的方法;而四元术则是求解带有四个未知数的方程组的方法。
“四”在此并无特殊含义,只是多项式中各项系数要摆在盘上的固定位置,这就限定了未知数的个数不超过四。因而对于懂“四元术”的人来说,这个方法不难推广到任意多个未知数。然而,宋元之后,中国古代数学就盛极而衰了,以至朱世杰的“四元术”没有被后人继承发展(甚至当利玛窦在明代来到中国时,中国已经无人懂《九章》了!)。直到 20 世纪,在计算机兴起和数学机械化思想复苏的背景下,朱世杰的这一工作最终启发吴文俊开创了几何定理机器证明的“吴方法”。吴文俊甚至这样说:“这里所谓本人所创立的方法,事实上无非是朱世杰四元术的现代化推广形式。” 结语
在一次访谈(标题是“走进吴文俊院士”,作者黄祖宾)中,吴文俊先生说到:
最早的几何学、最早的方程组、最古老的矩阵等等,翻开历史,中国曾经是一个数学的国度,中国数学在世界上的位置远比今天靠前。祖冲之、刘徽、《九章算术》、《周髀算经》、《四元玉鉴》等一批大家和著作,使中国数学曾经处于世界巅峰。正是由于这些辉煌,中国数学,不仅要振兴,更要复兴!
就我个人的感觉,从前学数学,在课本上读不到中国古代数学的成就,确实有些打击士气,下意识里就觉得我们中国人,是不是不适合学数学?如果当初有幸从吴文俊先生的文章中 了解到一些中国古代数学思想,我想我可能会学得更好些,甚至有可能专门研究中国古代数学。笔者这里并没有要扬中国古代数学而抑希腊古代数学的意思,只是想告诉读者,从风格上讲,中国古代数学具有鲜明的算法特色,这是中国古代数学的精髓所在。
无论如何,我要向所有对中国古代数学感兴趣的读者,推荐吴文俊先生的文章。要知道,这位荣获2000年首届国家最高科技奖的大数学家曾经说:“对中国古代数学的研究,是我最得意的,拓扑的那些工作不算什么。我感到最得意最自豪的是:真正懂了中国古代数学是怎么回事。”
第二篇:中国古代数学
引言
中国是四大文明古国之一,也是数学的发源地之一,由于地域、文化等特点,中国古代数学与欧洲数学存在着巨大的差别.这不仅表现在对理论与计算的偏重上,还表现在数学与社会关系的处理上.欧洲数学注重理论的逻辑推演和系统的建立.而与之相对,中国数学注重算法的研究和知识的现实可用性.这些特点使得中国数学在很长一段时间里成就位居世界之首.尤其是在古希腊数学衰落之后,中国数学取得了许多举世瞩目的成就.当西欧进入黑暗时代时,中国数学却在腾飞,许多成就比后来欧洲在文艺复兴和文艺复兴之后取得的同样成就早得多.这些成就的取得固然令我们感到骄傲,但到了十四世纪以后中国数学却开始走向了衰落.几百年来,中国人在数学这片领域上几乎找不到任何重大的发现与创新.这其中的原因不能不令我们深思.对历史进行研究能让我们看到中国古代数学由兴到衰的过程.对产生这种结果的诸多因数进行分析就能让我们深刻认识到衰落的真正原因,从而弃其糟粕,取其精华.中国古代数学究竟取得了那些重要成就?中国古代数学又是怎样走向衰落的?为弄清这些问题,首先让我们来回顾一下中国的数学发展史.2 中国古代数学发展简史
数学在中国的历史悠久绵长.在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;《易经》中还包含有组合数学与二进制思想.2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似.算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算.中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的.但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间.《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的.《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日.”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”.《九章算术》在中国古代数学发展过程中占有非常重要的地位.它经过许多人整理而成,大约成书于东汉时期.全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等.在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同.注重实际应用是《九章算术》的一个显著特点.该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲.《九章算术》标志以筹算为基础的中国古代数学体系的正式形成.中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物.赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释.在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法.用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献.三国时期魏人刘徽则注释了《九章算术》,其著作
《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造.其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”.他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础.在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”.另外,《海岛算经》也是刘徽编撰的一部数学论著.南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世.祖冲之、祖暅父子的工作在这一时期最具代表性.他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步.根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后 14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势,到了近代已远远落后于西方国家的数学水平.在中国古代数学几千年的发展历程中,我们不难看出中国古代数学思想与西方数学思想的诸多不同点,也就是其独具特色的一面.接下来让我们来分析一下中国古代数学的思想特点.3 中国古代数学思想特点(1).(实用性)《九章算术》收集的每个问题都是与生产实践有联系的应用题,以解决问题为目的.从《九章算术》开始,中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系.这不仅表现在中国的算学经典基本上都遵从问题集解的体例编纂而成,而且它所涉及的内容反映了当时社会政治、经济、军事、文化等方面的某些实际情况和需要,以致史学家们常常把古代数学典籍作为研究中国古代社会经济生活、典章制度(特别是度量衡制度),以及工程技术(例如土木建筑、地图测绘)等方面的珍贵史料.而明代中期以后兴起的珠算著作,所论则更是直接应用于商业等方面的计算技术.中国古代数学典籍具有浓厚的应用数学色彩,在中国古代数学发展的漫长历史中,应用始终是数学的主题,而且中国古代数学的应用领域十分广泛,著名的十大算经清楚地表明了这一点,同时也表明“实用性”又是中国古代数学合理性的衡量标准.这与古代希腊数学追求纯粹“理性”形成强烈的对照.其实,中国古代数学一开始就同天文历法结下了不解之缘.中算史上许多具有世界意义的杰出成就就是来自历法推算的.例如,举世闻名的“大衍求一术”(一次同余式组解法)产于历法上元积年的推算,由于推算日、月、五星行度的需要中算家创立了“招差术”(高次内插法);而由于调整历法数据的要求,历算家发展了分数近似法.所以,实用性是中国传统数学的特点之一.(2).(算法程序化)中国传统数学的实用性,决定了他以解决实际问题和提高计算技术为其主要目标.不管是解决问题的方式还是具体的算法,中国数学都具有程序性的特点.中国古代的计算工具是算筹,筹算是以算筹为计算工具来记数,列式和进行各种演算的方法.有人曾经将中国传统数学与今天的计算技术对比,认为算筹相应于电子计算机可以看作“硬件”,那么中国古代的“算术”可以比做电子计算机计算的程序设计,是一种软件的思想.这种看法是很有道理的.中国的筹算不用运算符号,无须保留运算的中间过程,只要求通过筹式的逐步变换而最终获得问题的解答.因此,中国古代数学著作中的“术”,都是用一套一套的“程序语言”所描写的程序化算法.各种不同的筹法都有其基本的变换法则和固定的演算程序.中算家善于运用演算的对称性、循环性等特点,将演算程序设计得十分简捷而巧妙.如果说古希腊的数学家以发现数学的定理为目标,那么中算家则以创造精致的算法为已任.这种设计等式、算法之风气在中算史上长盛不衰,清代李锐所设计的“调日法术”和“求强弱术”等都可以说是我国古代传统的遗风.古代数学大体可以分为两种不同的类型:一种是长于逻辑推理,一种是发展计算方法.这也大致代表了西方数学和东方数学的不同特色.虽然以算为主的某些特点也为东方的古代印度数学和中世纪的阿拉伯数学所具有,但是,中国传统数学在这方面更具有典型性.中算对于算具的依赖性和形成一整套程序化的特点尤为突出.例如,印度和阿拉伯在历史上虽然也使用过土盘等算具,但都是辅助性的,主要还是使用笔算,与中国长期使用的算筹和珠算的情形大不相同,自然也没有形成像中国这样一贯的与“硬件”相对应的整套“软件”.(3).(模型化)“数学模型”是针对或参照某种事物系统的特征或数量关系,采用形式话数学语言,概括的近似地表达出来的一种数学结构.古代的数学模型当然没有这样严格,但如果不要求“形式化的数学语言”,对“数学结构”也作简单化的解释,则仍
然可以应用这个定义.按此定义,数学模型与现实世界的事物有着不可分割的关系,与之有关的现实事物叫做现实原形,是为解释原型的问题才建立应用数学模型的.《九章算术》中大多数问题都具有一般性解法,是一类问题的模型,同类问题可以按同种方法解出.其实,以问题为中心、以算法为基础,主要依靠归纳思维建立数学模型,强调基本法则及其推广,是中国传统数学思想的精髓之一.中国传统数学的实用性,要求数学研究的结果能对各种实际问题进行分类,对每类问题给出统一的解法;以归纳为主的思维方式和以问题为中心的研究方式,倾向于建立基本问题的结构与解题模式,一般问题则被化归、分解为基本问题解决.由于中国传统数学未能建立起一套抽象的数学符号系统,对一般原理、法则的叙述一方面是借助文辞,一方面是通过具体问题的解题过程加以演示,使具体问题成为相应的数学模型.这种模型虽然和现代的数学模型有一定的区别,但二者在本质上是一样的.(4).(寓理于算)由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次上而无理论建树.其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等.中国古代数学的特点虽然在一定的程度上促进了其自身的发展,但正是因为这其中的某些特点,中国古代数学走向了低谷.4 中国古代数学由兴转衰的原因分析(1).独尊儒术,蔑视逻辑.汉武帝时,“罢黜百家,独尊儒术”使得当时注重形式逻辑的墨子思想未能得到继承和发展.儒家思想讲究简约,而忽视了逻辑思维的过程.这一点从中国古代的典籍中能找到最准确的说明.《周髀算经》中虽然给出了勾股定理,但却没给出证明.《九章算术》同样只在给出题目的同时,给出一个结果和计算的程式,对其中的逻辑思维却没有去说明.中国古代数学这种只注重计算形式(即古代数学家所谓的“术”)与过程,不注重逻辑思维的做法,在很长一段时间里禁锢了中国古代数学发展.这种情况的出现当然也有其原因,中国古代传统数学主要是在算筹的基础上发展起来的,后来发展到以算盘为工具的计算时代,但是这些工具的使用在另一方面为中国人提供了一种程式化的求解方法,从而忽视了其中的逻辑思维过程.此外,中国传统数学讲究“寓理于算”.即使高度发达的宋元数学也是如此.数学书是由一系列的数学问题组成的.你也可以称它们为“习题解集”.数学理论以‘术”的形式出现.早期的“术”只有一个过程,后人就纷纷为它们作注,而这些注释也很简约.实际上就是举例“说明”,至于说明了什么,条件变一下怎么办,就要读者自已去总结了,从来不会给你一套系统的理论.这是一种相对原始的做法.但随着数学的发展,这种做法的局限性就表现出来了,它极不利于知识的总结.如果只有很少一点数学知识,那么,问题还不严重,但随着数学知识的增长,每个知识点都用一个题目来包装,而不把它们总结出来就难以从整体上去把握这些知识.这无论对学习数学还是研究,发展数学都是不利的.(2). 崇尚玄学,迷信数术,歪曲数学思想.魏晋时期,儒学虽然受到一定的冲击,但其统治地位并未受到动摇.老庄学说和儒家学说相反相成便形成了玄学.玄学原本探究的是有关人生的哲学,但后来与数学混在了一起.古人曾就常常以玄术来解释数学问题,使得数学概念和方法遭到歪曲.张衡是我国著名科学家.当时他虽然已经知道圆周率“周一径三”不准确,但由于他始终相信“周一径三”来源于“参天两地”的说法,一直没深入探究,因而未能将圆周率推算到更精确的地步,这不能不说是一大遗憾.当玄术和数术充塞数学时,数学已经明显存有落后的隐患.(3). 故步自封,墨守成规,拒绝数学符号.中国古代数学是以汉语描述的,历来不重视汉字以外的数学符号,给逻辑思维带来很大的困难,使我国长期不能形成演绎推理的传统,严重影响了我国数学的发展.从明朝开始,中国就走上了闭关锁国的道路.这种行为与小农思想相适应,早在秦代就已经出现端倪,建一条长城将自己围起来,对外面的东西不闻不问.相比之下,西方在度过了中世纪的黑暗时期后,进入了文艺复兴时期.欧洲的扩张、航海技术开阔了西方人的眼界,同时也大大推动了数学的发展.在18世纪的改革和动荡中,新出现的资产阶级推翻了英、法的君主政治.封建的政治、社会和经济思想被经典的自由主义哲学所取代,这种哲学促进了19世纪的工业革命.社会生产力的提高成了西方数学发展的源源不断的动力.最终,近代的数学在西方被建立起来,而曾是数学大国之一的中国,在其中却无所作为.(4).此外,中国长期处于封建社会,迟迟未能进入资本主义阶段,也是导致中国古代数学发展停顿的直接原因.从整体上看,数学是与所处的社会生产力相适应的.中国社会长期处于封闭的小农经济环境,生产力低下,不仅没有工业,商业也不发达.整个社会对数学没有太高的要求,自然研究数学的人也就少了.恩格斯说,天文学和力学是推动数学发展的动力,而在当时的中国这种动力已趋近枯竭.5 我从中国古代数学的研究中得到的几点启示:
通过对中国古代数学史及数学思想史的研究,我们看到了中国古代数学由兴到衰的历史过程,并分析了其由兴到衰的历史原因.由此,针对中国古代数学发展的特殊历史背景,我对今后数学发展方向作出了以下意见:
(1).继承并创新中国古代传统数学思想的精华.数学应服务于生产实践,这是一个不争的事实.虽然很多理论都是在贯之以“纯数学”,但是,我们应该相信,这些理论只是数学上的一个过渡,它的引入是为了解决其他的问题而展开的.现代数学教育中经常会引入一些现实中的模型,让学生用数学方法加以解决,这就是很好的做法.一方面它让学生认识到了数学源于生活,服务于生活的理念;令一方面它有效得锻炼了学生数学建模的思想,并从真正意义上让学生学懂学活了.很多人怀疑中国古代数学知识已经过时,就在一些数学思想也与现代格格不入.其实这是不正确的.近年来,我国著名数学家吴文俊同志从中国古代数学擅长于算,习惯将算法程序化这一做法中得到了启示,从而研究开辟了机器证明数学命题的新领域.这就是很好的例子,它说明中国古代数学思想并没有过时,要想走出创新和成就的瓶颈,我们就必须认真研究中国古代数学的历史和世界数学的现状,并有效得将二者进行结合.(2).数学研究应沿着注重逻辑思维的过程以及理论体系的建立这一路线发展,虽然当今数学发展已经相当完备,但仍有大量的问题有待我们去努力解决.就比如:如何将数学的各个分支用一中简约的数学思想统一起来?这个难题有许许多多的数学工作者在为之奋斗,并取得了一的成绩,群论的建立就是其中优秀的范例.难以想像,如果对数学的理论体系没有一定的了解,并且不注重逻辑思维的过程,而又试图解决这一问题是多么困难的事.(3).数学研究要以一种科学的态度去对待.就比如马克思主义辩证思想,只要我们的数学研究秉承着这样一种思想,就不会走太多的弯路,更不会走上歧途.中国古代数学是与玄术并行发展的,这难免阻碍了数学的发展.而由于中国文化的特点,这种思想依然对一大批数学工作着有着较深的影响.我们的数学要发展和创新就不能不摒弃一切有碍数学发展的因素.(4).我们的每个理论研究者都应密切关注国内国外的学术动态,吸收一切有用的、正确的、外来的文化与知识,而不能做一个闭门造车的数学工作者.数学发展至今,很多
分支都已经发展地相当完备了,一个研究者倘若对世界数学在本领域的现状缺乏了解的情况下开展研究工作,必定会走弯路.多元化的信息时代为我们提供了便捷的世界文化知识交流渠道.网络就是很好的例子,我们可以充分地加以应用,从而共同推动数学的发展.(5).建立健全的国家发展体制.只有在一种迫切的发展动力下,才能激发人的潜力,从而创造出成绩.当代中国经济发展迅猛,生产力不断发展壮大.这种状况对我们的每个数学工作者提供了良好的契机,只要我们的数学工作者将目光更多地投入到生产实践中去,让科学服务于生产实践,就能有所成就,有所创新.6 结束语
中国传统数学思想具有显著的民族性特征.我国传统数学是沿着注重从实践经验中产生和发展数学的思维方式发展数学的,擅长于算,运算主要以算筹作为工具.但同时却又在逻辑思维上存有欠缺.这与西方许多国家发展数学的道路是不同的.中国传统数学思想有着自已的渊源和模式,有其长,也有其短.在初等数学领域之内,正是这种传统数学思想把我国数学推向世界的最高峰.许多国家与我国相比,望尘莫及.好的传统我们应当学会继承和发展.我们应当好好研究中国古代数学的独特之处,并将其加以应用,以指导当代的数学研究工作.对于落后不利于数学发展的思想我们又要学会放弃,就比如中国古代数学曾一度故步自封,这是极其不利于其自身发展的做法.我们要从中吸取教训,努力加强中西文化交流,尽可能多得吸取西方数学的精华与长处.这样我们的数学才能在真正意义上走想成熟.继承和发展中国传统数学思想,“纯粹的”民族传统是不行的,要面向世界,面向现代化.我们应该恰当调节数学和环境的关系,为数学提供源源不断的动力机制.并建立一套完善的理论体系,把应用广泛地拓展开来.另一方面我们要提高数学抽象结构,加强其内在联系,注重分析,全面把握,只有这样才是真正意义上认识了我国古代数学思想中体现出来的优与劣,我们的数学也才能拥有一片光明的前景.致谢:本论文的顺利完成主要得益于张正才教授和李圣国老师的辛勤指导和帮助.在此表示感谢!
参考文献
文献资料
[1] http://.[2]王树禾, 数学思想史,北京:国防工业出版社,2003.[3]王青建, 数学史简编,北京:科学出版社,2004.[4]朱家生, 数学史,北京:高等教育出版社,2004.[5]李迪,数学史研究文集,内蒙古大学出版社,1990.[6]李文林, 数学史教程,2000.[7]李继闵, 《九章算术》导读与注释型,1998.[8]郭书春, 中国古代数学,1997 [9]袁小明 胡炳生 周焕山,数学思想发展简史,1992.[10]高隆昌 胡勋玉,中国数学的智慧之光,1992.[11]项观捷,中国古代数学成就,1988.[12]李惠民,漫谈古代数学,1986.[13]傅钟鹏,中华古数学巡礼,1984.[14]陈竹如,破译科学的密码——中国古代数学.[15] 毛建儒,对中国近代数学落后原因的分析,自然辩证法研究,2001.[16]王乃信,许瑞峰,傅向华.中国古代数学的辉煌与衰落.西北农林科技大学学报,2001(1):110-114
[17]郭华光,张晓磊.试论中国古代数学衰落的原因及启示.数学教育学报,2001(10):95-98 [18]郭金彬.“算经十书”数学思想简论.厦门大学学报,2003(1):100-107
[19]陈莉,马浩.中国古代数学发展缓慢的启示.黄山高等专科学校学报,2000(2):112-114
[20] 刘明海 , 张素亮 THE POSITION OF THE AIENT MATHEMATICS IN CHINA IN THE DEVELOPMENT OF THE WORLD MATHEMATICS Journal of Qufu Normal University(Natural Science Edition)[21]王汝发 , 陈建兰 The Effect of the I Ching on the Anciant Mathematical Thoughts,Journal of Lanzhou University(Social Sciences)[22] Li Wenlin ,The Development and Influence of Chinese Classic Mathematics, Bulletin of the Chinese Academy of Sciences.[23] XU Rui-feng ,The brightness and decline of the ancient Chinese mathematics, Journal of Northwest Sci-Tech University of Agriculture and Forestry.[24] 王汝发,The Impact of the “Nine Chapter Arithmetic” on the Development of Chinese Ancient Mathematics,Zhejiang Journal of Animal Science and Veterinary Medicine.
第三篇:中国古代数学专著
让更多的孩子得到更好的教育
中国古代数学专著——《九章算术》
《九章算术》是中国古代数学专著,承先秦数学发展的源流,进入汉朝后又经许多学者的删补才最后成书,这大约是公元一世纪的下半叶。它的出现,标志着中国古代数学体系的形成。
后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。
《九章算术》共收有 246个数学问题,分为九章。分别是:方田、栗米、衰分、少广、商功、均输、盈不足、方程、勾股。
《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。
地址:北京市西城区新德街20号4层 电话:010-82025511 传真:010-82079687
第四篇:中国古代数学的成就
中国古代数学的成就
中国是世界文明古国之一。数学是中国古代科学中一门重要学科,其发展源远流长,成就辉煌,其中包括圆周率、割圆术、十进位制计数法、算经十书、勾股定理、杨辉三角和剁积术、珠算等。我想就着这几项谈谈我国古代数学的成就。
一:圆周率。古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢。中国古算书《周髀算经》中有“径一而周三”的记载,认为圆周率是常数。
我国数学家刘徽在注释《九章算术》时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10。
汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。王蕃发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。
二、割圆术。3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周长的方法。中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。三、十进位制计数法。十进位制记数法在我国原始社会就已经形成,完成于奴隶社会初期的商代,到商代已发展为完整的十进制系统,并且有了“十”、“百”、“千”、“万”等专用的大数名称。1899年从河南安阳发掘出来的象形文字,是大约3000多年前的殷代甲骨文。其中载有许多数字记录,最大的数目字是3万。如有一片甲骨上刻着“八日辛亥允戈伐二千六百五十六人。”(八日辛亥那天的战争中,消灭了敌方2656人)。这段文字说明我国在公元前1600年,已经采用了十进位值制记数法。这种记数法中,没有形成零的概念和零号,但由于引入了几个表示数位的特殊的数字如
十、百、千、万等.能确切地表示出任何自然数,因而也是相当成功的十进位值制记数法,历代稍有变革,但基本框架则一直延用至今。
四、《算经十书》。《算经十书》是指汉、唐一千多年间的十部著名的数学著作,他们曾经是隋唐时代国子监算学科的教科书。十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《辑古算经》、《缀术》。其中阐明“盖天说”的《周髀算经》,被人们认为是流传下来的中国最古老的既谈天体又谈数学的天文历著作。其中提到大禹治水时所应用的数学知识,成为现存文献中提到最早使用勾股定理的例子。
五、勾股定理。勾股定理勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。他们发现勾股定理的时间都比我国晚,我国是最早发现这一几何宝藏的国家。
六、杨辉三角和剁积术。扬辉对筹算乘除捷算法进行了总结和发展,创“纵横图”之名.继沈括“隙积术”之后,关于高阶等差级数的研究创“垛积术”。
七、珠算。珠算是以算盘为工具进行数字计算的一种方法。“珠算”一词﹐最早见于汉代徐岳撰的《数术记遗》,其中有云:“珠算﹐控带四时﹐经纬三才。”北周甄鸾为此作注﹐大意是﹕把木板刻为三部分﹐上下两部分是停游珠用的﹐中间一部分是作定位用的。每位各有五颗珠﹐上面一颗珠与下面四颗珠用颜色来区别。上面一珠当五﹐下面四颗﹐每珠当一。可见当时“珠算”与现今通行的珠算有所不同。中国珠算﹐从明代以来﹐极为盛行﹐先后传到日本﹑朝鲜﹑东南亚各国﹐近年在美洲也渐流行。由于算盘不但是一种极简便的计算工具﹐而且具有独特的教育职能﹐所以到现在仍盛行不衰。
中国古代数学凭借这些辉煌成就在16世纪左右都处于领先地位,是名副其实的数学强国。这些数学成就对中华民族以及世界文明都做出了重大的贡献,是值得炎黄子孙珍视的骄傲。希望中国的当代数学家们能够继承古代数学家的精神,树立促进中国数学发展的长远目标,不懈努力,争取使中国在世界上早日成为数学大国。
第五篇:《登上世界之巅》教案
一、导语设计
(多媒体显示雪域高原的地方风情)
同学们,高度为8848、13米的全球最高峰珠穆朗玛峰以其独特的地理风貌,吸引着全世界勇敢者的目光。自1953年5月29日新西兰人埃德蒙德·希拉克和夏尔巴人坦曾·诺盖伊站在白雪皑皑的山顶上,向全世界证明人类可以超越自我极限,在高耸入天之处生存后,英勇的中国登山健儿于1960年5月25日从珠峰北坡成功登顶的壮举,书写了世界登山史上的新纪录。当时随登山队采访的郭超人记者在他的长篇通讯报道《红旗插上珠穆朗玛峰》中记录了这一经典的历史时刻。今天,我们将重温征服珠峰那段往事,体会昔日英雄征服自然的毅力和勇气。
(板书文题、作者)
二、资料助读
多媒体显示:作者简介 视频《珠穆朗玛峰》
三、整体感知,理清思路
1、学生自由朗读,初步感知文意。标示段序并疏解疑难字词。
多媒体显示:字词注音
2、学生快速默读,准确把握文段中的主要信息(如有提示和概括性作用的关键词句),整体把握课文内容。
思考:
⑴ 在突击顶峰的过程中,登山队员们先后遇到了哪些特别的困难?
⑵ 课文详写了哪些典型事例表现队员们坚强的意志和大无畏的精神的?
⑶ 用简洁的语句复述登山队员突击顶峰的经过。
指名学生回答,有不完整的地方鼓励其余同学补充,教师明确:
⑴ 登顶过程中,登山队员在体力衰弱的情形下,承受着寒冷、黑夜和缺氧对生命的严峻考验,完成了从北路攀登珠峰的壮举。如“冒着零下30多摄氏度的严寒,在陡滑的岩壁上登攀”“黑夜,即将成为他们前进道路上的第二道难关”“到达8830米左右的地方,王富洲、屈银华和贡布三人的氧气已经全部用完。”等提示语。
⑵ 作者重点写了征服“第二台阶”和刘连满宁可自己牺牲也要把氧气留给同志的事迹。
⑶ 经过充分的准备,5月24日上午9时,登山队员王富洲、刘连满、屈银华和贡布向珠峰最后380米高度冲击。两个多小时后,著名的“第二台阶”挡住了他们的去路。他们沿着第三次行军侦察的路线,冒着严寒,花了五个多小时,用搭人梯的方式,爬上了不到7米高的“第二台阶”。这时,队员们又不得不面对黑夜的挑战。他们借着雪夜的反光,艰难向前行进。他们现在又受到缺氧的严重威胁。刘连满反应最强烈,为了争取时间,大家决定他留下休息,其余三人以最快速度突击登顶。刘连满冒着生命危险,毅然决定把自己所剩不多的氧气留给同志,并留下短信。与此同时,三位登山队员匍匐在地上,借着星光和反照的雪光,辨认路途,艰难前进。到8830米,氧气全部用完,三人开始了危险的无氧攀登。必胜的信念支持着他们在凌晨成功登顶。
3、学生有感情地朗读课文,体会登山队员的英雄气概。
四、精读探究,揣摩运用
1、围绕以下问题,请学生精读课文。
⑴ 文中刘连满的形象令人感动、难忘。在登顶活动中他的哪些行动给你留下深刻印象?从中表现出怎样的优秀品质?
⑵ 文中第12语段引用扬赫斯班在《埃非勒士峰探险记》中的那段话的作用是什么?是否有些离题?
⑶ 本文在叙述事件经过时很注意详略处理,试结合事例说说其作用。
⑷ 文中优美的写景语句无疑是文笔精华,请找出这些语句,并说说它们的作用。
四人学习小组讨论,教师巡回点拨,指名小组代表阐发讨论意见,并归结。明确:
⑴ 刘连满在征服被外国探险家认为是不可逾越的“第二台阶”时,毅然为队友作人梯,以致过度疲劳,体力衰弱,放弃登顶。在等待队友登顶返回时,他宁愿自己忍受窒息的痛苦甚至死亡的威胁,也要把最后一点氧气留给同志,并留下一封感人的短信。
他的崇高行为鲜明地体现出自我牺牲、团结协作的精神。联系全篇通讯看,登顶的胜利,是团结协作,共同奋斗的结果,是集体主义精神的胜利。刘连满就是这样一个突出的例子。
⑵ 文中的引文是为了表现珠峰严酷的自然环境,突出登山队员所遭遇困难的巨大和他们不畏艰险、勇往直前的精神。
这段话中强调了登山队员到达顶峰最需要、最重要的是勇气,而坚强的中国登山队员恰是靠了祖国和民族的荣誉、人民的委托的力量勇往直前。
⑶ 课文叙述事件详略有致,选择典型事件表现人物的精神风貌。如征服“第二台阶”中刘连满毅然为队友作人梯,而“第二台阶”恰如文中叙述攀登垂直而光滑的顶部的三米岩壁耗时长达三个小时,其难度可想而知。这是被外国探险家所公认的,1924年英国赫赫有名的登山家马洛里和欧文就是在这一带失踪的。刘连满的行为,则是全体登山队员的团结协作的情操美的写照。
总之,课文详写的内容很典型地表现出登山队员不畏艰险、勇往直前、团结协作、舍己为人的优秀品质。
⑶ 文中描写景物的语句如:
① 5月24日清晨,阳光灿烂,珠穆朗玛峰尖锥形的顶峰耸立在蓝天之上,朵朵白云在山岭间缭绕不散。(运用比喻手法)
② 夜色浓重,珠穆朗玛峰山岭间朦胧一片,只有顶峰还露出隐约的轮廓。
③ 夜色深沉,山上山下到处是一片漆黑,只有点点星光在空中闪耀。珠穆朗玛顶峰的黑影在他们面前开始变得非常低矮了。
④ 举目四望,朦胧的夜色中,喜马拉雅山区群峰的座座黑影,都匍匐在他们的脚下。现在,他们三人的头上,只有闪闪发光的星斗„„
⑤ 天色开始黑下来,寒风凄厉地呼啸着。
文中自然环境的描写主要有两方面,一是渲染登山环境的恶劣,这是为了衬托登山队员不怕艰险,勇往直前的精神;一是用了较多笔墨描写了美丽的珠峰景色,这些描写生动形象,增强了真实性和感染力,更给人以美的享受。
2、请学生调动生活体验,充分发挥想象,仿照文中写景语句,试着写几个表现夜色美的句子。
3、以CD《珠穆朗玛》为背景音乐,教师深情诵读课文片断,学生用心体悟。
五、课堂小结
“无限风光在险峰”,正是因为有了英雄们挑战地球之巅的壮举,珠峰,一个令万千人顶礼膜拜的圣地,一个令旅游者心驰神往的胜境,才向世人展示了她的神秘与伟岸。重温往事,我们更有理由相信人类征服自然的脚步会走得更稳健、更远。