首页 > 文库大全 > 精品范文库 > 14号文库

八年级数学证明题顺口溜

八年级数学证明题顺口溜



第一篇:八年级数学证明题顺口溜

证明题,像破案,结论就是嫌疑犯。已知条件是线索,关键找到突破点。

证明过程要规范,因为条件要写全。所以必须有依据,定理性质写后边。

角度问题并不难,内角之和永不变。外角性质不能忘,余角补角很常见。

证明三角形全等,边边角角边角边。斜边直角边定理,五个定理记心间。

角平分线也简单,性质判定正相反。关键是要有垂直,没有就做辅助线。

对称轴是中垂线,饮马修路找最短。等腰等边有特性,三线重合等角边。

30度角很特殊,对边是斜边一半。没有30找60,互相转化不犯难。

45度加直角,这个图形别小看,底边中线很厉害,一大两小像照片。

线段关系题常见,一般要做辅助线。截长补短找相等,倍长中线做转换。

证不下去看已知,所有条件找一遍。有的不止用一次,隐含条件记心间。

记住这些还不够,演算检查不偷懒。如果你能全做到,证明满分必实现。

第二篇:八年级数学全等三角形证明题

中考网

第十三章全等三角形测试卷

(测试时间:90分钟总分:100分)

班级姓名得分

一、选择题(本大题共10题;每小题2分,共20分)

1. 对于△ABC与△DEF,已知∠A=∠D,∠B=∠E,则下列条件①AB=DE;②AC=DF;

③BC=DF;④AB=EF中,能判定它们全等的有()

A.①②B.①③C.②③D.③④

2. 下列说法正确的是()

A.面积相等的两个三角形全等

B.周长相等的两个三角形全等

C.三个角对应相等的两个三角形全等

D.能够完全重合的两个三角形全等

3. 下列数据能确定形状和大小的是()

A.AB=4,BC=5,∠C=60°B.AB=6,∠C=60°,∠B=70°

C.AB=4,BC=5,CA=10D.∠C=60°,∠B=70°,∠A=50°

4. 在△ABC和△DEF中,∠A=∠D,AB = DE,添加下列哪一个条件,依然不能证明△

ABC≌△DEF()

A.AC = DFB.BC = EFC.∠B=∠ED.∠C=∠F

5. OP是∠AOB的平分线,则下列说法正确的是()

A.射线OP上的点与OA,OB上任意一点的距离相等

B.射线OP上的点与边OA,OB的距离相等

C.射线OP上的点与OA上各点的距离相等

D.射线OP上的点与OB上各点的距离相等 D 6. 如图,∠1=∠2,∠E=∠A,EC=DA,则△ABD≌△EBC

时,运用的判定定理是()A.SSS

C B.ASA B C.AAS

(第6题)D.SAS

7. 如图,若线段AB,CD交于点O,且AB、CD互相平分,则下列结论错误的是()D A.AD=BC

B.∠C=∠D

C.AD∥BC

D.OB=OC

8. 如图,AE⊥BD于E,CF⊥BD于F,AB = CD,AE = CF,则图中全等三角形共有()

A.1对

B.2对

C.3对

D.4对 B(第7题)(第8题)D中考网

9. 如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△

ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的()

A.只有①

B.只有②

C.只有③

D.有①和②和③

B 10.如图,DE⊥BC,BE=EC,且AB=5,AC=8,(第9题)则△ABD的周长为()

A.

21B.18C.1

3C E D.9

(第10题)

二、填空题(本大题共6小题;每小题2分,共12分)

11.如图,除公共边AB外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使△ABC与△ABD全等:

(1),(ASA);(2),∠3=∠4(AAS). 12.如图,AD是△ABC的中线,延长AD到E,使DE=AD,连结BE,则有

△ACD≌△。

13.如图,△ABC≌△ADE,此时∠.

A CBC B ED A(第11题)

(第13题)(第12题)

14.如图,AB⊥AC,垂足为A,CD⊥AC,垂足为C,DE⊥BC,且AB=CE,若BC=5cm,则DE的长为cm. 15.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE=cm.B

C C A C E(第15题)(第14题)(第16题)

16.如图,在△ABD和△ACE中,有下列论断:①AB=AC;②AD=AE;③∠B=∠C;④

BD=CE.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题:。

三、解答题(本大题5小题;共68分)17.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB.∠MON=50°,∠OPC=30°.

求∠PCA的度数.

A

B

18.已知:如图,AB与CD相交于点O,∠ACO=∠BDO,OC=OD,CE是△ACO的角平分

线,请你先作△ODB的角平分线DF(保留痕迹)再证明CE=DF.

19.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证BM=CN.

MB

D

N

20.已知:如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连结EG.(1)求证BG=CF;

(2)试猜想BE+CF与EF的大小关系,并加以证明.

21.如图,图(1)中等腰△ABC与等腰△DEC共点于C,且∠BCA=∠ECD,连结BE,AD,若BC=AC,EC=DC.求证BE=AD;若将等腰△EDC绕点C旋转至图(2)(3)(4)情况时,其余条件不变,BE与AD还相等吗?为什么?

A

DB

A

A

E

E

B

(1)

D

DC

B

D

(2)(3)

(4)

八年级(上)《全等三角形》试卷讲评课教案

九华初级中学李海燕

教学目标:

1.通过讲评,进一步巩固全等三角形的相关知识点。

2.通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。教学重点:

第16,19,20题的错因剖析与矫正。教学过程:

一、考试情况分析:

班级均分:82.1 分最高分:100 分 100分的同学,全班公示,鼓掌祝贺。分发试卷。

二、学生小组总结试卷填空和选择两块解题中错误原因和解题感受,看看哪些小组总结得比较好。

学生用投影展示自己的所思所想。

三、重点评讲解答题的19、20题

1、学生小组交流

2、学生据黑板图形讲解

3、教师点评

四、学生自我完善考卷

五、总结课堂,教师质疑

六、学生课堂训练

教案说明:

本张试卷学生考试情况较好,典型错误不多,且书写态度端正,思维过程表达清晰,可以看出学生对全等三角形的性质、判定掌握到位,如17、19有的学生能灵活运用角平分线性质及垂直平分线性质进行解答,方法比较简便。针对考试情况,我在进行教学设计时让学生发现自己在解题中的失误或错误,重点评讲了试题中的3、19、20等题。本课主要采用由学生说题的方法进行评讲,心理学研究表明,人在学习活动过程中,听懂不一定做的出,语

言表述则是思维活动的最高境界,语言更能训练思维的逻辑性和严密性。学生对解题过程或者思维过程口头能表达清楚才是真的理解这道题。总之,“学生说题”能转变学生的学习方式,建设开放而有活力的课堂,符合有效课堂的特征,是高参与的课堂、高认知的课堂、高情意的课堂。课堂练习是针对学生在考卷中表现出的薄弱之处设计的,在学生对考卷进行评讲后进行练习,能有效帮助学生进一步掌握解题方法。

课堂针对性练习

班级姓名组别

1、如图,在△AEB和△AFC中,有下列论断:①∠EAC=∠FAB;②AB=AC;③BE=CF;④AE=AF.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题.2、(1)已知:如图,在△ABC中,∠BAC=90°,AB=AC,直线AF交BC于F,BD⊥AF于

D,CE⊥AF于E.求证:DE=BD-EC

(2)对于(1)中的条件改为:直线AF在△ABC形外,与BC的延长线相交于F,其他条件不变,上述结论仍成立吗?(请画出图形)若成立,请证明;若不成立,请写出正确的等式,并证明.

第三篇:经典数学证明题

1.AB为边长为1的正五边形边上的点.证明:AB

(25分)2.AB为y1x2上在y轴两侧的点,求过AB的切线与x轴围成面积的最小值.(25分)

3.向量OA与OBOA1OB2,OP(1t)OA,OQtOB,0≤t≤1PQ

1在t0时取得最小值,问当0t0时,夹角的取值范围.(25分)

5,使得sinx,cosx,tanx,cotx为等差数列.(25分)

25.圆内接四边形ABCD,AB=1,BC=2,CD=3,DA=4。求圆半径。

6.已知一无穷等差数列中有3项:13,25,41。求证:202_为数列中一项。4.存不存在0x

7.是否存在实数x使tanx+(根3)与cotx+(根3)为有理数?

8.已知对任意x均有acosx+bcos2x>=-1恒成立,求a+b的最大值

9.某次考试共有333名学生做对了1000道题。做对3道及以下为不及格,6道及以上为优秀。问不及格和优秀的人数哪个多?

15.的整数部分为a,小数部分为b 1求a,b;

2求a2b2ab; 2

bb2bn 3求limn

2n2n16.1x,y为实数,且xy1,求证:对于任意正整数n,xy

122n1

2a,b,c为正实数,求证:abc3,其中x,y,z为a,b,c的一种排列 xyz

17.请写出所有三个数均为质数,且公差为8的等差数列,并证明你的结论

x2y2

18.已知椭圆221,过椭圆左顶点Aa,0的直线L与椭圆交于Q,与y轴交于R,ab

过原点与L平行的直线与椭圆交于P

求证:AQ,AR成等比数列

19.已知sintcost1,设scostisint,求f(s)1ss2sn

20.随机挑选一个三位数I

1求I含有因子5的概率;2求I中恰有两个数码相等的概率

21.四面体ABCD中,ABCD,ACBD,ADBC

1求证:四面体每个面的三角形为锐角三角形;

2设三个面与底面BCD所成的角分别为,,,求证:coscoscos1

222..证明当p,q均为奇数时,曲线yx2px2q与x轴的交点横坐标为无理数

23.设a1,a2,,a2n1均为整数,性质P为: 对a1,a2,,a2n1中任意2n个数,存在一种分法可将其分为两组,每组n个数,使得两组所有元素的和相等

求证:a1,a2,,a2n1全部相等当且仅当a1,a2,,a2n1具有性质P

24.已知a,b,c

都是有理数;

25.(1)一个四面体,证明:至少存在一个顶点,从其出发的三条棱组成一个三角形;

(2)四面体一个顶点处的三个角分别是

二面角; 23,arctan2,求的面和arctan2的面所成的326.求正整数区间m,n(mn)中,不能被3整除的整数之和;

27.已知sincos的取值范围;

28.若limf(x)f(0)1,f(2x)f(x)x,求f(x); x02

29.证明:以原点为中心的面积大于4的矩形中,至少还有两个格点。

ex

30.求f(x)的单调区间及极值.x

31.设正三角形T1边长为a,Tn1是Tn的中点三角形,An为Tn除去Tn1后剩下三个三角形内切圆面积之和.求limnAk1nk.32.已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如下图所示.能听到声音,当且仅当A与B中有一工作,C工作,D与E中有一工作;且若D和E同时工作则有立体声效果.求:(1)能听到立体声效果的概率;

(2)听不到声音的概率.33.(1)求三直线xy60,y

1x,y0所围成三角形上的整点个数; 2

y2x1(2)求方程组yx的整数解个数.2xy60

34.已知A(1,1),△ABC是正三角形,且B、C在双曲线xy1(x0)一支上.(1)求证B、C关于直线yx对称;

(2)求△ABC的周长.2r0,使得35.对于集合MR,称M为开集,当且仅当P0M,{PR2PP0r}M.判断集合{(x,y)4x2y50}与{(x,y)x0,y0}是否为开集,并证明你的结论.36.求最小正整数n,使得I(

12123i)n为纯虚数,并求出I.

37.已知a、b为非负数,Ma4b4,ab1,求M的最值.

n、si、n38.已知sic为o等差数列,sin、sin、cos为等比数列,求

1cos2cos2的值.

239.求由正整数组成的集合S,使S中的元素之和等于元素之积.

40.随机取多少个整数,才能有0.9以上的概率使得这些数中至少有一个偶数.

41.yx2上一点P(非原点),在P处引切线交x、y轴于Q、R,求PQ

PR.

42.已知f(x)满足:对实数a、b有f(ab)af(b)bf(a),且f(x)1,求证:f(x)恒为零.

(可用以下结论:若limg(x)0,f(x)M,M为一常数,那么lim(f(x)g(x))0)xx

第四篇:数学证明题

数学题The mathematics inscribe

在梯形ABCD中,AD∥BC,AC垂直BD,若AD=2,BC=8,BD=6,求(1)对角线AC的 长。(2)梯形的面积。

梯形

解: AC于BD交接点为O 设OC=x,OA=y,OD=z,则BO=6-y,三角形而AOD以AD为底得高h1,三角形BOC以BC为底的高h2.,因为AC垂直BD,AD=2,BC=8,BD=6。故AOD和BOC都为直接三角形,根据面积法得出两个①等式三角形AOD(2h1=yz),②三角形BOC(8h2=(6-z)x).③三角形BDC(6x=8(h1+h2))根据勾股定理求的2个等式,④y^2+z^2=4,⑤x^2+(6-z)^2=64 ,由①②③解得x=4y,通过这个x,y的关系带入④⑤可以解得z=6/5,y==8/5,x=32/5,h1=24/25,h2=96/25 ,故梯形的高位 24/5。则 AC=8.梯形面积为(2+8)*24/5*1/2=24在-44,-43,-42,…0,1,2,3,…202_,202_ 这一串连续整数中,前100个数的和是多少?方法一 解:前100个数的和=-(1+2+----------------------+44)+(0+1+2+3+-----------------+55)

=-(1+44)*44/2+(1+55)*55/2=550方法二 解:前100个数的和

已知p[-1,2],点p关于x轴的对称点p1,关于直线y=-1的对称点为p2,关于直线y=3的对称点为p3,关于直线y=a的对称点为p4,分别写出p1,p2,p3,p4的坐标,从中你发现了什么规律?选择题 给出任意个选项,再把正确答案的序号填在括号里,而不是正确答案,但自己首先要算出正确答案,再把正确选项的序号填在括号里。(一般在答题卡是涂

“A”,“B”,“C”或“D”)例如:x+y=3 2x=y x=(1)y=(2)A1;2 B2;1 C0;0 D无解

要看清楚是不是直接写得数,如果是,就不能写过程,不是直接写得数的要写出过程,初学者过程要求详细,学的时间久些就可以适当简略些。记得要写“解”(特别是解方程),在考试时这样的题目因为解失分很不值,也要尽量不让它失分。

算完再验算一下。直接将得数代入即可。

没有太多规律,可能是图形,也可能是统计图,但是重点还是7个字:审好题,反复检查。应用题在数学上,应用题分两大类:一个是数学应用。另一个是实际应用。数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。实际应用也就是有关于数学与生活题目。初中一年级学生刚刚进入少年期,机械记忆力较强,分析能力仍然较差。鉴此,要提高初一年级数学应用题教学效果,务必要提高学生的分析能力。这是每一个初一数学老师值得认真探索的问题。笔者在应用题教学中采用以下分析方法,取得了较好的效果。应用题主要是把正确的答案用不同的方法解决出来,并写出解题过程,多做这样的题目可以让人们的思维变得更好。注意要写答句和单位!

第五篇:八年级几何证明题

八年级证明题一

八年级几何证明题

1、已知:在⊿ABC中,AB=AC,延长AB到D,使AB=BD,E是AB的中点。求证:CD=2CE。

C2、已知:在⊿ABC中,作∠FBC=∠ECB=

12∠A。求证:BE=CF。

B3、已知:在⊿ABC中,∠A=900,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR

∥CA交BA于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。

C

B

八年级证明题一2-

6、已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MA⊥NA。

C7、已知:如图(1),在△ABC中,BP、CP分别平分∠ABC和∠ACB,DE过点P交AB于D,交AC于E,且DE∥BC.求证:DE-DB=EC.

A

D

BP图⑴EC8、△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点,就下面给出的三种情况,如图8中的①②③,先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度.并利用图③证明你的结论.

八年级证明题一-3-

① ② 图8 ③

9、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。

(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);

(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。

10、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,求证:CE=DE11、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。

12、如图,在ΔABC中,AD平分∠BAC,DE||AC,EF⊥AD交BC延长线于F。求证: ∠FAC=∠B

A M B(第9题图)

F

八年级证明题一

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jingpin/14/2491687.html

相关内容

热门阅读

最新更新

随机推荐