首页 > 文库大全 > 精品范文库 > 14号文库

关于激光焊接机焊接的主要影响因素分析总结

关于激光焊接机焊接的主要影响因素分析总结



第一篇:关于激光焊接机焊接的主要影响因素分析总结

激光焊接机焊接的主要影响因素

来源:奥华激光

激光焊接的主要影响因素

激光功率:通常用于焊接的激光功率等级为3kW ; 输出形式:连续、脉冲、波形控制;

焊接速度:激光焊接的经济性要求焊接速度较高(2m/min); 材料特性:材料对激光的吸收率、表面状态等;

保护气体种类和形式:主要考虑对焊缝区的保护、等离子体产生的阈值高; 离焦量:影响激光焊接熔深的主要参数; 接头形式:对接、搭接、角接等;

工件间隙:一般不允许有间隙(0.1mm);

填充材料:一般不采用填丝方式,超大功率、特殊情况下采用

第二篇:激光焊接总结

激光焊接总结

就“鹏桑普”焊接板芯208片,分析总结!

自2011年8月18日整板裁剪好开始调试焊接起,24小时连续工作五天完成任务。前期我已对0.2mm铜板进行焊接调试,就调试板可以完美焊接了。可是焊接德国进口镀膜板时,又回出现焊接不上及焊点太大的问题。

经过调试,同样是0.2mm的铜板用不同的工艺焊接,后面发现主要有两个问题:

1、铜板材质不一样,表面发光效果会影响激光焊接工艺;

2、镜片:激光聚焦前面的保护镜片,保护飞溅不伤害激光聚焦。保护镜片透射率及清晰度一定要好。

在整批任务的完成过程中还出现了很多问题:

1、伺服电机卡死现象;------先调伺服电机5A编辑器不成功,后更换。(主要是Y轴方向不能灵活运动)

2、有漏焊及脱焊现象;------通过把铜板垫高气压加大,让铜管与铜板更有效地接合后焊接。

3、德国进口镀膜铜板反面出现两种颜色,一种很光洁(要求功率会相对高点),一种看起来有氧化现象(相对功率低点,而且容易焊接);------工艺偏向光洁面,功率偏大,氧化面焊点较大,有铜飞溅。

4、在焊接过程中,因为功率太大,铜板飞溅也就很大,保护镜片损害相当严重,使用监视器查看焊缝越来越模糊,越是模糊就越要加大功率,最后镜片不能使用;------在保证焊点的前提下劲量调小功率,让飞溅减小。镜片稍模糊时用棉布搽拭干净,镜片严重模糊时更换镜片。

5、在连续焊接24小时后,监视器的电源无故失效;------更换类似电源。

6、在焊接过程中,由于工装不完善经常出现碰撞现象;------焊接过程中多注意观察调节,要认真、要专心的工作。

7、工装不完善,剪板公差无法精确到1mm以下;------工装要根据铜板与板芯中心对称,剪板要求精准。

8、焊接到最里面的时候,需要爬上平台进行调试很不方便。------把易焊的一面装在里面。

经过大批量焊接,机器稳定了好多,我们也都学着能够熟悉掌握它了!

第三篇:影响激光切割机切割精度因素分析

影响激光切割机切割精度因素分析

我们知道光纤激光切割机的切割精度是衡量切割机好坏和影响切割样件质量的重要因素,那么在日常生产中,我们最关心的自然是,有哪些因素能够影响到光纤激光切割机的切割精度呢?下面就由山大易美科光纤激光切割机生产厂家为您解读一下吧!

第一:激光器发出的光束为锥形,所以切出来的缝隙也是锥形,在这种情况下,厚度0.4MM的不锈钢就会比3MM的切缝小的多。因此,激光光束的形状取决于影响金属激光切割机切割精度的一大要素。在这种锥形的激光光束条件下,工件厚度越大,精度也就会越低,因此切缝越大。

第二:当锥形的激光光束聚集在一起之后,此时的会越变越小,因此该激光切割机的精度也变得越来越高,特别是切缝的幅面也就变得越来越小。在这个时候最小的光斑可以达到0.01mm。这也是影响激光切割机切割精度的要素之一。

第三:在这样的情况下,不同材质的切割精度也稍有不同。即使是同一材质,如果材料的成分不同,切割的精度也会有差异。因此,工件材质对激光切割精度也有一定的影响。

第四:工作台的精度,若工作台精度不平或者其它原因也会导致高精度的激光切割效果。

如果想了解更多激光切割机精度问题,欢迎致电山大易美科技术人员详询。

第四篇:镀锌板激光焊接

引言

镀锌钢的镀锌层不但具有物理屏蔽作用,而且对钢基体还起到了电化学保护作用,其良好的抗腐蚀性能使得镀锌钢在许多领域得到广泛的应用,包括电力、交通、建筑、化工、通风供热设施以及家具制造等行业。尤其在汽车制造中,各种普通镀锌钢,高强度镀锌钢,超高强度镀锌钢的应用大幅提高了车身等部件的抗腐蚀性能和汽车的使用寿命。然而,因镀锌钢中镀锌层的存在,使得镀锌钢的焊接工艺性大为降低。原因是在镀锌钢的焊接过程中,镀层锌和基体钢物理特性的极大差异(镀锌层锌的熔点是 420度,沸点是 908度,基体钢的熔点是 1300度,沸点是 2861度),镀层锌的气化先于基体钢的熔化,这一现象对镀锌钢的焊接过程和质量都有很大影响。目前,镀锌钢的主要焊接工艺有三种:电阻电焊、电弧焊和激光焊接。对电阻点焊而言,由于镀锌层的存在,焊接时电极易于锌层合金化,降低了电极的寿命。而采用电弧焊焊接镀锌钢时,由于锌的低沸点,在电弧刚接触到镀锌层时,锌迅速气化,产生的锌蒸气向外喷射,很容易使焊接产生熔渣粒子、气孔、飞溅、未熔合及裂纹等焊接缺陷,电弧的稳定性也因此受到影响,焊接质量下降,同时焊接过程中还会产生大量烟雾灰尘。另外,由于电弧焊的焊缝宽度较大,且热输入量大,镀层锌的大量气化降低了镀锌钢焊缝处的抗腐蚀性能。镀锌钢采用激光焊接时,同样存在镀锌层的气化,以及焊接气孔、飞溅、未熔合等缺陷。但激光焊接与电阻点焊和电弧焊相比,激光焊接单位热输入量少、热变形小、焊缝深宽比大、焊接速度高、焊缝强度普遍高于母材、镀层锌的损耗低 ,且激光焊接是单边加工、复杂结构适应性好、易于实现远程焊接和自动化。例如,德国奥迪、奔驰、大众、瑞典的沃尔沃、美国通用、福特、意大利菲亚特、日本的日产、本田和丰田等汽车公司,都采用了激光焊接技术,建立了激光焊接生产线,在有的汽车生产中激光搭接焊缝已达到 100米长。在国内汽车厂家,只有少数几家企业(如:上海通用,一汽奥迪,大众等)引进国外的设备和技术,建立了激光焊接生产线。

本文以镀锌钢板为例,在分析镀锌钢板激光焊接特性的基础上,综述了提高镀锌钢板焊接质量的工艺措施,焊接过程的优化仿真及焊接质量的在线检测与控制。镀锌钢板激光焊接特性

激光焊接过程,根据焊接机理的不同可以分为两类:热传导焊与深熔焊。两者之间的根本区别就是是否存在焊接小孔。激光焊接镀锌钢板时,一般采用深熔焊接。但由于镀锌钢板中镀层锌的存在,激光深熔焊接镀锌钢板的过程存在两种特有的焊接特征:锌蒸气和锌等离子体。

(1)锌蒸气

当高能量密度的激光束照射到工件表面时,工件吸收激光能量,温度迅速升高,由于锌的低沸点,镀锌钢板的镀层锌极易气化而形成锌蒸气。当锌蒸气被压入焊接熔池时,对熔池产生扰动,熔池中的气泡不易排出,对焊接过程的影响最大。因为激光焊接熔池的冷却速度很快,熔池凝固时间很短,熔池中的气泡极易使焊缝产生焊接缺陷,如飞溅、熔渣、气孔、未熔合,影响焊缝成形,降低焊缝质量。同时,锌的蒸发使镀锌层的含锌量减少,对镀锌层的防腐性也有一定的影响;还有文献中提到锌层的蒸气对人体有害,影响工作环境。因此解决锌蒸气问题成为镀锌钢板激光焊接的根本问题。

镀锌钢板的激光焊接过程中,锌蒸气的产生可以分为两类:①上表层锌和下表层锌的气化;②叠层搭接焊时中间层锌的气化(如图1 所示)。上下表层锌蒸发而产生的锌蒸气膨胀并向空中自由扩散,对焊接质量无直接影响。镀锌钢板叠层搭接焊中,中间镀锌层气化产生的锌蒸气的膨胀扩散途径有三种:①经由板间间隙膨胀扩散至空气中;②经由焊接小孔膨胀扩散至空气中;③锌蒸气被压入焊接熔池。对于镀锌钢板叠层搭接焊锌蒸气经由板间间隙扩散排出的方式,合适的板间间隙值是控制锌蒸气排出的关键因素,间隙值的选取见本文第三部分第一节第二点板间间隙法。锌蒸气经由焊接小孔排出是另一种有效的途径。但是,焊接

小孔是细长小孔且焊接速度较快,有时锌蒸气无法通过板间间隙和焊接小孔完全排出而被强大的蒸气压力压入焊接熔池,形成熔池中的气泡。当熔池凝固时间足够长,气泡会随熔池的搅拌从内部熔池向熔池表面移动并最终排出到空气中;但如果熔池凝固时间短,熔池中锌蒸气的气泡在向熔池外移动和挤压过程中容易形成飞溅和熔渣,或者留在熔池内形成焊缝中的气孔,严重时会在板间形成大气泡,阻碍板间的熔合。实际镀锌钢板的激光焊接过程中,锌蒸气的迅速产生且蒸气压力大,锌蒸气同时经由上述三种扩散途径排出。

图 1 锌蒸气的扩散.(a)上下表层锌蒸气扩散;(b)中间层锌蒸气扩散 Fig.1 The diffusion of zinc vapor.(a)On top and bottom surface;

(b)In middle layer.(2)锌等离子体

光致等离子体是激光深熔焊接的重要特征。当激光束照射到镀锌钢板上,表层锌和基体钢吸收激光并迅速气化,形成锌和铁的混合金属蒸气。金属蒸气在激光的辐照作用下电离并形成等离子体。由于锌的气化温度低于铁的气化温度,锌蒸气比铁蒸气更容易产生,锌蒸气气压比铁蒸气气压高8 个数量级;同时当等离子体温度在10000K 时,锌等离子体的电子密度比铁等离子体的电子密度大2 个数量级(Zn:2.2x25450px-3, Fe:4.1x25400px-3)。因此有文献认为,锌的

蒸气将加剧等离子体的产生,是镀锌钢板激光焊接时大量等离子体存在的主要原因。然而,也有文献从理论计算探讨锌蒸气问题时发现:在相同的条件下,锌比铁的蒸气密度约小25%,而锌的电离能(9.36eV)比铁(7.83eV)大,所以在被激光辐照气化的金属蒸气中,锌并不比铁优先电离,也就是说锌蒸气并不加速等离子体的形成。正是因为锌蒸气不易电离,使得在焊接过程中可观察到大量锌蒸气的存在。

无论锌是否加剧了等离子体的产生,在镀锌钢板激光焊接过程中仍然有大量的光致等离子体存在。等离子体对激光束有严重的阻隔作用,它不但对激光束有散射作用,而且会吸收激光能量,使得照射到工件上的能量减少,影响焊接小孔稳定形成,从而降低了焊接过程的稳定性。有关镀锌钢激光焊接的锌行为研究,特别是锌等离子体和小孔效应的实验研究目前比较缺乏。有文献分别对焊接小孔内和小孔外的等离子体做了研究,得出一定浓度的小孔孔内等离子体对激光能量的吸收是有利的,而孔外的等离子体云对焊接过程中激光能量的吸收 有屏蔽作用。镀锌钢板激光焊接质量的提高方法

激光焊接与传统的焊接方式相比,焊接过程更加复杂,包括材料对激光的吸收、材料的固态加热及相变(熔化、汽化)、小孔和等离子体的形成及其在激光能量耦合和传输过程中的作用、小孔内材料蒸汽和熔池内液态材料的流动、材料热物理参数的变化、小孔的稳定性、熔池表面的变形以及各种焊接工艺参数对焊接质量的影响等诸多方面。如本文第二部分所述,激光焊接镀锌钢板时存在锌蒸气和锌等离子体,焊接稳定性减低,焊接时易产生多种焊接缺陷,从而增加了激光焊接过程和焊接质量的控制难度。锌蒸气的抑制和等离子体的控制是实现镀锌钢板激光焊接的关键技术。国内外许多科研工作者开展了镀锌钢板激光焊接的研 究,提高激光焊接镀锌钢板焊接质量的方法可以分为:①寻求特定的工艺措施;②工艺参数优化和焊接过程仿真优化;③在线检测控制。

3.1 寻求特定的工艺措施

镀锌钢板激光焊接过程中锌蒸气对焊接质量的影响最大,因此采取相应措施减少锌蒸气的影响是提高镀锌钢激光焊接质量的首要任务。一般而言,镀锌钢板激光焊接接头的形式有以下几种:搭接、对接、角接、卷边接头等。而实际生产

中,叠层搭接接头形式应用最多,且锌蒸气对该种接头形式的焊接质量影响最为严重。文献中有关解决镀锌钢激光焊接时锌蒸气问题的各种特定工艺措施,其根本途径有两类:①激光焊接过程中不产生锌蒸气或产生极少量的锌蒸气;②使产生的锌蒸气尽可能的顺利排出到空气中。锌蒸气的排出途径又主要有经由板间间隙排出、经由焊接小孔排出、熔池冒泡排出三种方式。同时,也有文献研究了锌 蒸气排出的其他方式,如预先开排气孔、预先切割出排气缝。此外,减少等离子体对焊接过程的影响是提高镀锌钢板激光焊接中的另一个重要任务。

(1)吹送保护气体

吹送保护气体是激光焊接中最常用的工艺措施,其方式有同轴吹气和侧吹气两种,其控制参数有保护气体种类、气体流速、侧吹方向、侧吹角度、喷嘴尺寸。保护气体在激光焊接中起到的作用主要有三个方面:①对焊缝进行保护,防止焊缝氧化并加快焊缝冷却;②在一定程度上抑制等离子体对焊接过程的影响;③防止溅射物和金属蒸汽对聚焦镜片的污染。同轴吹气保护,气流与焊接时产生的金属蒸汽和等离子体形成对流,降低蒸汽和等离子体的热量,同时增加小孔内的气压,抑制孔内的金属蒸汽和等离子体向孔外喷射,有利于焊接小孔的稳定和降低孔外等离子体的屏蔽作用。而侧吹气体保护,能够吹散熔池表面的等离子体和飞溅,减少焊缝表面缺陷。研究表明,镀锌钢板激光焊接时,合适的吹气方式和吹送气体参数有利于增加熔深,减少焊缝气孔,抑制等离子体的不利影响,得到好的焊缝成形和表面质量。

(2)板间间隙法

镀锌钢板的叠层搭接激光焊,常在搭接的两层或多层板间留出一定间隙,以便中间镀层锌产生的锌蒸气顺利从间隙中排出。板间间隙法可以通过控制搭接板间的夹紧力控制板间间隙,在板间预夹薄层垫片保证夹紧后板间间隙值,或采用特殊的结构保证合适的间隙值如图2 所示。

图 2(a)节薄板间隙焊;(b)带圆弧结构间隙焊

Fig.2(a)Gap welding of burl sheet metal;(b)Gap welding of the

radius configuration 也有文献提到在板间夹层粉末状材料,完全夹紧时锌蒸气能够从粉末间的间隙排出。采用间隙法焊接时,关键就是板间间隙的控制,许多文献通过试验或理论研究了焊接时板间间隙的问题。间隙过小,锌蒸气不能完全经由间隙排出,焊接过程容易产生焊接气孔、飞溅等缺陷,焊缝强度下降。间隙过大,锌蒸气可能会阻隔焊缝熔合而产生假焊;或由于间隙太大,熔池金属材料因填充间隙而使焊缝上表面凹陷,焊缝质量下降。对搭接焊间隙的研究,板间间隙常在0.1~0.2mm,但也视实际情况不同而定,如:镀层种类及厚度、母材厚度、激光束参数、焊接速度等。有文献对镀锌钢激光搭接焊板间间隙进行了理论研究,并建立了数学模型:

g=AVtZntp-1/2(1)

其中 g 是间隙值,A 是材料系数(镀锌钢板A=16.1sm-1/2),V 是焊接速度,tZn 是镀锌层的厚度,tp 是焊接母材的厚度。虽然这种预留间隙的焊接方法在镀锌钢激光焊接时可以很好的排出锌蒸气,减少焊接气孔,能得到较好焊接质量,但此方法需要预留间隙的间隙值的精度要求较高。对于曲面型镀锌钢板焊接时,其间隙值更难以达到理论要求。

(3)添加元素法

在镀锌钢板激光焊接中添加与锌发生化学反应的异种元素是抑制锌蒸气产生另一种有效途径。文献[11]中提及在保护气体Ar 中混合加入少量O2(2–5%),利用氧气与锌反应而减少锌蒸气对焊接过程的影响,这种方法不足是增加了焊缝的氧化。文献[5]采用三明治形式的搭接焊,预置铜粉在两层板间,利用铜与锌的冶金反应降低锌蒸气对焊接过程的影响。采用添加铜焊接镀锌钢板,通过焊接过程中的光谱分析表面,锌蒸气的产生明显减少,且焊缝抗腐蚀性和焊缝机械性能没有因铜的加入而降低。铜的添加显著增加了焊接过程的稳定性;添加铜粉的前后,焊缝中的气孔数量由10%降低至1%。

(4)开排气孔的方法

开排气孔的方法是预先在需要焊接的母材上加工出排气小孔,从而使得激光焊接镀锌钢板的过程中产生的锌蒸气能够从排气小孔中排出。文献[11]采用脉冲YAG 激光预先在搭接板的下层板上打出合适的排气小孔,再用1500W 连续CO2 激光焊接双层搭接镀锌钢板。排气小孔与实际焊缝的位置及排气小孔尺寸是获得良好焊接质量的关键。Weichiat Chen通过有限元优化分析和焊接试验发现,焊接速度为9m/min,连续CO2 激光焦点直径0.2mm,预先在下层镀锌钢板上焊缝方向离焊缝中心0.14mm 处打出直径为0.07mm 的排气小孔,焊接时能得到好的焊接质量。激光焊接镀锌钢板采用开排气孔的方法焊接,能减少锌蒸气的影响,减少焊接气孔,得到的焊缝因熔融金属填满了所开的排气小孔形成类似于铆接的结构而增强了抗拉强度;而当焊接速度过高时,因排气小孔无法被熔融金属填满得到的焊缝抗拉强度反而下降。开排气孔的方法与预留间隙法相比,预留间隙法不适于实际生产,其间隙值大小难以保证;开排气孔方法能够解决锌蒸气问题,且焊缝强度更高、可实践性更好,不足的是需要额外开排气孔,增加了工序。

(5)双光束激光焊接

双光束激光焊接方法是近几年出现的一种新方法。双光束焊接根据所采用的光源分为两种:同一激光源分出的两束激光;两个激光源发出的两束不同激光束(如:CO2+高功率二极管;YAG+高功率二极管)。焊接过程中一束光作为辅助加工,另一束光实现焊接功能。采用双光束激光焊接方法焊接镀锌钢板,根据辅助光束的作用机理分为四类:①延迟焊接小孔闭合;②延迟熔池凝固;③预先切割出细缝;④预先气化锌层。文献[14]先采用YAG 激光在搭接镀锌钢板上切割出一条细缝,再用CO2 激光实现焊接。细缝的作用:一是预先去除部分锌层;二是便于焊接过程中锌蒸气从细缝中排出。切割细缝与焊接过程同时进行有利于保证焊接光束与切缝的位置关系。若采用的双光束是同一光源分出的两束光,前一光束可气化镀锌层(预先气化宽度为焊接熔池的宽度,如2mm),后一光束实现焊接作用。采用双光束激光焊接镀锌钢板,关键是前后光束的相互位置与功率匹配,在合适的参数匹配下双光束焊接能够解决锌蒸气问题,得到较好的焊缝质量。然而,要得到两束激光必需增加额外的焊接装备,也就增加了加工成本。

(6)脉冲激光焊接

图 3 由焊接小孔形成的一系列焊缝重叠区.(a)平面视图;(b)侧面视图 Fig.3 A series of partially overlapping spot welds made with a keyhole mode.(a)Plan view;(b)Side view.脉冲激光与连续激光焊接的区别是焊接小孔的间断出现,焊缝熔池也随着焊接小孔的波动而波动,且相邻两个焊接小孔与熔池之间存在一定的重叠区,如图3所示。研究结果表明,脉冲激光焊接镀锌钢板的关键和难点是控制脉冲激光束参数(脉冲波形、脉冲能量、脉冲宽度、脉冲重复频率、脉冲占空比、平均功率密度峰值、平均功率)和焊接速度的良好匹配,得到合适的重叠率,以便将焊接过程中产生的锌蒸气经由焊接小孔和熔池排出,得到好的熔池一致性和焊接质量。文献[35]同时指出,采用CO2脉冲激光难于YAG脉冲激光实现无孔焊缝,其原因是YAG激光的脉冲峰值功率密度相比CO2激光更高。

(7)激光填丝钎焊

激光钎焊技术在汽车制造中以得到很好的应用,如车顶与侧围的连接,车厢后盖的激光钎焊。激光填丝钎焊是激光焊接与钎焊技术的组合,具有钎焊的特性,即焊接过程中钎料吸收大部分热量而熔化,母材吸收少部分热量基本不熔化。采用激光填丝钎焊焊接镀锌钢板最大的优势就是,母材吸收热量少,大大减少了镀锌层的气化,减少了锌蒸气的影响,提高了焊接质量。在激光钎焊接焊接过程中关键技术是激光能量在钎料与母材上的分配,要得到好的焊接效果,激光功率、焊接速度、焦点位置、光斑直径、填充材料、送丝速度、送丝方向都要很好的控制匹配。一般而言,激光钎焊过程中减小焊丝与母材的距离与夹角,保证钎料熔化后与母材直接接触可获得较好的焊缝成形,并且采用前方送丝较后方送丝的焊接效果好。其原因是后方送丝时,少量光照在镀锌层上产生锌蒸气出现喷射气孔;前方送丝时,少量光照在熔池中使熔池温度升高无不良影响。在相同的离焦量下,将激光束沿焊接方向倾斜一定角度入射,激光由圆形光斑变成椭圆光斑,激光照射面积增加,有利于钎料铺张,此时焊缝的外观成形优于激光束垂直入射。此外,焊接汽车车顶时,采用带角度的上下板搭接激光填丝钎焊,一定的搭接角度有利于产生的锌蒸气逃逸,提高焊接质量。如要提高激光钎焊的速度,可以对焊丝先行预热(热丝激光钎焊),增加钎焊的填充量,加快焊丝铺展,提高焊速。激光钎焊采用的填充钎料一般为铜基合金,如CuSi3(熔点950~1050℃)、CuAl8、CuSn 等,其中CuSi3 用的最多,因为这种材料有好的流动性和挺直性。

(8)其它方法

文献中除了上述激光焊接镀锌钢板时通过解决锌蒸气问题以提高焊接质量的方法,还有如采用立焊、激光束的来回摆动焊接(与双焦点焊效果相似)以及焊前预先去除焊缝处的锌层等方法。采用立焊焊接镀锌钢板的过程中,金属溶液所受重力与焊接小孔深度方向垂直有利于保持小孔打开和锌蒸气顺利排出,且立焊方式不会对熔池焊缝产生表面下凹现象。立焊方式焊接镀锌钢板与平焊方式相比,焊接过程更稳定,焊缝成形良好,减少了锌蒸气产生的气孔和飞溅。然而,由于实际生产中受到实际焊接条件的限制,立焊方式应用的灵活性受到限制。

3.2 工艺参数优化与仿真优化

对焊接过程的优化是提高焊接质量的重要方法。其中包括:焊接接头形式的优化,焊接参数的优化,焊接过程的机理分析以及焊接过程的建模与仿真分析等。工艺参数优化中最常用正交试验方法,不但能减少试验次数,还能比较各参数的波动对焊接质量的影响程度。激光焊接镀锌钢板试验中,常用来比较优选的工艺参数有:激光功率,焊接速度,焦点位置,吹气气流等。通过镀锌钢板激光焊接的机理研究,建模和仿真优化工艺参数则是分析和认识焊接机理和降低试验费用的重要途径。建模仿真时,激光束加热过程可以被简化为移动点热源和线热源,或者直接由试验拍摄得到实际的小孔热源;所建模型可以是一维、二维或三维。常用的建模与求解方法为有限差分法和有限单元法,人工神经网络方法。有学者对CO2 激光焊接镀锌钢板搭接焊进行了三维建模仿真并分析了多因素的焊接过程,考虑的因素包括:焊接过程中固体、液体、气体三种状态的特性及液体表面张力、气体压力、液体气体流速,焊接小孔模拟,锌和铁蒸气及等离子体现象及对焊接过程的影响。通过复杂的建模仿真与实际镀锌钢板激光焊接试验对比,证实所建模型与实际焊接过程很接近。利用该模型,设置相应的参数可模拟焊接过程分析温度、强度、压力和速度的影响因素,而不用做任何实际焊接试验。

3.3 镀锌钢板焊接过程的在线监控

对加工过程实现在线监控是现代制造过程中保障加工质量和降低成本的重要手段。激光焊接过程的在线检测与控制则是提高焊接质量和实现自动化的关键技术,也是焊接技术发展的必然趋势。焊接过程的在线监测技术可以分为焊前监测、焊中监测和焊后检测,其中焊前检测和焊中监测是提高焊接质量的重要途径。

(1)焊缝跟踪

焊缝跟踪作为一种重要的焊前监测技术,主要用于对接焊和其他对焊接轨迹有严格要求的焊接过程。镀锌钢板的激光对接焊时,要求板间的对接缝宽非常小(一般在0.1~0.5mm之间),且不能大于焦点光斑直径(聚焦光斑直径常小于0.5mm)。对于实际生产中的曲线轨迹焊接,由于装夹误差和焊接设备的移动轨迹误差的叠加,理论移动轨迹与实际移动轨迹会产生偏移,焊接时会出现多种焊接缺陷。此时,采用焊缝跟踪技术可提高焊接质量,并有利于实现自动化无人加工。焊缝跟踪技术的研究,包括焊缝偏差信号获取、焊缝跟踪传感器研究、控制系统和控制方法的研究以及焊缝偏差补偿方法等。

(2)在线检测控制

焊接过程中的信号,如声音、光、电、图像、热等信号常用于焊中监测。光电二极管和高速摄像机是最常用于在线信号采集的一维和二维传感器。在线检测控制可以分为三步:对反应焊接缺陷、焊缝成形质量和焊接过程稳定性等信号的采集;通过傅立叶变换、小波分析等方法作数据提取、处理和分析;基于人工神经网络、智能控制、模糊控制、专家系统等控制系统的实时控制。镀锌钢板的激光焊接过程中,锌蒸气的产生使得信号采集和焊接控制的难度增大,单独采用某一监测控制方法很难实现无缺陷焊接,而有关镀锌钢板激光焊接的在线检测控制的报道较少。结论

锌蒸气和锌等离子体是激光深熔焊接镀锌钢板的过程存在的两种特有焊接特征。镀锌钢板激光焊接的根本问题是锌蒸气对焊接过程的影响,锌蒸气的产生包括上表层锌和下表层锌的气化以及叠层搭接焊时中间层锌的气化。在镀锌钢板的叠层搭接焊中,中间镀锌层气化产生的锌蒸气的膨胀扩散途径有三种:①经由板间间隙膨胀扩散至空气中;②经由焊接小孔膨胀扩散至空气中;③锌蒸气被压入焊接熔池。减少镀层锌的蒸发和顺利排出锌蒸气是提高镀锌钢激光焊接质量的根本途径,其实现工艺措施包括了吹送保护气体、板间间隙法、添加元素法、开排气孔的方法、双光束激光焊接、脉冲激光焊接、激光填丝钎焊、立焊、激光束的来回摆动焊接以及焊前预先去除焊缝处的锌层等方法。工艺参数的正交试验优化、焊接过程的建模与仿真优化以及在线监测与控制技术则是提高镀锌钢激光焊接质量的重要方法。

目前,镀锌钢激光焊接的锌行为研究,特别是锌等离子体和小孔效应的实验研究比较缺乏;锌行为在焊接过程中的数值模拟仿真仍存在困难。此外,镀锌钢脉冲激光焊接机理、采用不同激光器(如光纤激光器、短脉冲激光器等)实现镀锌钢的激光焊接工艺以及镀锌钢与其他材料的焊接机制,还有待更深入的研究。

第五篇:影响激光焊接质量的主要因素

激光加工概论课程论文 题 目

姓 名

所在学院 专业班级

学 号

指导教师

2011年12月

影响激光焊接质量的主要因素

影响激光焊接质量的主要因素

摘要:本文通过对影响激光焊接质量的因素中的焊接设备、工件状况和激光功率密度和光束模式、焊接速度、脉冲波形和脉宽、离焦量和保护气体等工艺参数进行分析,并分别就热导焊和深熔焊的特点作具体讨论,阐述提高激光焊接质量的可靠件和稳定性的方法和途径,并对激光焊接的发展提出展望和建议。

关键词:激光 焊接 功率密度 脉冲波形 离焦量 前言

激光焊接是以高功率聚焦激光束为热源,熔化材料形成焊接接头的高精度高效率焊接方法。1激光焊接现已在各领域中得到大规模的应用,由于焊接质量中出现问题,所造成的危害甚至是毁灭性的,故正确设定和控制影响激光焊接质量的因素,使其在高速连续的激光焊接过程中控制在合适的范围内,对保证焊接质量如焊缝成形的可靠性和稳定性等有着重要意义。本文就影响因素中的焊接设备,工件状况和工艺参数等方面进行分析,并分别就热导焊和深熔焊的特点作具体讨论。主要影响因素

2.1 焊接设备

激光焊接设备通常由激光器、导光和聚焦系统和计算机控制系统组成。

2.1.1 激光器

用于激光焊接的激光器主要有CO2气体激光器和YAG固体激光器两种。

激光器最重要的性能是输出功率和光束质量。从这两方向考虑,CO2激光器比YAG激光器具有很大优势,是目前深熔焊接主要采用的激光器,生产上应用大多数还处在15~6kW范围。而YAG激光器在过去相当长一段时间内提高功率有困难,一般功率小于1kW,只用于薄小零件的微联接。但是,近几年来,国外在研制和生产大功率YAG激光器方面取得了突破性的进展,最大功率已达5kW,并已投人市场。且由于其波长短,仅为CO2激光的1/10,有利于金属表面吸收,可以用光纤传输,使导光系统大为简化,故大功率YAG激光焊接技术在今后一段时间内将获得迅速发展。2

焊接对激光器的质量要求最主要的是光束模式和输出功率及其稳定性。光束模式是光束质量的主要指标,光束模式阶数越低,光束聚焦性能越好,光斑越小,相同激光功率下功率 12 定义参考郭亮的《华师-激光焊接2011》

参考郭亮的《华师-激光焊接2011》,本文多处引用自该课件,以下就不再列出

密度越高,焊缝深宽越大。一般要求基模(TEM00)或低阶模,否则难以满足高质量激光焊接的要求3。

虽然目前国产激光器在光束质量和功率输出稳定性方面用于激光焊接还有一定困难。但从国外情况来看,激光器的光束质量和输出功率稳定性已相当高,应不会成为激光焊接的问题。4

另外,高的焊接还要求激光器抽运源应能保证脉冲辐射波形的连续可调和输出光束发散角应足够小。5

2.1.2 导光和聚焦系统

导光聚焦系统由圆偏振镜、扩束镜、反射镜或光纤、聚焦镜等组成,实现改变光束偏振状态、方向,传输光束和聚焦的功能。这些光学零件的状况对激光焊接质量有极其重要的影响。在大功率激光作用下,光学部件,尤其是透镜性能会劣化使透过率下降;会产生热透镜效应(透镜受热膨胀焦距缩短);表面污染也会增加传输损耗。所以光学部件的质量,维护和工作状态监测对保证焊接质量至关重要。

光束变换系统中影响焊接质量最大的因素是聚焦镜,所用焦距一般在127mm(5in)到200mm(7.9in)之间,焦距小对减小聚焦光束腰斑直径有好处,但过小容易在焊接过程中受污染和飞溅损伤。

2.2 工件状况

激光焊接要求对工件的边缘进行加工,装配有很高的精度,光斑与焊缝严格对中,而且工件原始装配精度和光斑对中情况在焊接过程中不能因焊接热变形而变化。这是因为激光光斑小,焊缝窄,一般不加填充金属,如装配不严间隙过大,光束能穿过间隙不能熔化母材,或者引起明显的咬边、凹陷,如光斑对缝的偏差稍大就有可能造成未熔合或未焊透。所以,一般板材对接装配间隙和光斑对缝偏差均不应大于0.1mm,错边不应大于0.2mm。当焊缝较长时,焊前的准备难度很大,普通剪床一般不能满足要求.必须经过机械加工或用高精度剪床剪切,还必须根据具体工件情况设计合适的精密胎夹具。实际生产中,有时因不能满足这些要求,而无法采用激光焊接技术。

2.3 激光功率密度和光束模式对焊接质量影响

激光功率密度是激光焊接的一个关键参数,对于同一种金属来说,激光功率密度不同时材料达到熔点和沸点的时间不同。34 本文2.3节将对此进行具体分析

引用焊接资源网的《影响激光焊接质量的主要因素》 5 参考白光的《扩展毫秒脉冲YAG激光器焊接应用的潜力》

图2-1 两种功率密度下同一金属表层及底层的温度与时间的关系

从图2-1可见,激光功率密度越大其达到熔点和沸点的时间越快且表层底层间的时间差值越少。

又由于不同材料的热导率和热扩散率等不同。激光功率密度需根据材料本身的特性及焊接技术要求来选取。一般情况下,在薄板(板厚为0.01-0.10mm)焊接中,激光功率密度范围为Fm<F<Fc,在厚板(板厚大于0.50mm)焊接中,激光功率密度范围为Fm<F<Fv6。

同时,激光功率密度的大小对其熔深和焊接速度存在相当的影响。

图2-2 激光热导焊焊接不锈钢时功率与焊接速度、熔化深度的关系

图2-2中1、2、3分别为1.0、3.0、10.0mm/s的焊接速度时熔化深度曲线。7可以看出,在一定的激光功率下,提高焊接速度,则热输入下降,焊接熔深减少。对于不同的激光功率 67 Fc、Fv和Fm分别为熔点、沸点和临界激光功率密度

图2-2为陈家壁的《激光原理与应用》

密度,要到达要求的熔化深度需选择不同的焊接速度。

激光深熔焊的熔深和激光输出功率也密切相关,也是功率和光斑直径的函数。由于不同的材料都有一个临界功率密度阈值,只有激光的功率密度超过这个阈值,才能形成小孔,获得深熔焊接。适当降低焊接速度可加大熔深,但若焊接速度过低,熔深却不会再增加,反而使熔宽增大,所以对于给定的激光功率等条件,存在一维持熔深焊接的最小焊接速度。

图2-3 激光束模式对激光焊接的影响

光束模式决定了聚焦焦点的能量分布,其对深熔焊有着重要的影响。如图2-38所示,激光束为基模时,可以获得最大的焊缝深度与深宽比,光束模式的阶次越高,激光束的能量分布越发散,焊接质量变差。具有不同光束聚焦特征参数值Kf的光束对激光焊接质量的影响如图2-4所示,光束的Kf值越大,质量就越差,焊缝的深宽比就越小。

图2-

3、2-4来自王剑,刘玉麟的《CO_2激光深熔焊缝影响因素》

图2-4 光束Kf值与激光深熔焊深度与宽度的关系

2.4 影响热导焊焊接质量的工艺参数9 2.4.1 脉冲波形对焊接质量影响

激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。

图2-5 脉冲作用期间内,材料的相对反射率随时间的变化曲线

本节内容参考程隆双,冯薇《影响激光焊接加工的几个主要参数》

图2-5为一个激光脉冲作用期间内,材料的相对反射率随时间的变化曲线(曲线1、2分别为铜和钢的反射率变化)。可以看出,激光脉冲开始作用时反射率高相当高;当材料表面温度升至熔点时,反射率迅速下降;表面处于熔化状态时,反射率稳定于某一值;当表面温度继续上升到沸点时,反射率又一次下降。

对于上述情况,在焊接铜、铝、金、银等高反射率的材料时,为了突破高反射率的屏障,可以利用带有前置尖峰的激光波形,在开始出现的尖峰,迅速改变金属表面状况,使其温度上升至熔点,从而在脉冲时刻到来时,瞬间把金属表面反射率较低,使光脉冲的能量利用率大大提高,利于后续的热导焊处理。前置尖峰的激光波形如图2-610所示:

图2-6 前置尖峰的激光波

但这种脉冲波型在高重复率缝焊时不宜采用。因为重复率很高时,重叠区可能仍处于熔融状态。若使用这种波形,初期尖峰可使表面出现高速气化,伴随着剧烈的体积膨胀,金属蒸气以超声速向外扩张,给工件很大的反冲力,使金屑产生飞溅,在熔斑中形成不规则的孔洞。这在气密性要求高的缝焊中尤其要避免,故缝焊中宜采用矩形波或缓衰减波形,减缓或慢慢均匀预热,且不能快速冷却,其激光波形如下图所示。而对于铁、镍、钼钛等黑色金属,表面反射率较低,也可采用如图2-7波形。

图2-

1、2-

5、2-6来自郭亮的《华师-激光焊接2011》

图2-7 缓衰减波形

2.4.2 脉冲宽度对焊接质量影响

激光脉宽是脉冲激光焊接的重要参数之一,它是决定材料是否熔化的重要参数。为了保证激光焊接过程中材料表面不出现强烈气化,一般假定在脉冲终止时材料表面温度达到沸点。

最大熔深与脉宽关系 从该式可以得到:

Zmax2.4ktp(1Tm)Tv(1)最大的熔深正比于脉宽的平方根,脉宽越长,熔深越深。(2)熔点、沸点相差较大的金属,如钼、铂、钨等,则熔深较深。(3)热扩散率越大的金属,如金、铜、银等,熔深越深。

2.4.3 离焦量对焊接质量影响

激光焊接通常需要一定的离焦量,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。

离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离焦量相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现汽化,形成蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。

离焦量的变化直接改变了光斑直径与能量密度的大小,离焦量向负方向和正方向增大

时,都意味着光斑直径的增大和能量密度的减小。通过离焦量可调整能量密度。在激光点焊过程中,光斑直径与激光入射在试件上所形成的初始匙孔大小存在一定的对应关系,而能量密度则决定了熔池的扩展速度。当离焦量绝对值较小时,激光光斑直径小,激光功率密度大,焊点熔池扩展的速度较快,但初始匙孔的直径小;相反情况下,离焦量较大,初始匙孔的直径大,但是熔池扩展速度变慢,得到的焊点尺寸不一定很大。

在一定激光功率和焊接速度下,只有焦点处于最佳位置范围内才能获得最大熔深和好的焊缝形状。

2.5 影响深熔焊焊接质量的工艺参数和效应 2.5.1 热导焊和深熔焊的区别

热导焊和深熔焊最基本的区别在于前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。热导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。11

2.5.2 等离子体的影响

在深熔焊焊接过程中,高功率密度的激光束照射到工件表面,材料被迅速地熔化蒸发,在工件上方形成蒸汽云团。在以很高的速度离开工件表面的过程中,位于入射光束路径上的蒸汽云团受到加热,在一定的条件下会迅速电离,产生等离子体。

等离子体对激光有吸收、折射和散射作用,因此一般来说熔池上方的等离子体会削弱到达工件的激光能量。并影响光束的聚焦效果、对焊接不利。通常可辅助侧吹气驱除或削弱等离子体。

用作辅助气体的有Ar、He、N2和CO2等。不同辅助气体抑制等离子体的效果与气体的电离势、导热性和离解能等有关。当辅助气体流量低于临界流量时,气体电离势起主导作用。在上述四种气体中He的电离势最高,相应顺序为He(24.5eV)、Ar(15.68eV〕、N2(14.6eV)和CO2(13.8eV),故认为He抑制等离子体效果最好。但随着辅助吹气流量的进一步增加,由于气体的流动使热辐射对流作用增加,相对电离势而言.气体的导热性和离解能起主要作用。从导热性方面看,四种气体排列顺序为:Ar<N2<CO2<He,即Ar具有最低导热率,其等离子体维持阈值低,故容易被加热而屏蔽;而He的热导率最大,其等离子体维持阈值最高,故容易扩散。综上分析,He是抑制等离子体较理想的气体。

对于同一种保护气体,喷嘴的角度和高度,喷吹气体流量和压力对于焊缝成形都会产生不同结果。当侧吹喷嘴高度增加或气体流速增大时,等离子体云团的平均体积减少,焊缝正 11 参考激光制造网的《几种激光焊接方法及其应用》

面熔宽减少,焊缝背面熔宽增大。12

激光焊接过程常使用惰性气体来保护熔池,对大多数场合则常采用He、Ar、N2等气体作保护。使工件在焊接过程巾免受氧化。

He不易电离(电高温度较高),可让激光束顺利通过,光束能量不受阻地直达工件表面,是激光焊接时使用最有效的保护气体。

Ar较便宜,出于其密度较大,所以保护较好;但易受高温金属离子体电离。屏蔽了部分光束,减少了焊接时的有效功率,也损害焊接速度和熔深。使用氩保护时表面光滑。

N2作为保护气体最便宜,但对某些类型不锈钢焊接时并不适用。结论

综合以上的分析,要在高速连续的激光焊接过程中控制在合适的范围内,保证焊接质量如焊缝成形的可靠性和稳定性,确保焊接的质量,一方面须采用光束质量和功率输出稳定性好的激光器和采用高质量、高稳定性的光学元件组成其导光聚焦系统,并经常维护,防止污染,保持清洁,并适当对工件进行预处理;另一方面要针对不同的加工材料分别设定不同的激光加工参数,选择合适的激光功率密度和光束模式、焊接速度、脉冲波形和宽带、离焦量和保护气体等,发展激光焊接过程实时监测与控制方法,以优化参数,监视到达工件的激光功率和离焦量等的变化,实现闭环控制,提高激光焊接质量的可靠件和稳定性。13

由于影响激光焊接质量的主要因素很多,实际焊接是一个非常复杂的过程,本文仅就各因素进行独立的分析,并未太多考虑到因素间存在的关联,故本文还存在一定的不足。

1213 参考买卖焊机网的《侧吹气体对激光焊接等离子体的影响》

参考张文毓的《激光焊接技术的研究现状与应用》

参 考 文 献

[1]郭亮,《华师-激光焊接2011》,华南师范大学

[2]焊接资源网,《影响激光焊接质量的主要因素》,http://,(2011年12月18日)[8]买卖焊机网,《侧吹气体对激光焊接等离子体的影响》,http://,(2011年12月18日)[9]张文毓.激光焊接技术的研究现状与应用[J].《新技术新工艺》, 2009年

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jingpin/14/885859.html

相关内容

热门阅读

最新更新

随机推荐