第一篇:关于上海发展智能制造的思考与建议
关于上海发展智能制造的思考与建议
制造业是上海经济发展和社会稳定的重要支柱。然而近年来,受到全球金融危机的冲击,在资源、成本、环境等因素的制约下,“上海制造”已经面临着严重的发展困境,迫切需要寻找新的出路。智能制造是当前全球新工业革命的重要趋势;是传统制造业转型升级、创新突破的重要方向。为了发挥科技作用,引领上海制造业在新的时代迈上更高层级,上海市科委于202_年9月22日举办了“202_年上海智能制造高峰论坛”,组织产业界、学术界高水平专家以及市府各部门、企业和科研机构负责人就上海应如何发展智能制造的主题开展了深入的讨论。与会专家一致认为,智能制造代表了人类生产力的巨大革命和产业模式的深刻变革。跟上国际潮流,抢滩智能制造是我们不能错过的历史机遇,当前上海制造业向“智造”的转型势在必行,刻不容缓。
一、智能制造是当前新产业革命的核心趋势
近年来,关于科技革命、产业革命的提法在国际国内受到了越来越多的讨论。英国《经济学人》杂志202_年4月封面文章提出“第三次工业革命”,认为以人工智能、机器人、3D打印和数字制造技术等为代表的智能化、信息化趋势对制造业的影响当前可能已到了临界点,将引起一场制造业革命。进而,随着生产的本地化、个性化趋势,将可能导致制造业向发达国家回流,引起全球产业体系的革命性重组。这一预见受到了全球产业界、学术界和政策制定者的重视。当前正在发生的新产业革命是上世纪90年代开始的信息革命的延续和发展。随着信息技术越来越深入地融入到全球产业各个领域,带来了生产方式的变革、生产效率的提升和业态模式的创新。可以预见:未来10年信息技术仍将是产业革命的主要引领者和驱动力。近年来,随着新兴信息技术在制造业领域的应用不断深入拓展,促使制造技术发展的热点与前沿由简单提升生产的效率和规模转变为提高制造系统对信息处理的能力、效率及规模,制造系统正在由原先的能量驱动型向信息驱动型转变。智能制造技术是在现代传感技术、网络技术、自动化技术、拟人化智能技术等先进技术的基础上,通过智能化的感知、人机交互、决策和执行技术,实现设计过程、制造过程和制造装备智能化,是信息技术、智能技术与制造技术的深度融合与集成。智能制造不仅仅意味着制造业自身的革命性发展,也为服务、管理等领域的创新提供了有力的支撑,开拓了广阔的空间。
智能制造的核心意义和价值体现在信息技术支撑下形成的,融合了创意、设计、生产、物流、销售、服务的一体化网络。由个别企业内部的产业链出发,以信息技术为支撑,可以延伸出覆盖全球的产业链、供应链、服务链、创新链网络;形成信息化框架下自反馈、自决策、自组织的全球化产业体系,从而在极大程度上优化资源配置,提升生产效率,激发创新活力。如苹果、IBM等跨国企业,目前已经初步将这种智能制造的理念变为了现实。美国波音公司的波音787飞机从设计、研发、制造到融资、采购、物流每一步几乎都通过全球网络实现,其中近90%的生产工作外包到全球40余家合作企业。据统计,智能制造网络使波音787飞机缩短了33%的进入市场的时间,并且节省了50%的研发费用。
智能制造是面向产品全生命周期,实现泛在感知条件下的信息化制造。智能制造技术是在现代传感技术、网络技术、自动化技术、拟人化智能技术等先进技术的基础上,通过智能化的感知、人机交互、决策和执行技术,实现设计过程、制造过程和制造装备智能化,是信息技术和智能技术与装备制造过程技术的深度融合与集成。20世纪80年代以来,随着自动化技术、信息技术、互联网技术和人工智能技术的飞速发展,全球制造业向智能化的方向实现了巨大跨越。随着智能制造技术的创新及应用贯穿制造业全过程,以工业机器人、3D打印机为代表的智能制造装备应用日趋广泛;产品创新响应市场需求的效率大大加快;生产管理的精益化程度显著提升;分散化、个性化的生产模式开始兴起;全球供应链整合程度日益提高;企业智能决策能力有效增强;设计、生产、服务一体化的新业态、新模式加速崛起。以上趋势都代表着制造业发展的未来主流方向。吴启迪教授就此指出:通过智能系统,构建智慧企业,实现人、信息与技术的高度协调,将是未来制造业竞争力提升的关键所在。
二、当前国内外智能制造发展态势
当前,智能制造已成为全球主要发达国家的竞争热点,各国都将智能制造业作为重振制造业战略的重要抓手。202_年6月,美国正式启动包括工业机器人在内的“先进制造伙伴计划”,202_年2月又出台“先进制造业国家战略计划”,提出要加大政府投资、建设“智能”制造技术平台,以加快智能制造的技术创新。202_年美国投资10亿美元建立全美制造业创新网络,其中智能制造的框架和方法、数字化工厂、3D打印等均被列为优先发展的重点领域。欧盟在《未来制造业:202_年展望》报告中明确提出了提高制造业智能化水平的发展目标,并于202_年9月出台了智能制造路线图,提出以实现可持续及精益制造为目标的发展战略。德国通过国家政府、弗劳恩霍夫研究所和各州合作,投资于数控机床、制造和工程自动化应用技术研究;日本提出加快发展协同式机器人、无人化工厂,提升制造业的国际竞争力。
我国国家层面也对发展智能制造予以了高度的重视,已编制完成《智能制造装备产业“十二五”发展规划》,并于202_年设立“智能制造装备创新发展专项”,今年3月,我国又出台了《智能制造科技发展“十二五”专项规划》。202_年8月30日召开的中国工程院院企合作交流会议上,工程院院长周济作专题报告,强调必须抓住“数字化智能化”这一新的工业革命的核心技术,让中国制造业走上创新驱动发展的轨道。202_年2月,国家工信部批复广东顺德为全国首个智能制造试点区域。202_年8月,浙江省正式开展以企业为主体的智能装备制造产业重大科技创新专项综合试点。国家和兄弟省市的积极布局行动,更增强了上海发展智能制造的紧迫感。
三、上海智能制造发展的现状基础
上海作为国际化大都市和我国传统的制造业产业高地,为发展智能制造提供了得天独厚的条件和坚实的基础:
上海具备支撑智能制造发展的技术基础。上海集聚了一批高水平的高校、科研院所,近年来已取得了一大批相关的基础研究成果;掌握了一批智能制造所需的关键技术,如机器人技术、感知技术、复杂制造系统、智能信息处理技术等;攻克了一批智能制造核心高端装备,如光刻机、自动化控制系统、高端加工中心等;实现了一批先进制造成套设备的产业化,如核电、火电装备、物流设备、轨交装备、海洋工程装备等;建设了一批有关的高水平研发平台、基地;培养、引进了一大批长期从事相关技术研究开发工作的高技术人才。
上海具备智能制造发展的企业基础。通过市科委“九五”到“十一五”制造业信息化示范工程的推进,在数字化制造技术在战略产品研制中的应用、国家级应用示范企业的数量、相关技术服务能力建设等方面,上海一直走在全国前列,这为进一步加快智能制造技术发展和深化应用奠定了良好的企业基础。上海在航空航天、成套装备、船舶、汽车、钢铁、石化等优势制造领域,培育形成了6家数字化综合集成示范企业,带动了560余家企业信息化深化应用;示范企业新产品贡献率平均提高22%,设计效率平均提高27%。面向生产性服务业的培育,率先开展制造业数字化促进服务转型的示范,推进制造与服务的融合。依托“科技小巨人”计划,在一批具有行业示范作用和较好成长性的创新型中小企业中开展数字化建设,产生了良好的示范带动效应和技术辐射效应。
上海具备有利于智能制造发展的产业环境。上海制造业经过多年发展已形成了较为完善的产业体系,产业结构多样化,商业环境成熟,配套设施齐全。在汽车、飞机、船舶、电子、电机、计算机、装备制造、仪器仪表、先进材料等领域,上海都有较为成熟的产业支撑,为智能制造提升传统制造业提供了良好的发展基础和广阔的发展空间。上海作为国际化大都市,吸引了众多世界知名企业及研发中心落户,如FANUC、ABB、川崎、安川四大国际机器人巨头企业在华总部均设立于上海,这为上海制造业消化吸收国际先进技术和经验、通过国际合作提升自身水平创造了有利条件。
四、上海发展智能制造当前面临的问题
目前,智能制造技术对上海制造业转型升级的支撑能力,还有较大差距;上海智能制造的进一步提升发展还面临着一些严重的瓶颈问题,主要体现在:
一是智能制造发展战略有待明确。目前国家已发布了《智能制造装备产业“十二五”发展规划》、《“十二五”制造业信息化科技工程规划》和《智能制造科技发展“十二五”专项规划》,上海市也被列入国家“十二五”制造业信息化科技工程首批五个重点省市。但上海目前智能制造的总体发展战略仍有待明确,技术路线图还不清晰,全市层面对智能制造发展的协调和管理尚待完善。
二是产业技术体系有待完善提升。目前,上海企业的智能制造发展仍处于较为分散和较低水平的局面,企业技术对外依存度高,自身创新能力、消化吸收能力相对不足,关键技术环节薄弱,许多重要装备、核心技术和关键零部件主要依赖进口。智能制造产业技术体系不够完整,先进材料、3D打印等前沿领域发展滞后;自主技术的智能制造高端装备尚未实现市场化;应用于各类复杂产品设计和企业管理的智能化高端软件产品缺失;在计算机辅助设计、资源计划软件、电子商务等关键技术领域与发达国家差距依然较大。
三是重硬件轻软件的现象突出。杨海成院士指出:智能制造新型工业装备包含硬装备和软装备两个方面,其中软装备包括工业软件、信息、流程、标准规范、知识经验等无形要素,是智能制造的“大脑”。当前上海多数制造企业对于设备、生产线等“硬装备”投入较大,而对于 “软装备”缺乏充分重视,在应用中存在较严重的“重生产、重结果”现象,过分依赖人的经验,对制造过程中的知识发现、积累和传承重视不足,影响到企业的长效发展和行业竞争力。
四是产业技术服务能力尚待强化。政府主导的制造业信息化技术服务与支撑体系,在技术应用初期,对加快数字化、信息化技术在上海企业的应用和普及发挥了积极的推进作用。然而随着企业数字化制造理念的普及和技术应用水平的提高,这种单一的推进模式显现出了一定的局限性,部分共性技术服务平台支撑能力不足,利用率偏低等问题也逐渐显示出来。林忠钦院士指出:上海制造产业现有的产学研合作模式往往只关注当前问题,采取一事一议的项目合作方式,而长效性合作机制欠缺。当前,上海还缺少有能力面向产业长远发展,提供智能制造共性技术服务的专业组织和机构。
五、促进上海智能制造发展的建议
当前上海在智能制造方面已经具备了良好的产业环境,骨干企业具备了较为良好的技术基础和条件,智能制造技术服务与支撑体系有了良好的前期布局和基础。为贯彻落实“创新驱动,转型发展”战略,加快推进上海智能制造发展进程,促进上海制造业迈进国际先进水平行列,提出以下发展建议:
一是把握当前有利时机,制定上海智能制造发展战略。吴启迪教授建议:上海当前应主动对接国家战略规划,抓紧研究、编制上海智能制造发展规划、行动计划和路线图。应将智能制造技术的发展作为上海科技创新重大专项来部署推进,从全市层面对上海智能制造发展路径进行顶层设计,加大对技术创新和产业应用的支持力度。
二是搭建智能制造产业联盟,帮助企业提升竞争力。与会专家普遍认为,应统筹发挥本市现有重点实验室、工程技术中心等核心技术创新资源作用,围绕上海智能制造重点领域,以骨干企业为依托,组建智能制造产业联盟。产业联盟主要发挥以下三方面的作用:一是推动技术创新,承担共性技术、关键技术研发任务;二是服务企业应用,提供技术支持、咨询服务,人才培育交流等;三是促进行业发展,为产业谋划方向,为行业制订标准。
三是整机牵引,重点突破,带动产业。据预测,202_年我国智能制造装备产业销售额将达到10000亿元。其中整机制造环节处在技术和价值的高端,对产业链、创新链具有强大的牵引作用。建议以工业机器人和高端智能装备为重点,集中力量重点突破核心制造技术,实现自主成套设备的产业化,把智能制造装备产业打造成为上海的支柱产业,并带动相关零部件、感知器件、信息系统、设计和控制软件等配套产业的全面发展。
四是促进制造服务业和智能制造专业应用软件产业的发展。大力发展具有自主知识产权的智能制造技术、软件产品、标准规范等,加大对本地智能制造软件企业的扶持力度,促进有能力的企业向提供智能制造整体解决方案的信息集成服务商转型,帮助制造业企业实现智能制造与信息、知识以及业务流程等要素的全面融合。鼓励制造业企业以智能制造技术为依托,进行跨领域的业务拓展和业态创新,积极扶持和培育集产品、技术、管理和服务于一身的新兴商业模式。
五是进一步推进实施智能制造领军与高端人才战略。鼓励重要企业实施智能制造领军和高端人才培养战略,率先创建一批具有国际视野和技术创新能力的智能制造技术团队;在政府各类人才计划中,加大向具有智能化、数字化技术和制造业背景的复合型人才倾斜;加强智能制造技术的高端培训组织;引导和支持建立企业与高校院所联合培养人才的模式,逐步建立复合型人才培养、提升的长效机制。
第二篇:智能制造(定稿)
智能制造综述
冯剑龙 1043115257 摘要
本文评述了智能制造技术与智能制造系统,指出了智能制造确系21世纪的制造技术,分析了智能制造在发展中的问题,提出我国智能制造的近期研究重点应为其关键基础技术。
关键词智能制造智能制造技术智能制造系统智能机器 集成化智能化 智能制造系统的研究背景与发展现状
近来年,人们对制造过程的自动化程度赋予了极大的研究热情,这是因为从1870年到1980年间,制造过程的效率提高了20倍,而生产管理效率只提高了1.8~2.2倍,产品设计的效率只提高了1.2倍。这表明体力劳动通过采用自动化技术得到了极大的解放,而脑力劳动的自动化程度(其实质是决策自动化程度)则很低,制造过程中人的因素尚未得到充分的认识,人尚未真正地从复杂的生产过程中解放出来,各种问题求解的最终决策在很大程度上仍依赖于人的智慧。因而,人类群体所面临的众多问题(包括社会问题、生理问题等)在制造过程中都有所反映。面对批量小、品种多、质量高、更新快的产品市场竞争要求以及各种社会因素的综台影响.制造过程的自动化程度的提高面临众多问题,譬如;(1)专家人才的短缺和转移致使一些专门技能不能及时或长久地得到提供;(2)现代制造过程中信息量大而繁杂,传统的信息处理方式已不能满足要求,大量的信息资源需要开发与共享;(3)制造环境柔性要求更大,决策过程更加复杂,决策时问要求更短。各种迹象表明,“我们正处在制造历史上的一个危险时期” 幸运的是,计算机与计算机科学以及其它高技术的发展,通过集成制造技术、人工智能等而发展起来的一种新型制造工程—— 智能制造技术(intelligent manufacturing technology,IMT)与智能制造系统(intelIigent manufacturingsystem,IMS)使我们有可能走出这个危机,“带来真正的第二次工业革命”。这是因为,制造过程所面临的众多问题的核心是“制造智能(nlanufacturing itelIigence)”和制造技术的“智能化(intellecturallzation)。IMT是指在制造工业的各个环节以一种高度柔性与高度集成的方式,通过计算机模拟人类专家的智能活动,进行分析、判断、推理、构思和决策,旨在取代或延伸制造环境中人的部分脑力劳动;并对人类专家的制造智能进行收集、存贮、完善、共享、继承与发展。未来工业生产的基本特征应该是知识密集型.制造自动化的根本是决策自动化。目前,IMT~IMS的研究正迅速受到众多国家的政府、工业界和科学家们的广泛重视,研究方向从最初的“人工智能在制造领域中的应用”发展到今天的IMS,研究课题涉及的范围由最初仅一个企业内部的市场分析、产品设计、生产计划、制造加工、过程控制、材料处理、信息管理、设备维护等技术型环节的自动化.发展到今天的面向世界范围内的整个制造环境的集成化与自组织能力+包括制造智能处理技术、自组织加工单元、自组织机器人、智能生产管理信息系统、多级竞争式控制网络、全球通讯与操作网等。总之,智能制造是21世纪的制造技术,作为其特征的双I(integration& intelligence)将是21世纪制造业赖以行进的基本轨道。从更深刻的意义上讲,智能制造是从信息时代走向智能时代面临的第一个严重任务。存在的问题
总的说来,目前IMS的研究仍处在人工智能在制造领域中应用的阶段,研究课题涉及到市场分析、产品设计、制造过程控制、材料处理、信息管理、设备维护等众多方面,取得了丰硕的成果.开发了种类繁多的面向特定领域的专家系统、基于知识的系统和智能辅助系统,甚至智能加工工作站(IMW),形成了一系列“智能化孤岛”(islands of intelligence)。这中间包括CIMS研究中所取得的有关进展然而,随着研究与应用工作的深入,人们逐渐地认识到自动化程度的进一步提高依赖制造系统的自组织能力,研究工作还面临着一系列理论、技术和社会问题,问题的核心是“智能化”。一般说来,现代工业生产作为一个有机的整体要受技术(包括生产系统)、人(包括间接影响生产过程的社会群体)和经济(包括市场竞争和社会竞争)-方面因素的制约。从技术的角度来看,对于一个企业来说,市场预测、生产决策、产品设计、原料订购与处理、制造加工、生产管理、原料产品的储运、产品销售、研究与发展等环节彼此相互影响,构成产品生产的全过程。该过程的自动化程度取决于各环节的集成自动化(integrated automatlon)水平,而生产系统的自组织能力取决于各环节的集成智能(inte—grated intelligence)水平。目前,尚缺乏这种“集成”制造智能的技术,这也是目前“并行工程”的研究重点。由日本提出的国际合作研究计划对IMS的解释可看出,IMS的研究包括三个基本方面:智能活动、智能机器和两者的有机融合技术,其中智能活动是问题的核心。在IMS研究的众多基础技术中.制造智能处理技术(manufacturing in—telligence processing technology)是最为关键和追切需要研究的问题之一,因为它负责各环节的制造智能的集成和生成智能机器的智能活动。从人的因素方面来看,其一,企业内部负责各个环节的专家和技术人员有着各自不同的知识背景和解决问题的策略,他们应该“坐”在一起,通过相互之间充分的合作、协商与理解,“并行”地开睫制造过程中各环节的工作,把以后可能出现的“隐患”和“反复”降低到最低程度。其二,人们参与制造过程的智能行为和知识存在着多种层次水平、多种类型。因而要采用多种表示方式。其三,参与制造过程的群体,作为社会中的一子集,受社会发展变更的影响,这种影响都将对制造过程产生既有积极又有消极的作用 最后.人与人之间存在生活、语言、社会背景等方面的差别。总之,人的因素对现代生产的自动化程度有着关键作用。事实证明,人的因素是IMS中制造智能的重要来源。从经济因素来看,它包括三个方面:第一,IMS系统的主要目标之一是全面提高制造过程的生产与经济效益,它将把制造过程自动化的概念更新和拓宽到“集成化”和“智能化”的高度,从而具有更强的市场竞争能力 但如何设定和评价IMS的各项经济性指标和性能则是一个问题。第二,目前,在工业发达国家普遍存在着劳动力昂贵,所占生产成本的比例越来越高的问题。从当前的经济利益出发,大量的制造企业被转移至发展中国家,致使生产技术和劳动者因素等方面受到牵制,存在丧失他们产品市场竞争力的危险这也是智能制造国际合作研究计划提出的重要原因之一。方向与课题
根据国内现有的工作基础和国家的需要,以及IMT&IMS研究与开发工作的特点,我们认为近期的研究点应该放在IMT&IMS的关键基础技术上,它主要包括以下内容:
3.1 智能制造系统理论基础与设计技术IMS的概念正式提出至今仅二三年时间。作为制造工程中的一个全新的概念,IMS理论基础与体系尚未完全形成.它的精确内涵和设计技术亟待进一步研究,具体研究内容应包括:
3.1.1 体系结构与发展战略 需要建立IMS统一的概念体系,研究IMS的系统组成和发展方向以及跟踪国际上该领域的研究前沿
3.1.2 开发环境与设计方法学IMS的开发与设计方法将有别于现有任何制造系统的设计方法,因为IMS是面向整个制造过程的系统和各个环节的“智能化”的 因此.有必要研究IMS的设计策略和开发环境(包括开发语言、操作系统、开发工具等)必须强调IMS设计过程的标准化、模块化和通用化。
3.1.3 评价技术研究制造过程中的设计评价、生产评价、材料评价、管理评价、市场评价、经济评价、报价评价和功能评价等问题。
3.2 制造智能理论及处理技术现代工业生产作为一个有机整体不仅是指各制造环节之间存在的技术型联系,而且还表现在人类专家的制造智能的统一体特性方面。制造智能理论及处理技术就是要研究整个制造环境中的各种智能源的开发、描述、集成、共享与处理,最后生成智能机器的智能活动,具体研究内容包括: 3.2.1 制造环境的描述与建模研究描述制造环境的一致性概念体系、制造过程建模,影响制造过程的多因素分析与不确定性处理。
3.2.2 制造智能处理技术重点研究制造智能源的开发与获取、制造智能的表示、制造智能的集成与共享
3.2.3 智能活动的生成与融合研究智能活动的生成策略,智能活动的机器化技术。3.3 智能制造单元技术的集成近10年来,人工智能在制造领域中的应用研究取得较大进展,建立了一些智能制造单元技术。为了应用于实际制造过程和面向21世纪制造工业,这些单元技术除了需要进一步完善与发展外,更重要的是研究如何集成这些单元技术。
3.3.1 并行智能设计并行工程方法学这一概念是1986年由美国国防部定义,并首先应用于美国军事武器系统开发计剞DOs CALS的。.为了制造过程的设计阶段能有效地模仿由来自各环节制造专家组成的专家组(expeit team)的智能行为,集成和共享各环节与各方面的制造智能,并行地开展产品环节的设计工作,必须研究并行智能设计的支撑环境、产品描述的统一模型、设计智能交互和并行智能设计方法学。
3.3.2 生产过程的智能调度、规划、仿真与优化现代生产过程要面临多信息源、多因素、多对象的及时处理问题,生产过程的调度与规划中的智能决策问题的研究是迫在眉睫的。仿真与优化是实现设计和过程评估的有效途径。目前,更强调对设计、制造、装配、使用、维修等过程的优化与动态仿真。3.3 产品质量信息的智能处理系统研究整个制造过程的“全质量(total quality)模型和建立相应的质量数据库,研究质量状态的智能决策和质量过程的智能控制.3.3.4 制造过程与系统的智能监视、诊断、补偿与控制研究面向在强干扰、多因素条件下监视与诊断模型,研究制造过程的动态辨识与自适应技术。
3.3.5 生产与经营管理的智能决策系统研究多因素、多目标智能决策模型,研究生产过程的实时跟踪技术,研究产品市场评估与预测模型。
3.4 知识库系统与网络技术知识库系统与信息网络技术是制造过程的系统与各环节“集成智能化”的支撑,在IMT&IMS研究中占有重要地位。
3.4.1 分布式异构联想知识库系统研究知识库异构、知识库分布式策略与维修、知识库联想和分布数据库技术。
3.4.2 信息控制与网络通讯技术研究IMS中各种信息的交换接El、网络通讯技术、系统操作控制策略。
3.5 智能机器的设计智能机器是IMS中模仿人类专家智能活动的工具之一,是新一代的制造工具,因而,研究智能机器的设计方法及其相关技术将有划时代的意义。
3.5.1 机器人智能技术智能机器人将在IMS中占有重要的地位,主要体现在机器的视觉和机器^控制两个方面。有必要研究智能机器眼(视觉)、信息感知与智能传感器、智能机器手(控制)和智能机器的自适应定位与夹具设计等技术。
3.5.2 机器自学习与自维护技术研究智能机器的自适应学习模型,系统误差的自动恢复与维护技术。
3.5.3 智能制造单元机的设计与制造研究智能制造单元机的结构组成与设计方法、新型材料的应用技术。
3.6 制造中人的因素IMS的宗旨之一就是减轻人类制造专家的艰苦的脑力劳动负担,因此.与脑力劳动有密切联系的制造中人的因素理应受到充分的重视,研究内容包括:
3.6.1 人一系统柔性交互技术研究人一系统柔性、联想、容错交互模型以及交互环境。3 6.2 未来制造环境的设计研究人在未来制造环境中的地位和作用以及未来舒适、友好的制造环境的设计。
3.6.3 人才培养与教学系统研究面向IMT&IMS的^才培养计划.研制教学示范系统。
第三篇:智能制造
智能制造是先进制造技术的最新的制造模式之一,智能制造系统是一个信息处理系统,它的原料、能量和信息都是开放的,因此智能制造系统是一个开放的信息系统。智能制造技术是制造技术、自动化技术、系统工程与人工智能等学科互相渗透、互相交织而形成的一门综合技术。智能制造是新世纪制造业的发展方向。由于其实施方案可以在整个制造的大系统(产品的全生命周期)进行,也可以在单元技术(例如模具设计专家系统、数控机床诊断专家系统、智能机器人等)上逐步推进,从经济性、实用性讲,也是我国实现制造业跨越发展的必经之路。引言
智能制造「‘」(工M:Intelligent Manufacturing)是一种由智能机器和人类专家共同组成的人机一体化智能系统,它在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作共事,去扩大、延伸和部分地取代人类专家在制造过程中的脑力劳动。并对人类专家的制造智能进行收集、存储、完善、共享、继承和发展。1.1智能制造系统概述
智能制造系统「2」就是要通过集成知识工程、制造软件系统、机器人视觉与机器人控制等来对制造技术的技能与专家知识进行模拟,使智能机器在没有人工干预情况下进行生产。智能制造系统就是要把人的智力活动变为制造机器的智能活动。智能制造系统的物理基础是智能机器,它包括具有各种程序的智能加工机床,工具和材料传送装置,检测和试验装置,以及装配装置等。1.2智能化制造的特点
川智能化制造技术以实现优质、高效、低耗、清洁、灵活生产,提高产品对动态多变市场的适应能力和竞争力为目标。
(2)智能化制造技术不局限于制造工艺,而是覆盖了市场分析、生产管理、加工和装配、销售、维修、服务,以及回收再生的全过程。
(3)智能化制造强调技术、人、管理和信息的四维集成,不仅涉及到物质流和能量流,还涉及到信息流和知识流,即四维集成和四流交汇是智能化制造技术的重要特点:
(4)智能化制造技术更加重视制造过程组成和管理的合理化以及革新,它是硬件、软件、智能(人)与组织的系统集成。
2.智能化制造数控设备的关键技术
机械制造设备的智能化、网络化、以及对神经元网络、云计算技术的研究与应用,使机械制造工)‘智能化技术得到了跨越式的发展,可以说这是又一次具有划时代意义的工业技术革命。目前,智能化制造数控设备的关键技术,除了机械主体以外,主要是由智能数控系统技术、智能感知技术、智能自适应技术、智能神经元网络技术、智能云计算技术和智能专家系统等主要技术构成。
(1>智能化数控系统数控设备智能化的发
展是以数控系统完善的软硬件功能及高灵敏度、高精度感知检测系统为基础,以适应智能化、信息化、数字化集成技术发展的要求。为追求数控设备加工效率和加工质量,数控系统不但有自动编程、前馈控制、模糊控制、自学习控制、工艺参数自动生成、三维刀具补偿、运动参数动态补偿等智能化功能,并有故障诊断专家系统,使自诊断和故障监控功能更趋势完善。伺服驱动系统智能化,能自动感知负载变化,自动优化调整参数。如发那科推出的HRV控制,通过共振追随型HRV滤波器,可以避免因频率变动而造成设备的共振。通过融合旋转伺服电动机,高精度、高响应和高分辨率脉冲编码器,实现高速和高精度的伺服控制,保证极其平稳 的进刀。
(2)智能自适应控制技术自适应控制分为 工艺自适应和儿何自适应。工艺自适应又分为
最佳自适应控制系统(ACO)和约束式自适应(ACC)。自适应控制自20世纪60年代已开始研究,但用于生产实践尚不普遍。目前应用面较广的还是结构简单的ACC系统,已用于铣、车、钻、磨、电加工和加工中心等机床上;而ACO多用于加工因素相对简单的磨削和电火花加工(ED M)上。影响加工的因素很多很复杂,不仅建立数学模
型困难,而且要实时采集和实时调整参数也有很大难度,有待深入研究。(3)智能化神经元网络技术最智能的莫过于人的大脑,人工神经元网络
(ANN)是一种模拟
人的神经结构,即类似人的大脑神经突触连接的结构进行信息处理的复杂网络系统。人工神经网络具有自学习功能、联想记忆功能、非线性映射功能和高速寻找优化解的功能等。目前,神经元网络多用于数控设备可靠性预测和优化工艺参数方面,神经元网络在机床数控系统方面的研究与应用尚不多见。随着神经元网络技术的发展,在数控机床方面的应用可能会有很好的前景,或许会把数控系统的智能化水平推向高级阶段。未来儿年希望能有一个较快的发展。(4)智能专家系统专家系统是一个智能计算i机程序系统,其专家知识库中含有某个领域大量的l专家知识与经验,就是利用这些专家知识、经验和土解决问题的方法来处理该领域的技术问题。它能够f应用人工智能技术,根据该专家系统中的知识和经验进行推理和判断,模拟专家的决策过程,来解决·需要专家处理的复杂问题。目前,数控设备领域尚l缺乏这种专家系统。(5)云计算将把智能化制造推向更高级阶右段国外工业技术发达国家的大型工业企业、研究机构和高等院校对云计算的研究和发展都极为重视,之认为这是一种具有划时代意义的技术。如美国宇航!局和通用汽车公司都在研究和应用云计算技术;我1国北京建有云计算基地,华为技术有限公司和TCL集团也都特别关注云计算的发展、研究和应用。3.智能化工厂
智能化机械工)‘是以“智能化”为核心,以智能化、数字化、网络化为主要特征的生产、经营实体。智能化工)‘将逐步分层次实现。智能工业机器人在智能自动化制造工)‘中扮演着重要角色。(1>智能工业机器人在智能化数控设备中
除了各种数控设备和相关数控配套设备以外,智能工业机器人在智能制造单元、智能制造系统和智能制造工)‘中具有重要作用。
(2)智能化自动化工)‘在各种智能化自动化数控设备的基础上,智能化工)‘将由工厂‘局部智能自动化、逐步分层次地发展到全工)‘智能自动化和社会化智能制造。
第一层次:单机或单元智能自动化。
单机或单元智能自动化,可以实现长时间无人值守。国内外都有用于生产 的实例。
第二个层次:生产制造系统智能自动化。
在第三代“智能机器人化单元”的基础上,实现计算机网络控制生产车间全自动化系统。包括毛坯仓储管理,再制品仓储管理,成品零件仓储管理及其搬运、装卸、装配作业和质量检验等。
第三个层次:智能化数字化网络制造系统。
在第二层次生产制造系统智能自动化的基础上,配置网络综合管理系统,来实现全工)‘的智能化数字化网络制造。智能化工)‘的实现主要是靠信息通信技术(ICT)和智能网络的可靠运行加以保证。具有实时资料搜集与传输功能、高效能计算机与分析预测功能、远程监控与诊断功能及模拟功能等。智能化工)‘最核心的部分是生产过程和全面经营运行的智能自动化,包括设计智能化,生产排序自动化,生产线自动化,测试检验自动化,仓储自动化,电力管理智能自动化等等,进一步发展到自动化无人化工)‘(绝大多数设备可以无人值守)。
第四个层次:智能化社会化生产。
智能化网络化社会化制造,将山企业内部局域网经因特网向企业外部传输。这就是所谓的Internet/Intranet。网络可使企业与企业之间进行跨地区协同设计、协同制造、信息共享、远程监控、远程诊断和服务等。网络能为制造提供完整的生产数据信息,可以通过网络将加工程序传给远方的设备进行加工,也可远程诊断并发出指令调整。网络使各地分散的数控机床联系在一起,互相协调,统一优化调整,使产品加工不局限于一个工)‘内而实现社会化生产。智能化社会化制造能够借助Internet网实现跨行业、跨国际智能化制造,进人Internet/Intranet时代。云计算借助Internet网整合了计算机资源,为智能化制造开了先河。智能化网络化社会化制造将引领社会和全球资源的整合与优化运用,同时将有效地提高人类的生活质量,逐步地减少人类的体力劳动而扩大脑力劳动的比重,进入知识社会,智能社会。
智能制造具有高科技高水平的先进制造系统,面临一些极具挑 战性的问题。当然也需要我们投入大量的研究去攻克这些技术难题。产品和制造过程的数字建模理论及混合约束求解方法,几何表示与推理在运动规划、抓取、夹持、装配、NC加工、计算机视觉、测量中的应用,制造技能和制造知识的表示、获取与推理。智能制造单元的Agent建模及智能制造系统的多Agent建模理论、多Agent系统学>-j及重构理论、多Agent系统动力学分析方法及性能评价标、多Agent系统规划、调度、控制与协调等。制造资源的Holon模型Holonic系统组成及其分别式协调与控制等。由于人类智能问题本身的复杂性,智能制造理论与技术的研究任重而道远,上述问题的深入研究,不仅将促进智能制造理论与技术的发展与进一步完展具有积极的推动作用。不仅要提高机器设备的智商,更要协调好人与机器的关系,建立一种新型的人机一体化关系,从而产生高效高性能的生产系统。总之,随着智能制造技术的普及以及其带来的优势愈发明显,可以预见在不远的将来,智能制造将成为下一代重要的生产模式。参考文献:
1.赵亚波 智能制造(工业控制计算机}202_年15卷第3期(333001)2.荣烈润 面向21世纪的智能制造机电一体化202_,12(4)3.熊有伦 孙容磊 李斌 吴波 智能制造:回顾与展望木华中科技大学机械学院武汉430074 C1〕土子龙.中国装备制造业系统演化与评价研究[D].中国博 上学位论文全文数据库,202_ C2} l一继勇.教育结构、产业结构和就业结构的关系研究[D].中 国优秀硕士学位论文全文数据库,202_ 参考文献
[1]杨叔子,丁洪.智能制造技术与智能制造系统的发展与研究[J].中国机械工程1992,3(2):15~18 [2]孙大勇.先进制造技术[M].北京:机械工业出版社,202_,12~13
第四篇:智能制造现状与前景
智能制造的发展与前景展望
(南京航空航天大学机电学院,南京市,210016)摘要:简述了智能制造形成的原因及智能制造的概念;分析了智能制造国内外的发展现状;指出了智能制造的发展趋势及其面临的问题。
关键词:智能制造 人工智能 机械制造 工业4.0
The development and research of intelligent manufacturing
JiaYu Wang(College of Mechanical Engineering, Nanjing University of Aeronautics&
Astronautics, Nanjing, 210016, China;)Abstract:This paper depicts the cause of formation and conception of IM.And presents status in the development on IM.Finally indication is given of the trend of development and question confronting IM.Key words:IM;AI;mechanical manufacture;Industrie 4.0
0 前言
智能制造装备是先进制造技术、信息技术以及人工智能技术在制造装备上的集成和深度融合,是实现高效、高品质、节能环保和安全可靠生产的下一代制造装备。在综述了智能制造装备国内外发展现状的基础上,重点论述了目前智能制造存在的问题,并得出结论,认为德国的”工业4.0”和美国的工业互联网装备将是智能制造装备未来的发展方向。
1研究背景
制造业是国民经济的基础工业部门,是决定国家发展水平的最基本因素之一。从机械制造业发展的历程来看,经历了由手工制作、泰勒化制造、高度自动化、柔性自动化和集成化制造、并行规划设计制造等阶段。就制造自动化而言,大体上每十年上一个台阶: 50-60年代是单机数控,70年代以后则是CNC机床及由它们组成的自动化岛,80年代出现了世界性的柔性自动化热潮。与此同时,出现了计算机集成制造,但与实用化相距甚远。随着计算机的问世与发展,机械制造大体沿两条路线发展:一是传统制造技术的发展,二是借助计算机和自动化科学的制造技术与系统的发展。80年代以来,传统制造技术得到了不同程度的发展,但存在着很多问题。近来年,人们对制造过程的自动化程度赋予了极大的研究热情,这是因为从1870年到1980年间,制造过程的效率提高了20倍,而生产管理效率只提高了1.8-2倍,产品设计的效率只提高了1.2倍,这表明体力劳动通过采用自动化技术得到了极大的解放,而脑力劳动的自动化程度(其实质是决策自动化程度)则很低,制造过程中人的因素尚未得到充分的认识,人尚未真正地从复杂的生产过程中解放出来,各种问题求解的最终决策在很大程度上仍依赖于人的智慧。因而,人类群体所面临的众多问题(包括社会问题、生理问题等)在制造过程中都有所反映。面对批量小、品种多、质量高、更新快的产品市场竞争要求以及各种社会因素的综合影响,制造过程的自动化程度的提高面临众多问题,譬如:(1)专家人才的短缺和转移致使一些专门技能不能及时或长久地得到提供;(2)现代制造过程中信息量大而繁杂,传统的信息处理方式已不能满足要求,大量的信息资源需要开发与共享;(3)制造环境柔性要求更大,决策过程更加复杂,决策时间要求更短;(4)制造过程的自动化程度受制于制造系统的自组织能力,即智能水平;(5)现代生产要求专家们在更大范围内进行更及时的合作,小到一个企业内部的各个生产环节,大至一个国家甚至世界范围内的工业界中的众多企业之间。各种迹象表明,“我们正处在制造历史上的一个危险时期”。幸运的是,计算机与计算机科学以及其它高技术的发展,通过集成制造技术、人工智能等而发展起来的一种新型制造工程—智能制造技术(intelligent manufacturing technology,IMT)与智能制造系统(intelligent manufacturing system,IMS)使我们有可能走出这个危机。这是因为,制造过程所面临的众多问题的核心是“制造智能”和制造技术的“智能化”。IMT是指在制造工业的各个环节以一种高度柔性与高度集成的方式,通过计算机模拟人类专家的智能活动,进行分析、判断、推理、构思和决策,旨在取代或延伸制造环境中人的部分脑力劳动;并对人类专家的制造智能进行收集、存贮、完善、共享、继承与发展。未来工业生产的基本特征应该是知识密集型,制造自动化的根本是决策自动化。
2发展现状
2.1国外研究现状:
目前,IMT&IMS的研究正迅速受到众多国家的政府、工业界和科学家们的广泛重视:
2.1.1美国
美国是国际智能制造思想的发源地之一,美国政府高度重视智能制造的发展,并且已经把它作为21世纪占领世界制造技术领先地位的基石。从上世纪90年代开始,美国国家科学基金(NSF)就着重资助有关智能制造的诸项研究,项目覆盖了智能制造的绝大部分,包括制造过程中的智能决策、基于多施主(multi-agent)的智能协作求解、智能并行设计、物流[]传输的智能自动化等1。202_年,美国国家标准与技术研究所(NIST)提出了“聪明加工系统(smart machining system,SMS)”研究计划。聪明加工系统的实质是智能化,该系统的主要目标和研究内容包括:(1)系统动态优化。即将相关工艺过程和设备知识加以集成后进行建模,进行系统的动态性能优化;(2)设备特征化。即开发特征化的测量方法、模型和标准,并在运行状态下对机床性能进行测量和通信;(3)下一代数控系统。即与STEP-NC兼容的接口和数据格式,使基于模型的机器控制能够无缝运行;(4)状态监控和可靠性。即开发测量、传感和分析方法;(5)在加工过程中直接测量刀具磨损和工件精度的方法。
202_年,美国总统奥巴马宣布实施包括工业机器人在内的”Advanced Manufacturing Partnership Plan”(先进制造联盟计划),立即得到同日发布的“实现 21世纪智能制造”新报告的积极响应。在这份由美国智能制造领导联盟(smart manufacturing leadership coalition,SMLC)公布的报告中,不但描绘了该领域未来的发展蓝图,而且确定了十大优先行动目标,意图通过采用21世纪的数字信息技术和自动化技术,加快对20世纪的工厂进行
[]现代化改造过程,以改变以往的制造方式,借此获得经济、效率和竞争力方面的多重效益2。
2.1.2 日本
日本于1990年首先提出为期10年的智能制造系统(IMS)的国际合作计划,并与美国、加拿大、澳大利亚、瑞士和欧洲自由贸易协定国在1991年开展了联合研究,其目的是为了克服柔性制造系统(FMS)、计算机集成制造系统(CIMS)的局限性,把日本工厂和车间的专业技术与欧盟的精密工程技术、美国的系统技术充分地结合起来,开发出能使人和智能设备都不受生产操作和国界限制,且能彼此合作的高技术生产系统。2.1.3 欧盟
欧盟于202_年启动了第七框架计划(FP7)的制造云项目3,特别是制造业强国的德
[]国,继实施智能工厂(Smart factory)之后4,又启动了一个投入达2亿欧元的工业4.0(Industry []4.0)项目5。德国政府202_年制定的《高技术战略202_》计划行动中,意图以未来项目“工业4.0”奠定德国在关键工业技术上的国际领先地位,并在202_年4月举行的汉诺威工业博览会上正式将此计划推出。“工业4.0”概念最初是在德国工程院、弗劳恩霍夫协会、西门子
[]公司等德国学术界和产业界的建议和推动下形成,目前其已上升为国家级战略6。
[]2.2 国内研究现状
国内在智能制造技术与系统方面的绝大多数研究工作,目前还处在探讨人工智能在制造领域中应用的阶段。几年来,开发出了众多类型、水平各异的面向制造过程中特定环节、特定间题的“智能化孤岛”,诸如专家系统、基于知识的系统和智能辅助系统等,而对制造环境的全面“智能化”研究工作还处于刚刚起步阶段。我国自 202_ 年 5 月《装备制造业调整和振兴规划》出台以来,国家对智能制造装备产业的政策支持力度不断加大,202_年国家有关部委更集中出台了一系列规划和专项政策,使得我国智能制造装备产业的发展轮廓得到进一步地明晰。工业与信息化部发布了《高端装备制造业“十二五”发展规划》,同时发布了《智能制造装备产业“十二五”发展规划》子规划,明确提出到202_年将我国智能制造装备产业培育成为具有国际竞争力的先导产业。科学技术部也发布了《智能制造科技发展”十二五”专项规划》;国家发展改革委员会、财政部、工业与信息化部三部委组织实施了智能制造装备发展专项;工业与信息化部制定和发布了《智能制造装备产业“十二五”发展路线图》,该路线图明确把智能制造装备作为高端装备制造业的发展重点领域,以实现制造过程智能化为目标,以突破九大关键智能基础共性技术为支撑,其思路是:以推进八项智能测控装置与部件的研发和产业化为核心,以提升八类重大智能制造装备集成创新能力为重点,促进在国民经济六大重点领域的示范应用推广。问题与展望
3.1 存在问题
总的说来,目前IMS的研究仍处在人工智能在制造领域中应用的阶段,研究课题涉及到市场分析、产品设计、制造过程控制、材料处理、信息管理、设备维护等众多方面,取得了丰硕的成果,开发了种类繁多的面向特定领域的专家系统、基于知识的系统和智能辅助系统,甚至智能加工工作站(IMW),形成了一系列”智能化孤岛”(islands of intelligence)。这中间包括CIMS研究中所取得的有关进展。然而,随着研究与应用工作的深入,人们逐渐地认识到自动化程度的进一步提高依赖制造系统的自组织能力,研究工作还面临着一系列理论、技术和社会问题,、问题的核心是“智能化”。一般说来,现代工业生产作为一个有机的整体要受技术(包括生产系统)、人(包括间接影响生产过程的社会群体)和经济(包括市场竞争和社会竞争)三方面因素的制约。从技术的角度来看,对于一个企业来说,市场预测、生产决策、产品设计、原料订购与处理、制造加工、生产管理、原料产品的储运、产品销售、研究与发展等环节彼此相互影响,构成产品生产的全过程。该过程的自动化程度取决于各环节的集成自动化(integrated automation)水平,而生产系统的自组织能力取决于各环节的集成智能(integrated intelligence)水平。目前,尚缺乏这种“集成”制造智能的技术,这也是目前“并行工程”的研究重点。
3.2发展趋势 当前,智能制造的发展趋势以德国的”工业4.0”和美国的工业互联网装备最为清晰。
3.2.1 德国“工业4.0”
德国“工业 4.0”通过充分利用信息物理系统(CPS),实现由集中式控制向分散式增强型控制的基本模式转变,目标是建立高度灵活的个性化和数字化的产品与服务的生产模式,推动现有制造业向智能化方向转型。CPS是一个综合计算、网络和物理环境的多维复杂系统,通过3C(Computation、Communication、Control)技术的有机融合与深度协作,实现制造装备系统的实时感知、动态控制和信息服务。CPS实现计算、通信与物理系统的一体化设计,可使系统更加可靠、高效、实时协同。德国电气电子和信息技术协会于202_年发布了德国首个“工业4.0”标准化路线图,以加强德国作为技术经济强国的核心竞争力,确保德国制造[]的未来7-8。“工业4.0”项目主要分为两大主题:(1)智能工厂。重点研究智能化生产系统及过。程,以及网络化分布式生产设施的实现(工业4.0智能工厂如图1所示);
(2)智能生产。主要涉及整个企业的生产物流管理、人机互动以及3D技术在工业生产过程中的应用等。
图1 工业4.0智能工厂
3.2.2 美国工业互联网装备
202_年,美国通用电气公司(GE)发表了《工业互联网-打破智慧与机器的边界》报告[9]。该报告提出了工业互联网(Industrial Internet)的概念。工业化创造了无数的机器、设施和系统网络,而工业互联网则是指让这些机器和先进的传感器、控制和软件应用相连接,以提高制造业的生产效率、减少资源消耗。工业互联网装备将整合两大革命性转变的优势:(1)工业革命。伴随着工业革命,出现了无数台机器、设备、机组和工作站;(2)强大的网络革命;
(3)在网络化的影响下,计算、信息与通讯系统应运而生并不断发展。小结
智能制造装备集制造、信息和人工智能技术于一身,是未来高端装备制造业的重点发展方向。各国政府高度重视智能制造装备的研发和应用,美、日、欧已有一系列的研究成果和部分产品面世,德国的“工业4.0”项目也积极地推动了制造业向智能化的转型。我国政府也充分认识到智能制造装备的重要战略地位,已出台政策推动智能制造装备的产业化水平提升。可以预见,未来智能制造装备在引领制造业低碳、节能、高效发展上的作用将进一步得到显现;同时,行业也将在工业机器人、智能机床和基础制造装备、智能仪器仪表、三维打印装备、新型传感器、自动化成套生产线等重点领域形成快速发展与突破。参考文献
[1] GUO Qing-lin,ZHANG Ming.An agent-oriented approach to resolve scheduling optimization in intelligent manufacturing[J].Robotics and Computer-Integrated Manufacturing,202_(26):39-45.[2] 罗克韦尔自动化.奥巴马总统的先进制造联盟计划得到今日最新发布报告的支持[EB/OL].[202_-07-24].[3] Manu Cloud[EB/OL].[202_-03-01].http://www.Manu-cloud-project.eu/.[4] JAMES T.Smart factories[J].Engineering and Technology,202_,7(6):64-67.[5] 宋慧欣.“工业4.0”制造业未来之路[J].自动化博览,202_(10):26-27.[6] 何 瑾.智能制造装备业万亿市场蓝图初现[J].科技智囊,202_(8):38-40.[7] 杜品圣.智能工厂-德国推进工业4.0战略的第一步(上)[J].自动化博览,202_(1):22-25.[8] 杜品圣.智能工厂-德国推进工业4.0战略的第一步(下)[J].自动化博览,202_(1):50-55.[9]EVANS P C,ANNUNZIATA M.工业互联网-打破智慧与机器的边界[R].202_.
第五篇:智能制造与企业互通
智能制造、企业互通
------202_年智能制造研讨与创美工业4.0现场体验会
202_年10月31日在苏州白金汉爵大酒店举行了智能制造研讨与创美工业4.0现场体验会。来自全国的300余名制造行业客户莅临现场,热情参与了本次大会。此次大会以智能制造,协同合作这一主题进行研讨,就企业间如何实现共同互联、智能互通以及如何迈向工业4.0来展开,创美集团及用友软件专家一道共同探讨了制造企业的信息化之路。
大会开始大迁总经理回顾了创美集团与用友的合作历史,从与用友王文京董事长缔结战略协议、系统原型客户的确立、NC项目开始到用友集团的大力支持,逐步讲述了创美与用友战略好伙伴的一个个美好瞬间,也为体验会的现场拉开了精彩的序幕。会上由用友集团执行总裁章培林董事长发表致辞,提出在企业互联网化时代制造企业应利用新技术将互联网和工业深度融合,并剖析NC6如何为制造业塑造核心竞争优势。随后金工场长也发表了精彩的演讲。演讲以国际产业转移趋势作为背景,讲述了创美工艺与用友的协同合作来进行管理信息化项目的实施,逐步实现了设计敏捷化、制造智能化、业务过程实时化,客户协同化、集团管控化的智能工厂这一辉煌过程。并分享了制造业生产力发展方向和总体趋势。会上作为特邀嘉宾进行本次发言的还有用友项目经理岳伟龙、创美生产革新部主任金垠博、UAP中心技术支持部总经理彭立东、摩托罗拉制造经验专家等。用友咨询与实施业务部专家岳伟龙先生为大家讲述如何为创美实现信息化价值这一经验分享。生产革新部主任金垠博就创美工业4.0的实践案例进行分享,描述了工厂制造从自动化到智能制造这一改革创新的道路。UAP中心技术支持部彭立东总经理就UAP平台与客户联合创新作为主题,进行了本次演讲。紧接着大会现场体验阶段展示了由我们创美工艺自主研发的工业4.0的原型机。该系统在202_年用友广州展会上第一次以创新的姿态展现给大家。它打穿了从生产执行系统、生产管理系统到生产设备控制系统的隔阂,并同手机移动客户端结合起来,用户只需手机上轻轻一按,就能下发订单,控制生产。会上体验的人群更是络绎不绝将大会的气氛推上了高潮。随后金工场长同用友集团执行总裁章培林董事长参加了用友产业链合作伙伴创美授牌仪式。这是即9月用友广州展会后又一大事件。本次授牌是基于用友公司与创美工艺的专业分工和战略契合。利用双方互补优势,为更多制造类企业提供更多专业类服务。会议现场,用友、创美、新华都、畅通天元领导签署了四方协议,通过四方合作将进一步推动产品伙伴招募和深化合作,标志着创美将与伙伴的形式共同实现合作开发,达成产业链共赢目标。
31日下午还进行了创美工厂车间的现场体验,来自用友的200多名制造行业客户参观了创美工厂。参观团分为4组,分别参观了第一事业部、第三事业部、第三事业部、登车平台、生产革新和新品开发车间以及金牌模具工厂等生产车间。创美向用友参观团全面展示了全自动的冲压生产线、精密的3D模具技术和测控设备、直线式机械手臂和机器点焊机、数据采集系统等等半自动甚至全自动的智能设备,让用友的各界朋友们全面感受到创美工艺正在从传统劳动力密集型向自动智能化的转变。随后的三个小时,开展了创美与用友的交流会,会场主分为:制造、财务供应链、UAP系统等三个个分会,交流会在轻松又包含成长的环境中度过,各个会场中开展了智者与智者的对话,共同体验了一次行业间的深入研讨。
创美工艺与用友集团共同打造了一整套适应于“工业4.0时代的信息化系统。基于UAP平台,创美对28个业务小系统、涉及NC18个核心业务单据的信息进行集成。除了将内部管理数据进行整合之外,通过UAP平台,创美又将智能化管理延伸到了机械设备上。即通过UAP平台,构建了一套物联网中间件,帮助创美实现了设备之间的数据互操作、设备的全面数据分析以及可视化运营,为创美集团的全球化战略奠定了坚实的基础。
未来创美工艺将率先迈入了工业4.0时代,工业4.0的内涵已经远远超越机器的自动化,甚至数字制造本身。它让设备与设备开启对话,产品和生产设备之间相互沟通,建立虚拟世界与现实世界之间的对话窗口。我们让设备开始了愉快的“生产旅行”,即将到来的机械技术与信息化技术高度融合,让机械数据和管理数据全部整合到一个数字化企业平台中,“信息平台”作为企业智能制造的中枢,将成为智能制造体系的核心。