第一篇:考研数学31种必考题型总结
对于套路我在说一下,还是很多人不明白这是干什么的:一句话来说就是在知识点掌握程度相同的情况下,能够最大程度的考高分。考高分的原理有两点:
一、保证自己会的题目拿到分,二、保证自己会的知识点拿到分。下面我分别解释一下。对于第一条,这个是说的考场上,如果卷子上标着题目难以程度的话很多人都可以考到130+,但是这些人很多都会考的很低甚至只有80来分,这个原因很简单那,但是没人告诉过大家原因,考研数学的难题不一定在最后,并且一定不是在最后,比如2014年的第一题就非常的不简单【我考研那年】,但是大家不知道这个题难啊,就会花很多时间去做,然后就会乱了阵脚,会做的也不会做了,甚至会做的题还没来得及做就已经交卷了,90%的人的时间是远远不够的,与之对应的是套路总结中的做题方法:首先标上题号,这些题就是套路总结中的题(大概会有17道左右,分值110分左右),先做这些题,先把这110分快速拿到,最起码已经有了一个保底分,还有这些题目课不一定就是简单题,只是相对大家来说变成了简单的送粉题,但是计算过程不一定简单。
二、什么是保证会的知识点拿分? 很多人尤其是女生,这里当然不是针对女生,只是这是一个事实,很多女生复习的时候非常认真,知识点掌握的也好算不错,但是考的成绩很多都不理想,原因何在? 紧张是一个原因,还有一个是看不出这个题在考什么,如果把这个题考察的10个知识点都拿出来,她可能都会,但是这个题不一定会做,原因就是拿到题蒙了,看不出考察什么知识点,结果肯定是拿不到高分。套路总结(只是叫这个名字),其实就是一个分类之后再细分的一个过程,比如:
一、看到了求最大最小值,那肯定就是求函数的极值了,那么这个就是--题型2~求极值,接着在判断是一元函数求极值还是二元函数求极值,判断出来之后按照步骤1.2.3.4求解,结果发现他既不是一元函数求极值也不是二元函数求极值,他是带微分方程的求极值,那就解微分方程,之后再看是一元函数还是二元函数,,思路非常清晰
二、求矩阵,这个一定是100%会考的,看到关键字求矩阵A,或者求A,我们立刻就能判断出这个是求矩阵,也就是线代题型9,求矩阵的题目总共有几种形式呢? 根据历年真题发现无非就4种,当然有的求矩阵是考了十几年,对于AB= C,已知AC求B的有固定的方法,已知A、B、C和等式X + AX+ BXC= E,求X的又是一种,求X也有固定的方法,,当然还有好几种求矩阵的,其他的很多题型都是至少两年考一次,甚至是每年必考的,如果某年的线代没有考: { 求解不含参数的方程组、求解含参数的方程组、已知解的类型求参数、证明两个矩阵相似、已知相似求参数、化二次型为标准形、证明标准形、求某矩阵、证明线性相/无关 } 这十种题,那估计就难死命题老师了,除了这些真的没什么可考的了。附上套路总结中的题型:
套路高数包含:求函数的极限、求极值、与微分方程有关的题、与二重积分有关的题、求面积、求旋转体体积、已知一极限求另一极限、基本定理证明、求渐近线、求实根个数、证明不等式(大体来讲,一共11种题型,每种题型里面又有无数的细分,比如求极值,我会分为一元函数极值和二元函数极值,一元里面再细分有几种出题形式等等)。AIRFLY 4:27:46 套路概率包括:求矩估计、求最大似然估计、求分布律(求概率分布)、已知分布律求概率、求数学期望、求方差、求相关系数、求协方差、已知联合概率密度函数求边缘条件以及概率、求分布函数(共10种,每种中都会再细分很多,都是近30年历年真题中我总结出来的,套路书中每一道题都是真题)AIRFLY 4:30:11 套路线代包括:求解不含参数的方程组、求解含参数的方程组、已知解的类型求参数、证明两个矩阵相似、已知相似求参数、化二次型为标准形、证明标准形、求某矩阵、证明线性相/无关(共10种)
最后再来一句话,套路总结:
一个是常考题型(不包括所有题型),这些算是高频考点,有几个甚至是必考的考点,二是通过梳理,能够完全掌握这些题,从而变成送分题。
这个不算是补充,因为写在刚才的那段里面,很多人会忽略这一条,这个也是最为重要的,这套总结不是捷径,大的前提是知识点已经掌握,拿到题,知道第一步求导,结果求导不会,那只能干着急。这个总结是在知识点已经掌握了的基础之上的一个“基础”,总结题型+总结做题步骤也是“基础”,也算是基本功,相当于自己平时做练习时已经把2017的真题步骤提前写好了。英语也是一样,你到了考场上再去构思作文,那就傻眼了,对于一定会用到的句子或者是很大几率会用到的句子,一定是在平时就已经写好了,就跟高中的作文一样: 牛顿怎么了,爱因斯坦怎么了,司马迁怎么了重视基础!!
整体的学习顺序是:知识点---套路---真题
高分攻略链接:链接:http://pan.baidu.com/s/1skTu2zb 密码:wao7
知识点链接:链接:http://pan.baidu.com/s/1jIhLRE2 密码:9wkd 套路总结链接:链接:http://pan.baidu.com/s/1dF2oOTF 密码:a4qq 真题链接:链接:http://pan.baidu.com/s/1kVbElZh 密码:dcw8
整体复习规划:前面提高复习效率:链接:http://pan.baidu.com/s/1jItrjXc 密码:4r9k
重视基础!!重视基础!!
第二篇:考研数学必考题型
进了六月份,这个一年中最热的季节,考研备考者的复习也进行得如火如荼。虽然天气炎热,虽然备考压力巨大,但复习中一定要保持清楚的头脑,特别对于考研数学的复习。数学不仅需要严密的逻辑思维,还需要灵活的处理手法,更需要善于总结的习惯。考研数学专业老师分析了近年考试真题与大纲,深入研究了硕士教育对于考生数学素养的要求,总结出2012考研高等数学考试会重点考查的六大题型,供备考者复习参考。
第一:求极限。
无论数学
一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因子、重要极限等中的几种方法,有时考生需要选择其中简单易行的组合完成题目。另外,分段函数个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!
第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式。
证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个微分中值定理,1个积分中值定理;
不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用是一个难点,但考查的概率不大。第三:一元函数求导数,多元函数求偏导数。
求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。
第四:级数问题。
常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。第五:积分的计算。
积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数学考生来说常主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想像能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的反用,对称性的使用等。
第六:微分方程问题。
解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。
这六大题型可以说是考试的重点考查对象,考生可以根据自己的实际情况围绕重点题型复习,争取达到高分甚至满分!
第三篇:小升初数学必考题型
一、填空题。
(必考、易考题型)1、求近似值改写用“万”、“亿”做单位或省略“万”、“亿”后面的尾数或“四舍五入”以及数的组成(必然出现一种)
典型题
(0)七千零三十万四千写作(),改写用“万”做单位的数是(),省略“万”后面的尾数是()。
(1)5个1,16个1/100组成的数是()。
(2)第五次全国人口普查结果,全国总人口为十二亿九千五百三十三万,这个数写作(),四舍五入到亿位约是()。
(3)0.375读作(),它的计数单位是()。
(4)付河大桥投资约36250万元,改写成用“亿”作单位的数是()亿。
(5)用万作单位的准确数5万与进似数5万比较,最多相差()。
(6)由三个百、六个一、七个十分之一、八个万分之一组成的小数是(),保留两位小数约是()。
2、找规律 可能考
典型题
找规律:1,3,2,6,4,(),(),12,……
(2)一列客车和一列货车同时从甲乙两地相对开出,已知客车每小时行驶55千米,客车的速度与火车的速度的比是11:9,两车开出后5小时相遇,甲乙两地相距多少千米?
(3)甲、乙两列火车同时从相距540千米的两城相对开出。甲、乙两车的速度比是4:5,甲车每小时行60千米,经过几小时两车能相遇?
3、中位数、众数或平均数(必考一题)
典型题
(1)六(3)班同学体重情况如下表
体重/千克
人数
上面这组数据中,平均数是(),中位数是(),众数是()。
(2)甲乙丙三个偶数的平均数是16,三个数的比是3:4:5,甲乙丙三个偶数分别是()、()、()。
(3)有三个数,甲乙两数的平均数是28.5,乙丙两数的平均数是32,甲丙两数的平均数是21,那么甲数是(),乙数是()。
4、负数正数有 可能考
典型题
(1)0、0.9、1、-1、4、103、-320七个数中,()是自然数,()是整数。
(2)月球的表面白天的平均气温是零上126摄氏度,记作()摄氏度,夜间平均气温是零下150摄氏度,记作()摄氏度。
5、倒数 可能考
典型题
(1)一个最小的质数,它的倒数是作()。
(2)6又5/7的倒数是(),()的倒数是最小的质数。
6、最简比及比值 可能考
典型题
(1)3/4与0.125的最简整数比是(),比值是()。
(2)一个小圆的直径和大圆的半径都是4厘米,大圆与小圆的周长的最简整数比是(),面积的最简整数比是()。
7、因数倍数 必考一题(重点考质数、合数、偶数、奇数、互质数、最大公因数、最小公倍数)。
典型题
(1)5162至少加上(),才能被3整除。
(2)互质的两个数的最小公倍数是390,如果这两个数都是合数,则这两个数是()和()。
(3)两个数都是合数,又是互质数,它们的最小公倍数是120,这两个数分别是()和()。
(4)145□,要使得它能被3整除,□里填的数字()。
(5)三个质数的积是273,这三个质数的和是()。
(6)在1~30这些自然数中,既不是3的倍数也不是4的倍数的数有()个。
(7)在1、2、4、9、11、16等数中,奇数有(),偶数有(),质数有(),合数有(),既是奇数又是合数的数是(),既是偶数又是质数的数是()。
(8)24和30的最大公因数是(),最小公倍数是()。
(9)a与b是互质数,则a与b的最大公因数是(),最小公倍数是()。
(10)一个分数的整数部分是自然数中既不是质数也不是合数的数,分数部分的分子是偶数中的质数,分母是10以内的奇数中的合数,这个数是()。
(11)8752至少加上(),才能被2、3、5整除。
8、量与计量(单位互化)必考一题
典型题
(1)2.5米=()厘米 1080千克=()吨 4800毫升=()升=()立方分米
(2)3.6千克=()克 5千米90米=()千米
(3)6吨500千克=()千克
(4)4.3时=()时()分
(5)45分=()时
1.05立方分米=()毫升
9、数(小数、分数)比较大小。
典型题
在1/6、4 /25、16、16.7%这些数中,()最小。
10、分数、小数、百分数及比的互化必考一题。
典型题
(1)()÷32=15/()=0.625=()%=():().(2)12.5%=2/()=1:()=3÷()=()小数
11、三角形的性质、三边关系、周长、面积计算可能考一道
(三角形面积重点考:1.等底等高的三角形,面积相等;2.底相等,高成倍数关系,面积也成倍数关系 或 高相等,底成倍数关系,面积也成倍数关系;3、两个三角形等底时,它们的面积之和等于底乘以它们高之和除以2;两个三角形等高时,它们的面积之和等于高乘以它们底之和除以2。)
典型题
(1)一个直角三角形的三条边的长度分别是5厘米、4厘米、3厘米,它的面积是()。
(2)如图所示,ABFE和CDEF都是长方形,AB是6厘米,BC是4厘米,则图上阴影部分的面积是()。
(3)一个三角形中,三个角的度数分别是45度、44度、91度,这是个()三角形。
12、图形计数 必考一道
典型题
(1)图中共有()三角形。
(2)锐角AOB中有5条从定点引出的射线(如图所示),图中共有()个角。
13、鸡兔同笼 必考一题
典型题
(1)在一次环保知识抢答赛中,按规定答对一题加10分,答错一题扣6分,一名选手抢答了16题,最后得分为16分,他答对了()道题。
典型题:
(1)甲乙两地相距624千米,一列客车和一列货车同时从两地相向开出,客车的速度是每小时65千米,货车的速度与客车速度的比是11:13,两车开出后几小时相遇?
(2)蜘蛛和蜻蜓共28只,每只蜘蛛8条腿,每只蜻蜓6条腿,共有194条腿,蜘蛛有()只,蜻蜓有()只。
14.圆的有关计算
典型题
(1)如果小圆的半径是大圆半径的一半,那么小圆的面积是大圆面积的()%
(2)把三段横截面半径同为2厘米的圆钢焊接起来成为一段后,它的表面积比原来减少了()平方厘米。
(3)如果一个圆的周长是2πr,这个圆的半圆的周长是()。
15.比例尺。必考一题
典型题
(1)一副图上的数值比例尺是1:4000000,把它改成一条直线比例尺,1厘米相当于实际距离()km.。
(2)在比例尺是5:1的平面图上,量得一个零件长15厘米,这个零件的实际长度是()毫米。
16.裁剪图形问题。
典型题
16、一块长1米20厘米,宽90厘米的铁皮,剪成直径是30厘米的圆片,最多可以剪成()块。
17.关于方程思想。
典型题
公司准备包一辆大客车送家在外地的员工回家过年,包车费是固定的,根据外地员工数统计,每人需付15元。后来知道有6人不会去,这样每人需多付3元,包车费是()元。
18.关于二倍原则性及平均分
典型题
小明、小军、小红三人出一样多的钱买了一些苹果,分时小明、小军各多分了6㎏,每人就补小红14元。每千克苹果()元。
19.抽屉原理 必考一题
典型题
(1)一副扑克牌有四种花色(大小王除外),每种花色有13张,从中任意抽牌,最少抽()张牌,才能保证4张牌是同一花色的。
(2)把红黄蓝白四种颜色的球各10个放到一个袋子里,至少取()个球,可以保证取到两个颜色相同的球;至少取()个球,可以保证取到的球有两种颜色。
20.字母表示数有 可能考
典型题
小英今年a岁,爸爸的年龄比小英的4倍大2岁,爸爸的年龄用一个式子表示是()岁。
21.判断是否成比例及比例的性质 必考一题
典型题
(1)一种农药是由药液和水按1:400配成的,现有药液1.2 ㎏,应加水()㎏。
(2)在比例中,两个内项互为倒数,其中一个外项是1又7/9,另一个外项是()。
(3)分数的值一定,分子和分母成()比例。
(4)在一个比例中,两个内项互为倒数,其中一个外项是2/5,另一个外项是()。
(5)当()一定时,()和()成反比例。
(6)被减数、减数、差的和,再除以被减数,商是();被减数、减数、差的和是72,减数与差的比是4:2,减数是()。
(7)比例的两外项之积减去两内项之积,差是()。
22.什么率
典型题
六(3)班今天到校47人,请假3人,出勤率是()。
23.列车过桥
典型题
15辆汽车排成一列通过一个隧道,前后两辆车之间都保持2米的距离,隧道长180米,每辆汽车长5米。从第一辆车头到最后一辆车尾共长()米
24.现价与原价问题关系的计算(重点考打折扣问题)
典型题
(1)一种商品降价10元后售价为40元,降低了()%。
(2)某商品先降价1/10,要恢复成原价,应提价()。
25.求每份数和分数 必考一题
典型题
(1)把4米长的钢条平均分成7段,每段占全长的(),每段长()米。
(2)一车石油重4吨,平均分给5个商店出售,平均每个商店分得这车油的()/(),平均每个商店分得()吨。
26.商,倍数关系,比,除法关系,分数关系的灵活转化 必考一题
典型题
(1)甲数除以乙数的商是1又1/(),甲数与乙数的比是()。
(2)已知a是b 的4倍,那么a:(a+b)=().(3)男生是女生的4/5,女生人数占全班人数的()。
(4)六(1)班男生人数和女生人数的比是5:3,女生是男生人数的()%,男生占全班的()%。
27.多边形角度计算
典型题
一个三角形的内角和是180度,一个七边形的内角和是()度。
28.图形(正方体和长方体)的拼图,切图,表面积的变化及体积的计算
典型题
(1)用两个长5厘米,宽4厘米,高3厘米的长方体,拼成一个表面积最大的长方体,拼成后的长方体表面积比原来两个长方体的表面积少()平方厘米
(2)用9个1平方分米的小正方体拼成一个大正方体,这个大正方体的边长是()米。
(3)三个完全一样的长方体拼成一个正方体,其中一个长方体的表面积与这个正方体的表面积的比是()。
29.植树问题(略)
30.列举法
典型题
(1)用1、2、3、4可以组成()没有重复数字的四位数。
(2)恰有两位数字相同的三位数共有()个。
31.()比a多或少n/m,a比()多或少n/m,a是()的n/m,()是a的n/m,b比a多或少()% 必考一题
典型题
8米比()米少20%,比10吨多3/4是()吨。
32.身份证辨别男女及出生年月日 可能考
典型题
某人的身份证号为:511126************,他的生日是()。
33.对称轴,旋转,平移 必考一题
典型题
等边三角形有()条对称轴,正方形有()条对称轴,圆有()条对称轴。
12:24:14
34.可能性
典型题(抽奖问题)
35、按比例分配
典型题
35、一个长方体棱长总和是36厘米,长、宽、高之比是4:3:2,这个长方体的体积是()。
36、圆柱与圆锥(重点考1、等底等高时,圆柱的体积是圆锥的3倍,2、等底等体积时,圆柱的高是圆锥的1/3,3、等高等体积时,圆柱的底面积是圆锥的1/3)
典型题
一个圆柱和一个圆锥等底等高,它们的体积和是100立方厘米,体积的差是()立方厘米。
37工程问题
典型题
给一个水池注水,1.5小时能注入水池的2/5,()小时()分可以注满水池。
38、图示法
典型题
一个长方形的长和宽各增加10厘米后,它的面积就增加300平方厘米,原来这个长方形的周长是()厘米。
39、时钟问题
典型题
钟面上分针旋转三周,时针旋转()度。
40、正方体或长方体里削最大的圆柱或圆锥
典型题
把一个棱长4厘米的正方体削成一个最大的圆柱体,圆柱体的体积是()立方厘米。
二.判断题
1.圆柱与圆锥体积1/3的关系条件:等底等高
2.A比B多1/3,那么B 比A少1/3。……(×)
3.什么率,达标率小于等于百分之百
4.假分数大于或等于1的变式问题
5.百分数不能带单位
6.众数可有多个,也有可能没有。
7.比1/7(2.13)小,比1/9(2.15)大的分数(小数)有无数个
8.圆周率
9.周长和面积相等,表面积和体积相等……(×)
10.A×1/5等于B×1/8,因此A大于B……(×)
11.判断直径,半径,周长之间关系的条件必须在同圆或等圆中(判断是直径的条件一必须通过圆心,二必须两端在圆上的线段。)
12.0既不是正数也不是负数
13.两数相除商一定小于两数之积。……(×)
14.互质数的可能性及一定性
15.正方体扩大倍数,表面积,平方倍数,体积扩大立方倍,圆:r、c、d扩大倍数一样,面积扩大平方倍。圆柱:r、c、d扩大倍数一样,体积扩大平方倍。
16.基本性质(0除外)
17.分数化成有限小数的条件:(1)分数一定是最简分数(2)分母中只有2和5
12:24:12
三.选择题
1.线段,射线,直线的性质
2.判断成比例
3.三角形的面积由高和底决定
4.A:B:C=1:1:1是()三角形,A:B:C=1:2:3,是()三角形,A:B:C=1:1:2是()三角形
5.字母代表数
6.植树问题。(重点变式考锯木,上电梯,敲钟问题)
7.组成比例的条件
8比较大小()最大
例: A×3/5 A÷1又3/5 A÷3/5
9.盐和盐水的比
10.最优化问题,如:烤饼
11.判断能否化成有限小数的条件
12.一个数的倒数与它本身的关系
13.圆柱与圆锥(重点考1、等底等高时,圆柱的体积是圆锥的3倍,2、等底等体积时,圆柱的高是圆锥的1/3,3、等高等体积时,圆柱的底面积是圆锥的1/3)
14.三角形的面积
15.(1)两根同样长的绳子,第一根剪掉它的1/3,第二根剪掉1/3米,剩下的()根长。
A 第一根 B 第二根 C 一样长 D 无法确定
(2)、一根绳子,第一次剪掉它的1/3,剩下的与剪掉的长度()
A 剩下的长 B 剪掉的长 C 一样长 D 无法确定
解答题:
四、计算题
1.直接写出得数
2.求未知数X
3.计算下列各题,怎样简便就怎样算。
4.列式计算怎样简便就怎样算
5.求阴影部分面积(圆与多边形,圆柱,三角形与多边形)
五.作图及操作题
(1)作对称轴,旋转后的另一部分,平移
(2)在正方形里画最大的圆
(3)位置与方向
六.应用题
1.列方程解应用题
典型题:
五年级同学加科技小组的有17人,比参加文艺小组人数的2倍少7人,参加文艺小组的有多少人?(列方程解)
2.行程问题(重点考相遇)与比例问题
(1)已知:路程、相遇时间、速度比,求大速度和小速度
(2)已知:路程、速度比、小(大)速度,求相遇时间
(3)已知:速度比、距中点相遇的距离,求路程
(4)已知:小(大)速度、速度比、相遇时间,求路程
(5)已知:速度比、相遇时快车比慢车快的距离,求路程
3)从以上信息中,你还能提出什么问题?
(6)一批货物第一天运走2/5,第二天运走的比第一天少六吨,还剩下36吨,这批货物原来有多少吨?
(7)某炼油车间4天共炼油20吨,第一天炼油4吨是第二天的80%.那么,后两天平均每天炼油多少吨?
12:24:13
3.分数乘除问题
(1)求一个数的几分之几是多少
(2)已知一个数的几分之几是多少,求这个数
(3)“1”的量×分率=分率对应的量
(4)数量÷数量对应的分数=“1”的量
典型题:
(1)五年级同学收集了165个易拉罐,六年级同学比五年级同学多收集了-2/11,问六年级收集了多少个易拉罐?
(2)买玩具,有优惠卡可打8折,我用优惠卡买了这个玩具,节约了21元,如果没有优惠卡,买这个玩具要多少元?
(3)小明看以本小说,第一天看了全书的1/8还多16页,第二天看了全书的1/6少2页,还有20 页没有看,问这本书有多少页?
(4)加工一批零件,第一天完成的个数占零件总个数的1/3,如果第一天能够完成30个就可以完成这批零件的一半,这批零件有多少个?
(5)文成县境内水利资源丰富,水能蕴藏约50万千瓦,可开发资源约为42万千瓦,居温州第一位,浙江省第五位,现已开发78.5%.其中飞云江水能资源最为丰富,珊溪水利工程发电厂的总装机容量就达20万千瓦,年发电量约为3.55亿千瓦时。1)珊溪水利工程发电厂的总机容量约占文成县可开发水能资源的百分之几?
2)文成县水能资源可开发的但未开发的约多少万千瓦?
3)从以上信息中,你还能提出什么问题?
(6)一批货物第一天运走2/5,第二天运走的比第一天少六吨,还剩下36吨,这批货物原来有多少吨?
(7)某炼油车间4天共炼油20吨,第一天炼油4吨是第二天的80%.那么,后两天平均每天炼油多少吨?
(8)在为灾区儿童捐款助学的活动中,六一边捐款112元,比六二班捐款数少1/8,六二班捐款多少元?
4.长方体、正方体、圆柱、圆锥的应用题
典型题:
(1)小丽家有一个长方体玻璃缸,小丽从里面量长时40厘米,宽25厘米,小丽给里面加水,使水深为20厘米,然后将石块浸没在水中,这时小丽量的水深为22.5厘米。你能根据这些信息求出石块的体积吗?
(2)公园里修一个圆形水池,直径为10米,深2米,1)这个水池占地面积是多少?2)要挖成这个水池要挖土多少立方米?3)在水池内侧和底抹一层水泥,水泥面积是多少平方米?
(3)一段方钢长2分米,横截面是正方形,把它锯成相等的3份后,表面积比原来增加了16平方米,原方钢的体积是多少?
5.比与分数综合题(抓住“1”不变量即分母不变)
(1)调动问题:调动前后相差数量÷调动前后相差数量对应的分率=1”的量
典型题:
(1)学习图书馆的图书借出总数的11/15后,又买了240本,这时图书馆里的书和原来的书的本书的比是1:3,学校原来有图书多少本?
(2)小红看一本书,第一天看了24 页,第二天看了全书的25%,这时已看的和没有看的比是7:5,这本书共有多少页?
(3)一个三角形,三条边长的比是3:4:5,最长的一条边比其余两条边长的和短12厘米,这个三角形的周长是多少?
(4)甲乙两个车间,甲车间人数占两个车间总人数的5/8,如果从甲车间抽调90人到乙车间后,则甲、乙两车间人数比是2:3,原来两个车间各有多少人?
(5)文成县境内水利资源丰富,水能蕴藏约50万千瓦,可开发资源约为42万千瓦,居温州第一位,浙江省第五位,现已开发78.5%.其中飞云江水能资源最为丰富,珊溪水利工程发电厂的总装机容量就达20万千瓦,年发电量约为3.55亿千瓦时。1)珊溪水利工程发电厂的总机容量约占文成县可开发水能资源的百分之几?
2)文成县水能资源可开发的但未开发的约多少万千瓦?
第四篇:会计证必考题型
《会计基础》案例分析题重点考试内容
《会计基础》练习册页数:
1、银行余额调节表的编制:P28
四、综合题
(一)(二)
(三)2、资产负债表项目的计算:P
32四、(一)
(二)(三)
(八)3、利润表项目的填制:P3
4(四)
(五)(六)
(七)4、填写试算平衡表:P11
四、(三)P56
四、(一)
5、会计分录:P46
四、综合题
(一)至(十六)
《财经法规》重点考试内容
1、第一章:《会计法》回避制度会计交接 会计档案 会计从业资格 岗位设置
练习册P9回避制度 :案例分析题
(九)会计交接、会计档案:
(三)(七)
(十三)(十五)(十六)
代理记账:(十七)
会计法律责任:
(二)(十)
(十一)(十二)(十七)
2、第二章:《银行结算法》支付结算的基本原则 填写结算凭证的要求 现金使用的范围
银行账户的分类、使用范围及开户要求票据结算方式、银行卡的种类
练习册P25支票
(一)(七)
银行汇票、银行承兑汇票:
(二)票据、银行账户:
(三)(五)
信用卡:
(九)3、第三章:《税收征管法》增值税、消费税、营业税、关税、所得税的计算及征收管理
税收检查及法律责任
练习册P38案例分析题税务登记管理:
(一)(六)
营业税:
(一)(六)增值税:
(五)(八)企业所得税:
(七)(十)个税:
(九)计算题 增值税:
3、6增值税+消费税:1、2、5
增值税+消费税+关税:4、74、第四章:《支付结算法》预算法 政府采购的方式 国库集中支付制度
P53 预算法:
(一)(四)
(六)(七)政府采购:
(三)国库单一账户体系:
(二)(五)
5、第五章:《职业道德》:会计八项职业道德规范的内容会计职业道德及修养
P68 会计职业道德规范:
(二)至
(十)会计职业道德及修养:
(一)
第五篇:2009必考行测数学运算经典题型总结训练
2009必考行测数学运算经典题型总结训练
一、容斥原理
容斥原理关键就两个公式:
1.两个集合的容斥关系公式:A+B=A∪B+A∩B
2.三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
请看例题:
【例题1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是()
A.22 B.18 C.28 D.26
【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50; A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。答案为A。
【例题2】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问两个频道都没看过的有多少人?
【解析】设A=看过2频道的人(62),B=看过8频道的人(34),显然,A+B=62+34=96;
A∩B=两个频道都看过的人(11),则根据公式A∪B= A+B-A∩B=96-11=85,所以,两个频道都没看过的人数为100-85=15人。
二、作对或做错题问题
【例题】某次考试由30到判断题,每作对一道题得4分,做错一题倒扣2分,小周共得96分,问他做错了多少道题?
A.12 B.4 C.2 D.5
【解析】
方法一
假设某人在做题时前面24道题都做对了,这时他应该得到96分,后面还有6道题,如果让这最后6道题的得分为0,即可满足题意.这6道题的得分怎么才能为0分呢?根据规则,只要作对2道题,做错4道题即可,据此我们可知做错的题为4道,作对的题为26道.方法二
作对一道可得4分,如果每作对反而扣2分,这一正一负差距就变成了6分.30道题全做对可得120分,而现在只得到96分,意味着差距为24分,用24÷6=4即可得到做错的题,所以可知选择B 排列组合的常见题型及其解法(有解析答案)
一.特殊元素(位置)用优先法
把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1.6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?
分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
元素分析法
因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有 4种站法;第二步再让其余的5人站在其他5个位置上,有120 种站法,故站法共有: 480(种)
二.相邻问题用捆绑法
对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2.5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?
解:把3个女生视为一个元素,与5个男生进行排列,共有 6x5x4x3x2种,然后女生内部再 1 进行排列,有 6种,所以排法共有: 4320(种)。
三.相离问题用插空法
元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3.7人排成一排,甲、乙、丙3人互不相邻有多少种排法?
解:先将其余4人排成一排,有 4x3x2x1种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有5x4x3 种,所以排法共有:1440(种)四.定序问题用除法
对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有 种,个元素的全排列有 种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有 种排列方法。
例4.由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?
解:不考虑限制条件,组成的六位数有 C(1,5)*P(5,5)种,其中个位与十位上的数字一定,所以所求的六位数有:C(1,5)*P(5,5)/2(个)
五.分排问题用直排法
对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。
例5.9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?
解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有P(9,9)种。
六.复杂问题用排除法
对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。在应用此法时要注意做到不重不漏。
例6.四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有()
A.150种
B.147种
C.144种
D.141种
解:从10个点中任取4个点有C(4,10)种取法,其中4点共面的情况有三类。第一类,取出的4个点位于四面体的同一个面内,有4xC(4,6)种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。以上三类情况不合要求应减掉,所以不同的取法共有: C(10,4)-4*C(6,4)-6-3=141种。
七.排列、组合综合问题用先选后排的策略
处理排列、组合综合性问题一般是先选元素,后排列。
例7.将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?
解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,1),(1,2,1),分成三组之后在排列共有: 6(种),第二步将这三组教师分派到3种中学任教有p(3,3)种方法。由分步计数原理得不同的分派方案共有:36(种)。因此共有36种方案。
八.隔板模型法
常用于解决整数分解型排列、组合的问题。
例8 有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?
解:6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,将5个隔板插入9个空,每一种插法,对应一种分配方案,故方案有:C(5,9)种 两集合问题快捷通解公式
【 国2006一类-42】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人
A.27人
B.25人
C.19人
D.10人
上题就是数学运算试题当中经常会出现的“两集合问题”,这类问题一般比较简单,使用容斥原理或者简单画图便可解决。但使用容斥原理对思维要求比较高,而画图浪费时间比较多。鉴于此类问题一般都按照类似的模式来出,下面给出一个通解公式,希望对大家解题能有帮助:
“满足条件一的个数”+“满足条件二的个数”-“两者都满足的个数”=“总个数”-“两者都不满足的个数”
例如上题,代入公式就应该是:40+31-x=50-4,得到x=25。
【国2004A-46】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是多少
A.22
B.18
C.28
D.26 代入公式:26+24-x=32-4,得到x=22 【国2004B-46】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都及格的有22人,那么两次考试都没有及格的人数是多少
A.10
B.4
C.6
D.8
【山东2004-14】某班有50名学生,在第一次测验中有26人得满分,在第二次测验中有21人得满分。如果两次测验中都没有得满分的学生有17人,那么两次测验中都获得满分的人数是多少?
A.13人
B.14人
C.17人
D.20人
【广东2005下-8】有62名学生,会击剑的有11人,会游泳的有56人,两种都不会用的有4人,问两种都会的学生有多少人?
A.1人
B.5人
C.7人
D.9人
【广东2006上-11】一个俱乐部,会下象棋的有69人,会下围棋的有58人,两种棋都不会下的有12人,两种棋都会下的有30人,问这个俱乐部一共有多少人?
A.109人
B.115人
C.127人
D.139人
【北京社招2007-18】电视台向100人调查昨天收看电视情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问,两个频道都没有看过的有多少人?
A.4
B.15
C.17
D.28
【山东2003-12】一个停车场有50辆汽车,其中红色轿车35辆,夏利轿车28辆,有8辆既不是红色轿车又不是夏利轿车,问停车场有红色夏利轿车多少辆? A.14
B.21
C.15
D.22
【国2004B-46】
B
【解析】26+24-22=32-x
=> x=4 【山东2004-14】
B
【解析】26+21-x=50-17
=> x=14
【广东2005下-8】
D
【解析】11+56-x=62-4
=> x=9 【广东2006上-11】
A
【解析】69+58-30=x-12
=> x=109 【北京社招2007-18】
B
【解析】62+34-11=100-x
=> x=15
【山东2003-12】
B
【解析】35+28-x=50-8
=> x=21
新方法处理有关牛吃草问题。
例1 牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?
分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量.
设1头牛一天吃的草为1份.那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完.前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出 3 的草,后者是原有的草加10天新长出的草.
200-150=50(份),20-10=10(天),说明牧场10天长草50份,1天长草5份.也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草.由此得出,牧场上原有草
(10-5)×20=100(份)
或(15-5)×10=100(份).
现在已经知道原有草100份,每天新长出草5份.当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天).
所以,这片草地可供25头牛吃5天.
在例1的解法中要注意三点:
(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.
(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.
(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.
例2 一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?
分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似.
出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水.因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题.
设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量.两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是
水管排原有的水,可以求出原有水的水量为
解:设出水管每分钟排出的水为1份.每分钟进水量
答:出水管比进水管晚开40分钟.
例3 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?
分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少.但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量.
设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草
(20+10)×5=150(份).
由150÷10=15知,牧场原有草可供15头牛吃10天,寒冷占去10头牛,所以,可供5头牛吃10天.
例4 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?
分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题.
上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度.男 4 孩5分钟走了20×5=100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级.由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有
(20+10)×5=150(级).
解:自动扶梯每分钟走
(20×5-15×6)÷(6-5)=10(级),自动扶梯共有(20+10)×5=150(级).
答:扶梯共有150级.
例5 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?
分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.
旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客.
设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分 钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客
(4×30-5×20)÷(30-20)=2(份).
假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为
(4-2)×30=60(份)或(5-2)×20=60(份).
同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要
60÷(7-2)=12(分).
例6 有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?
分析与解:例1是在同一块草地上,现在是三块面积不同的草地.为了解决这个问题,只需将三块草地的面积统一起来.
[5,6,8]=120.
因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.
因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.
120÷8=15,问题变为:120公顷草地可供19×15=285(头)牛吃几天?
因为草地面积相同,可忽略具体公顷数,所以原题可变为:
“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?”
这与例1完全一样.设1头牛1天吃的草为1份.每天新长出的草有
(240×14-264×10)÷(14-10)=180(份).
草地原有草(264-180)×10=840(份).可供285头牛吃
840÷(285-180)=8(天).
所以,第三块草地可供19头牛吃8天
植树问题常见的几种类型 在一段直线上植树,两端都植树,则棵树=段数+1 在一段直线上植树,两端都不植树,则棵树=段数-1 在一段直线上植树,一端植树,则棵树=段数
在一段封闭曲线上植树,棵树=段数
具体题目如下
1.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株? 2.有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵?
3.有一条2000米的公路,每相隔50米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根? 4.某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?
5.有一个等边三角形的花坛,边长20米。每个顶点都要栽一棵月季花,每相隔2米再栽一棵月季花,花坛一周能栽多少棵月季花? 方阵问题
学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题).方阵的基本特点是:
①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2,②每边人(或物)数和四周人(或物)数的关系:
四周人(或物)数=[每边人(或物)数一1]×4;
每边人(或物)数=四周人(或物)数÷4+1.③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数 方阵总人数计算公式
(最外层人数/4+1)的平方的
解析如下
1.提示:由于是封闭路线栽树,所以棵数=段数,150÷3=50(棵)。
2.提示:在正方形操场边上栽树.正方形边长都相等,四个角上栽的树是相邻的两条边公有的一棵,所以每边栽树的棵数为17-1=16(棵),共栽:(17-1)×4=64(棵)
答:共栽树64棵。
3.41根。
2000÷50+1=41(根)
4.248棵。(1000÷8-1)×2=124×2=248(棵)
5.30棵。20×3÷2=30(棵)
路及其演变问题
一、问题提出
有这样的问题,如:牧场上有一片均匀生长的牧草,可供27头牛吃6周,或供23头牛吃9周。那么它可供21头牛吃几周?这类问题统称为“牛吃草”问题,它们的共同特点是由于每个单位时间草的数量在发生变化,从而导致时间不同,草的总量也不相同。
目前小学奥数辅导教材中对此类问题的通用解法是用算术方法求出每个单位时间草的变化量等于多少头牛的吃草量,再求出原有草的量等于多少头牛的吃草量,从而得出答案。这种方法在数量之间的关系换算上较麻烦,一旦题目增加难度,或与工程问题结合,转成进水排水问题,常常使人找不到解题的正确思路。如果用方程思想求解此类问题,思路可以清晰,步骤也可以明确,并形成一个通用的方法。
二、方程解题方法
用方程思路解决“牛吃草”问题的步骤可以概括为三步:
1、设定原有草的总量和单位时间草的变化量,一般设原有总量为1,单位时间变化量为X;
2、列出表格,分别表示牛的数量、时间总量、草的总量(原有总量+一定时间内变化的量)、每头牛单位时间吃草数量
3、根据每头牛单位时间吃草数量保持不变这一关系列方程求解X,从而可以求出任意时间的草的总量,也可以求出每头牛单位时间吃草数量。从而针对题目问题设未知数为Y进行求解。
下面结合几个例题进行分析:
例题1:一牧场上的青草每天都匀速生长。这片青草可供27头牛吃6周,或供23头牛吃9周。那么可供21头牛吃几周?
解:第一步:设牧场原有草量为1,每周新长草X;
第二步:列表格如下: 牛的数量272321 时间
69Y 草的总量
1+6*X1+9*X1+Y*X
根据每头牛单位时间吃草数量保持不变这一关系列方程求解X 有方程(1+6*X)/(27*6)=(1+9*X)/(23*9)
求出X 然后代到(1+9*X)/(23*9)=(1+Y*X)/21*Y 牛吃草还有多种出题方式,例如
题目演变之一(青草减少)
例题2:由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。那么,可供11头牛吃几天?
解:第一步,设牧场原有草量为1,每天减少草X;
第二步,列表如下:
牛的数量20 16 11 时间5 6Y 草的总量1-5X1-6X 1-YX
每头牛单位时间吃草数量(1-5X)/20*5(1-6X)/16*6(1-YX)/11Y
第三步:根据表格第四行彼此相等列出方程:
(1-5X)/20*5 =(1-6X)/16*6
(1)
(1-5X)/20*5 =(1-6X)/16*6
(1)
(1-5X)/20*5 =(1-YX)/11Y
(2)由(1)得到X=1/30,代入(2)得到Y=8(天)
题目演变之二(排水问题)
例题3:有一水池,池底有泉水不断涌出。要想把水池的水抽干,10台抽水机需抽 8时,8台抽水机需抽12时。如果用6台抽水机,那么需抽多少小时?
解:第一步:设水池原有水量为1,每小时泉水涌出X;
第二步:列表格如下:
抽水机数量 10 86 时间 812 Y
水的总量1+8X1+12X1+YX
每台抽水机单位时间抽水数量
(1+8X)/10*8(1+12X)/8*12(1+YX)/6Y 第三步:根据表格第四行彼此相等列出议程:
(1+8X)/10*8=(1+12X)/8*12(1)
(1+8X)/10*8=(1+YX)/6Y(2)
由1得到X=1/12,代入(2)得到Y=24(小时)题目演变之三(排队问题)
例题5:某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,若同时开5个检票口则需30分钟,若同时开6个检票口则需20分钟。如果要使队伍 10分钟消失,那么需同时开几个检票口?(解:第一步:设开始检票之前人数为1,每分钟来人X;
第二步:列表格如下:
检票口数量56Y 时间30 2010
人数总量1+30X 1+20X1+10X
每个检票口单位时间检票数量(1+30X)/50*30(1+20X)/6*20(1+10X)/10Y
第三步:根据表格第四行彼此相等列出方程:
(1+30X)/5*30 =(1+20X)/6*20
(1)
(1+30X)/5*30 =(1+10X)/10Y
(2)
由(1)得到X=1/20,代入(2)得到Y=9(个)
题目演变之四(数量上限问题)
题目类似 : 牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天,要使这片草地上的草永远吃不完,至少可以放几头牛?(晕哦 类似可持续发展问题)解答:
最多可以供多少牛吃,其实换言之,就是永远不要动原有草量(因为如果每天草的增量不够,只要吃一份的原有草量,就总有一天会吃完),每天的牛刚好吃完草的增量就可以,牛的数量就是牛的最大数值
那么从上可以解得
x+20y=20*10 x+10y=15*10 x为原有草量
y为每天新增草量
解得y=5
所以最多只能供5头牛吃,可以永远吃不完草场的草
题目演变之五(宇宙超级霹雳无敌简便方法)
核心公式:草场草量=(牛数-每天长草量)*天数
例如:10牛可吃20天,15牛可吃10天,则25牛可吃多少天?
解:可用公式,设每天新增加草量恰可供X头牛吃一天,25牛可吃N天
则(10-X)*20=(15-X)*10=(25-X)*N 可得X=5,Y=5
编者解析:这里设的是一头牛一天吃的草为单位 1.而(10-X)*20 这个代表的是 草场 最初始的草量
他的意思是 X头牛每天负责把新长出来的草吃掉,那么草场相当与没长草.......剩下 10-X 头牛
就负责吃 草场 初始草(类似分工合作性质)...那一天就吃 10-X 单位的草 吃了20天吃完
15-X 头牛吃了
10天
就可以算出X了
题目演变之六(漏水问题)
ID :wwj198364
连接:http://bbs.qzzn.com/read.php?tid=9118329
题目:一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果10人淘水,3小时可淘完;5人淘水8小时可淘完。如果要求2小时淘完,要安排多少人?
分析:这道题看起来与“牛吃草”毫不相关,其实题目中也蕴含着两个不变的量:“每小时漏水量”(相当于草的生长速度)与“船内原有的水量”(相当于草地上原有的草量)因此,这道题的解题步骤与“例1”完全一样
数线段技巧的妙用
原始题:
A-----B-----C------D 不考虑方向性,如图线段中,共有多少个线段? 方法是:线段长为1的有AB BC CD
线段长为2的有AC BD
线段长为3的有AD 总计有:3+2+1=6 同理,可以推出,如果线段中有4条成直线的线段,则总共有4+3+2+1=10
先来设定概念:
如果一个直线上有N条连着的线段,那么这N条线段叫基本线段 这N条线段共有N+1个端点,这些端点叫基本端点 可以发现一个规律:
如果条直线上有N条连着的线段,那么这条直线上共有N+(N-1)+...1条线段 如果条直线上有M个端点的连着的线段,那么这条直线上共有(M-1)+(M-2).....+1条线段 因为M=N+1
引申举例题:
4个人参加乒乓球比赛,每两个人之间都要进行一场比赛,则总共需要进行多少场比赛? 解法:参考原始题的图形,我们可以把四个人设定为ABCD 那么这个题就演变为数A到D之间总共有多少条线段 这时候人数为4,即基本端点数=4,基本线段数=3 所以总共需要3+2+1=6场比赛
扩展题:
几个球队参加比赛,每两个队之间都要进行一场比赛,最后总共比赛了36场,那么有几个球队参加比赛?
解法:根据引申举例题,我们可以知道这个题可以演变为数线段问题
由最终线段数求出基本线段数,进而求出基本端点数
设36=N+N-1+...+1
则N=8 注意:这时求出的8是基本线段数,而我们需要求的是基本端点数
根据基本端点数=基本线段数+1
所以总共有N+1=9个队伍参加了比赛
有关路程问题的几种思路
路程问题是行测数学运算中的重要问题,也是我们考生最头疼的问题。不过头疼归头疼,我们还是要试着去把这拦路虎打倒了。为了实现这目标,我在论坛上找了很久,看了很久,终于找到了几种解题办法,与大家分享。也感谢给出思路的几位前辈,谢谢!
1介绍:这是我们经常碰到的一类题目,一开始碰到时我们不知道从何下手,通过帖子里月满
例题:一个骑车人和一个步行人在一条街上相向而行,骑车人的速度是步行人的3倍。每隔10分钟有一辆公式汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人,如果公共汽车从始发站每次间隔同样的时间发一次车,那么间隔几分钟发一辆公共汽车?
()
A、10
B、8
C、6
D、4 汽车间距不变,当一辆汽车超过行人时,下一辆汽车与行人之间的距离就是汽车的间距
每隔10分钟有一辆汽车超过行人,说明当一辆汽车超过行人时下一辆汽车需要10分钟才能追上行人,由此得:
汽车间距=(汽车速度-行人速度)*10=(汽车速度-骑车速度)*20 推出:汽车速度=5*步行速度
又因为:汽车间距=汽车速度*间隔时间 可设行人速度为x,间隔时间为t,可得:(5x-x)*10=5x*t
t=8(分钟)
2介绍:一开始拿到这类题目我是一问三不知,在Q坛上的浏览,使我终于明白。链接:http://bbs.qzzn.com/read-htm-tid-9187606-fpage-13-toread--page-1.html 例题:两艘渡轮在同一时刻驶离H河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,他们在距离甲岸720米处相遇。到达预定地点后,每艘船都要停留10分钟,以便让乘客上船下船,然后返航。这两艘船在距离乙岸400米处又重新相遇。问:该河的宽度是多少?
A1120米
B 1280米
C 1520米
D 1760米 第一次相遇在一个路程里甲走了720米,第二次相遇他们一共走了三个路程,那么甲应该走2160米,虽然后面的路程里他们都停了10分钟,他们的速度下降比是一样的,走的路程的比例不变 那么河宽就是2160-400=1760米
3、介绍:相遇问题是我们碰到的最多的行程问题之一,而在行测中出现的往往不是简单的一次相遇,这无疑给我们的运算带来了很大的麻烦。下面我介绍一个比较复杂的相遇问题。链接:http://bbs.qzzn.com/read-htm-tid-9623848-fpage-17.html 例题:甲、乙、丙三人沿湖边散步,同时从湖边一固定点出发。甲按顺时针方向行走,乙与丙按逆时针方向行走,甲第一次遇到乙后 1又1/4 分钟遇到丙.再过 3又3/4分钟第二次遇到乙。已知乙的速度是甲的 2/3,湖的周长为600米.则丙的速度为:()A.24米/分;B.25米/分;C.26米/分;D.27米/分 Q友fansyang的解答:
设甲的速度为X,乙的速度为2X/3,丙的速度为Y,甲乙从出发到第一次相遇需要的时间为T,根据题意:
(X+2X/3)*T=600--------(1)(X+Y)*(T+5/4)=600----(2)(X+2X/3)*(T+5)=1200---(3)
根据(1)式和(3)式,可知X=72米/分;T=5分钟。根据(2)式,可知Y=24米/分。所以丙的速度为24米/分,10 所以:答案为A 这是比较常规的解答方式。他还提供了另外的一种比较简单的算法。
因为题目里面有个600米,所以答案是6的倍数几率很大,直接选择答案A,比较节约时间
4、介绍:
例题:甲乙两车同时从A.B两地相向而行,在距B地54千米处相遇,他们各自到达对方车站后立即返回,在距A地42千米处相遇。A.B两地相距多少千米?(提示:相遇时他们行了3个全程)
Q友klroom的解答:
一个行程乙就走了 54 千米,甲乙第二次相遇时,一共走了 3 个 行程,所以 乙一共走了3*54 = 162千米。从图中可以知道甲一共走了 2X – 42 千米,两者一共行走了 3X。所以 2X – 42 + 3*54 = 3X,解出 X = 120 千米。
5、介绍:追及问题。
链接:http://bbs.qzzn.com/read-htm-tid-9105470-fpage-20.html 例题:甲从A地步行到B地,出发1小时40分钟后,乙骑自行车也从同地出发,骑了10公里时追到甲。于是,甲改骑乙的自行车前进,共经5小时到达B地,这恰是甲步行全程所需时间的一半。问骑自行车的速度是多少公里/小时?
A.12
B.10
C.16
D.15 Q友dismoioui的解答:
第一个是总时间等于5小时则
5/3+10/V自+(S-10)/V自=5 解得3S=10V自
第二个方程
S/V步=10 得到S=10V步
所以由以上两个结果得到 V自=3V步 然后把他们带入 就能够解出来 V自=12 Q友stopsurf的解答:
乙走完全程花了5小时--5/3小时=10/3小时(可以把甲看成一直在骑车)V甲:V乙===10/3:10 可得===V乙==3V甲 遇到追及问题了
路程差=速度差X 时间 5/3*V甲=(V乙-V甲)*10 最后得到答案了
6、介绍:
例题:甲班与乙班同学同时从学校出发去某公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。为了使这两班学生在最短的时间内到达,那么,甲班学生与乙班学生需要步行的距离之比是:()
A.15:11 B.17:22 C.19:24 D.21:27 Q友gfirst的解答:
1、此题作为考试的话,可以根据题意甲的速度快,所以应该多走路,答案明显选A
2、作为解答来讲,车无论先带谁走,答案都是一样的。
解答的关键:车先带一组A走,走到某一位置放下该组A,让A自己走,车这时返回遇到另一组B的时间带上B,要求车与A组同时到达公园 列写公式即可
这个题解答出来的通用公式就是 S甲:S乙=(V车/V乙-1):(V车/V甲-1)=(48/3-1):(48/4-1)=15:11 时钟问题新解 不懂的看看(转)
知识网络
一个钟表一圈有60个小格,这里计算就以小格为单位。1分钟时间,分针走1个小格,时针指走了1/60*5=1/12个小格,所以每分钟分针比时针多走11/12个小格,以此作为后续计算的基础,对于解决类似经过多长时间时针、分针垂直或成直线的问题非常方便、快捷。
例1
从5时整开始,经过多长时间后,时针与分针第一次成了直线?
5时整时,分针指向正上方,时针指向右下方,此时两者之间间隔为25个小格(表面上每个数字之间为5个小格),如果要成直线,则分针要超过时针30个小格,所以在此时间段内,分针一共比时针多走了55个小格。由每分钟分针比时针都走11/12个小格可知,此段时间为55/(11/12)=60分钟,也就是经过60分钟时针与分针第一次成了直线。
例
2从6时整开始,经过多少分钟后,时针与分针第一次重合?
6时整时,分针指向正上方,时针指向正下方,两者之间间隔为30个小格。如果要第一次重合,也就是两者之间间隔变为0,那么分针要比时针多走30个小格,此段时间为30/(11/12)=360/11分钟。
例3
在8时多少分,时针与分针垂直?
8时整时,分针指向正上方,时针指向左下方,两者之间间隔为40个小格。如果要两者垂直,有两种情况,一个是第一次垂直,此时两者间隔为15个小格(分针落后时针),也就是分针比时针多走了25个小格,此段时间为25/(11/12)=300/11分钟;另一次是第二次垂直,此时两者间隔仍为15个小格(但分针超过时针),也就是分针比时针多走了55个小格,此段时间为55/(11/12)=60分钟,时间变为9时,超过了题意的8时多少分要求,所以在8时300/11分时,分针与时针垂直。
由上面三个例题可以看出,求解此类问题(经过多少时间,分针与时间成多少夹角)时,采用上述方法是非常方便、简单、快捷的,解题过程形象易懂,结果正确率高,是一种非常好的方法。解决此类问题的一个关键点就是抓住分针比时针多走了多少个小格,而不论两者分别走了多少个小格。下面再通过几个例题来介绍这种方法的用法和要点。
例4
从9点整开始,经过多少分,在几点钟,时针与分针第一次成直线?
9时整时,分针指向正上方,时针指向正右方,两者之间间隔为45个小格。如果要第一次成直线,也就是两者之间间隔变为30个小格,那么分针要比时针多走15个小格,此段时间为15/(11/12)=180/11分钟。
例5
一个指在九点钟的时钟,分针追上时针需要多少分钟?
9时整时,分针指向正上方,时针指向正右方,两者之间间隔为45个小格。如果要分针追上时针,也就是两者之间间隔变为0个小格,那么分针要比时针多走45个小格,此段时间为45/(11/12)=540/11分钟。
例6
时钟的分针和时针现在恰好重合,那么经过多少分钟可以成一条直线?
时针和分针重合,也就是两者间隔为0个小格,如果要成一条直线,也就是两者间隔变为30个小格,那么分针要比时针多走30个小格,此段时间为30/(11/12)=360/11分钟。