首页 > 文库大全 > 精品范文库 > 14号文库

中值定理超强总结

中值定理超强总结



第一篇:中值定理超强总结

咪咪原创,转载请注明,谢谢!

1、所证式仅与ξ相关 ①观察法与凑方法

例 1 设f(x)在[0,1]上二阶可导,f(0)f(1)f(0)0 试证至少存在一点(a,b)使得f()2f()1分析:把要证的式子中的  换成 x,整理得f(x)xf(x)2f(x)0(1)由这个式可知要构造的函数中必含有f(x),从xf(x)找突破口 因为[xf(x)]xf(x)f(x),那么把(1)式变一下: f(x)f(x)[xf(x)f(x)]0f(x)f(x)[xf(x)]0 这时要构造的函数就看出来了F(x)(1x)f(x)f(x)②原函数法

例 2 设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,又g(x)在[a,b]上连续 求证:(a,b)使得f()g()f()分析:这时不论观察还是凑都不容易找出要构造的函数,于是换一种方法 现在把与f 有关的放一边,与 g 有关的放另一边,同样把  换成 x g(x)dx

f(x)f(x)两边积分g(x)lnf(x)g(x)dxlnCf(x)Ce f(x)eg(x)dxC 现在设C0,于是要构造的函数就很明显了 F(x)f(x)e③一阶线性齐次方程解法的变形法 g(x)dx对于所证式为fpf0型,(其中p为常数或x 的函数)pdxpdx可引进函数u(x)e,则可构造新函数F(x)fe例:设f(x)在[a,b]有连续的导数,又存在c(a,b),使得f(c)0 求证:存在(a,b),使得f()分析:把所证式整理一下可得:f() [f()f(a)]1ba1f()f(a)baf()f(a)ba0[f()f(a)]0,这样就变成了fpf0型xx--badx 引进函数u(x)e=eba(令C=0),于是就可以设F(x)eba[f(x)f(a)] 注:此题在证明时会用到f(c)f(b)f(a)ba0f(b)f(a)这个结论

2、所证式中出现两端点 ①凑拉格朗日

咪咪原创,转载请注明,谢谢!

例 3 设f(x)在[a,b]上连续,在(a,b)内可导 证明至少存在一点(a,b)使得bf(b)af(a)baf()f()

分析:很容易就找到要证的式子的特点,那么下可以试一下,不妨设 F(x)xf(x),用拉格朗日定理验证一 F()f()f()bf(b)af(a)ba(x1,x2)至少存在一点②柯西定理

例 4 设0x1x2,f(x)在[x1,x2]可导,证明在 1c,使得ex2x1ex2ex1f(c)f(c)ef(x1)f(x2)xx2x2分析:先整理一下要证的式子e1f(x2)eex1f(x1)f(c)f(c)e 这题就没上面那道那么 发现e1f(x2)exx2容易看出来了分子分母同除一下

f(x1)是交叉的,变换一下,ex1x2f(x2)ex2f(x1)e1x11x2于是这个式子一下变得没有悬念了eex1 用柯西定理设好两个函③k值法

仍是上题数就很容易证明了分析:对于数四,如果对柯西定理掌握的不是方法叫做k 值法很好上面那题该怎么办呢? 在老陈的书里讲了一个 第一步是要把含变量与 以此题为例已经是规范 设常量的式子分写在等号的形式了,现在就看常k 整理得ex1两边量的这个式子x2

ex1f(x2)eex1x2x2f(x1)e[f(x1)k]e[f(x2)k] 很容易看出这是一个对 那么进入第二步,设称式,也是说互换x1x2还是一样的F(x1)F(x2)F(x)ex[f(x)k],验证可知。记得回带k,用罗尔定理证明即可④泰勒公式法

老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。

3、所证试同时出现ξ和η ①两次中值定理

咪咪原创,转载请注明,谢谢!

例 5 f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)1 试证存在,(0,1)使得e[f()f()]1分析:首先把与分开,那么就有e[f()f()]e 一下子看不出来什么,很容易看出那么可以先从左边的式子下手试一下xe[f()f()][ef()],设F(x)ef(x)利用拉格朗日定理可得F()eaef(b)ef(a)baexbba

再整理一下 e[f()f()]ebbaa只要找到eaba与e的关系就行了得到 这个更容易看出来了,G()e令G(x)e则再用拉格朗日定理就e[f()f()]ba②柯西定理(与之前所举例类似)

有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。ebe

第二篇:【考研数学】中值定理总结

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。

1、所证式仅与ξ相关 ①观察法与凑方法

例 1 设f(x)在[0,1]上二阶可导,f(0)f(1)f(0)0 试证至少存在一点(a,b)使得f()2f()1分析:把要证的式子中的  换成 x,整理得f(x)xf(x)2f(x)0(1)由这个式可知要构造的函数中必含有f(x),从xf(x)找突破口 因为[xf(x)]xf(x)f(x),那么把(1)式变一下: f(x)f(x)[xf(x)f(x)]0f(x)f(x)[xf(x)]0 这时要构造的函数就看出来了F(x)(1x)f(x)f(x)②原函数法

例 2 设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,又g(x)在[a,b]上连续 求证:(a,b)使得f()g()f()分析:这时不论观察还是凑都不容易找出要构造的函数,于是换一种方法 现在把与f 有关的放一边,与g 有关的放另一边,同样把  换成 x

f(x)两边积分x)g(x)dxlnCf(x)Ceg(x)dxf(x)g(x)lnf(f(x)eg(x)dxC 现在设C0,于是要构造的函数就很明显了 F(x)f(x)eg(x)dx③一阶线性齐次方程解法的变形法

对于所证式为fpf0型,(其中p为常数或x 的函数)可引进函数u(x)epdx,则可构造新函数F(x)fepdx例:设f(x)在[a,b]有连续的导数,又存在c(a,b),使得f(c)0 求证:存在(a,b),使得f()f()f(a)ba分析:把所证式整理一下可得:f()f()f(a)ba0 [f()f(a)]1ba[f()f(a)]0,这样就变成了fpf0型1x 引进函数u(x)e--xbadx=eba(令C=0),于是就可以设F(x)eba[f(x)f(a)] 注:此题在证明时会用到f(c)f(b)f(a)ba0f(b)f(a)这个结论

2、所证式中出现两端点 ①凑拉格朗日 例 3 设f(x)在[a,b]上连续,在(a,b)内可导 证明至少存在一点(a,b)使得bf(b)af(a)baf()f()

分析:很容易就找到要证的式子的特点,那么下可以试一下,不妨设 F(x)xf(x),用拉格朗日定理验证一 F()f()f()bf(b)af(a)ba(x1,x2)至少存在一点②柯西定理

例 4 设0x1x2,f(x)在[x1,x2]可导,证明在 1c,使得ex2x1ex2ex1f(c)f(c)ef(x1)f(x2)xx2x2分析:先整理一下要证的式子e1f(x2)eex1f(x1)f(c)f(c)e 这题就没上面那道那么 发现e1f(x2)exx2容易看出来了分子分母同除一下

f(x1)是交叉的,变换一下,ex1x2f(x2)ex2f(x1)e1x11x2于是这个式子一下变得没有悬念了eex1 用柯西定理设好两个函③k值法

仍是上题数就很容易证明了分析:对于数四,如果对柯西定理掌握的不是方法叫做k 值法很好上面那题该怎么办呢? 在老陈的书里讲了一个 第一步是要把含变量与 以此题为例已经是规范 设常量的式子分写在等号的形式了,现在就看常k 整理得ex1两边量的这个式子x2

ex1f(x2)eex1x2x2f(x1)e[f(x1)k]e[f(x2)k] 很容易看出这是一个对 那么进入第二步,设称式,也是说互换x1x2还是一样的F(x1)F(x2)F(x)ex[f(x)k],验证可知。记得回带k,用罗尔定理证明即可④泰勒公式法

老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。

3、所证试同时出现ξ和η ①两次中值定理

例 5 f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)1 试证存在,(0,1)使得e[f()f()]1分析:首先把与分开,那么就有e[f()f()]e 一下子看不出来什么,很容易看出那么可以先从左边的式子下手试一下xe[f()f()][ef()],设F(x)ef(x)利用拉格朗日定理可得F()eaef(b)ef(a)baexbba

再整理一下 e[f()f()]ebbaa只要找到eaba与e的关系就行了得到 这个更容易看出来了,G()e令G(x)e则再用拉格朗日定理就e[f()f()]ba②柯西定理(与之前所举例类似)

有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。

ebe

一、高数解题的四种思维定势

1、在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

2、在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

3、在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

4、对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

二、线性代数解题的八种思维定势

1、题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

2、若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

3、若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。

4、若要证明一组向量a1,a2,„,as线性无关,先考虑用定义再说。

5、若已知AB=0,则将B的每列作为Ax=0的解来处理再说。

6、若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

7、若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。

8、若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

第三篇:高等数学中值定理总结

咪咪原创,转载请注明,谢谢!

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。

1、所证式仅与ξ相关 ①观察法与凑方法

例 1 设f(x)在[0,1]上二阶可导,f(0)f(1)f(0)02f()试证至少存在一点(a,b)使得f()1分析:把要证的式子中的  换成 x,整理得f(x)xf(x)2f(x)0(1)由这个式可知要构造的函数中必含有f(x),从xf(x)找突破口 因为[xf(x)]xf(x)f(x),那么把(1)式变一下: f(x)f(x)[xf(x)f(x)]0f(x)f(x)[xf(x)]0 这时要构造的函数就看出来了F(x)(1x)f(x)f(x)②原函数法

例 2 设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,又g(x)在[a,b]上连续 求证:(a,b)使得f()g()f()分析:这时不论观察还是凑都不容易找出要构造的函数,于是换一种方法 现在把与f 有关的放一边,与g 有关的放另一边,同样把  换成 x 两边积分f(x)g(x)dx g(x)lnf(x)g(x)dxlnCf(x)Cef(x)

f(x)eg(x)dxC 现在设C0,于是要构造的函数就很明显了 F(x)f(x)eg(x)dx③一阶线性齐次方程解法的变形法

对于所证式为fpf0型,(其中p为常数或x 的函数)可引进函数u(x)e,则可构造新函数F(x)fepdxpdx例:设f(x)在[a,b]有连续的导数,又存在c(a,b),使得f(c)0f()f(a)baf()f(a)分析:把所证式整理一下可得:f()0ba1 [f()f(a)][f()f(a)]0,这样就变成了fpf0型ba 求证:存在(a,b),使得f()-dx- 引进函数u(x)eba=eba(令C=0),于是就可以设F(x)eba[f(x)f(a)] 注:此题在证明时会用到f(c)

2、所证式中出现两端点 ①凑拉格朗日 1xxf(b)f(a)0f(b)f(a)这个结论ba

咪咪原创,转载请注明,谢谢!

例 3 设f(x)在[a,b]上连续,在(a,b)内可导 证明至少存在一点(a,b)使得bf(b)af(a)f()f()ba

分析:很容易就找到要证的式子的特点,那么可以试一下,不妨设 F(x)xf(x),用拉格朗日定理验证一下 F()f()f()②柯西定理

bf(b)af(a)ba例 4 设0x1x2,f(x)在[x1,x2]可导,证明在(x1,x2)至少存在一点c,使得 1ex1ex2e1e2f(c)f(c)f(x1)f(x2)e1f(x2)e2f(x1)ex1x2xxxx分析:先整理一下要证的式子e 这题就没上面那道那么容易看出来了xxf(c)f(c)

x1x2 发现e1f(x2)e2f(x1)是交叉的,变换一下,分子分母同除一下ef(x2)f(x1)ex2eex11x2e③k值法 1x1于是这个式子一下变得没有悬念了 用柯西定理设好两个函数就很容易证明了仍是上题分析:对于数四,如果对柯西定理掌握的不是很好上面那题该怎么办呢? 在老陈的书里讲了一个方法叫做k 值法 第一步是要把含变量与常量的式子分写在等号两边 以此题为例已经是规范的形式了,现在就看常量的这个式子 设

e1f(x2)e2f(x1)ex1x2xxe 很容易看出这是一个对称式,也是说互换x1x2还是一样的 记得回带k,用罗尔定理证明即可。k 整理得ex1[f(x1)k]ex2[f(x2)k] 那么进入第二步,设F(x)ex[f(x)k],验证可知F(x1)F(x2)④泰勒公式法

老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。

3、所证试同时出现ξ和η ①两次中值定理

咪咪原创,转载请注明,谢谢!

例 5 f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)1 试证存在,(0,1)使得e[f()f()]1分析:首先把与分开,那么就有e[f()f()]e 一下子看不出来什么,那么可以先从左边的式子下手试一下 很容易看出e[f()f()][ef()],设F(x)exf(x)ebf(b)eaf(a)利用拉格朗日定理可得F()再整理一下baebeaebea e[f()f()]只要找到与e的关系就行了baba

这个更容易看出来了,令G(x)ex则再用拉格朗日定理就得到ebea G()ee[f()f()]ba②柯西定理(与之前所举例类似)

有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。

第四篇:高等数学中值定理总结

咪咪原创,转载请注明,谢谢!

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。

1、所证式仅与ξ相关

①观察法与凑方法

例 1设f(x)在[0,1]上二阶可导,f(0)f(1)f(0)0

2f()试证至少存在一点(a,b)使得f()1

分析:把要证的式子中的  换成 x,整理得f(x)xf(x)2f(x)0(1)

由这个式可知要构造的函数中必含有f(x),从xf(x)找突破口

因为[xf(x)]xf(x)f(x),那么把(1)式变一下:

f(x)f(x)[xf(x)f(x)]0f(x)f(x)[xf(x)]0

这时要构造的函数就看出来了F(x)(1x)f(x)f(x)

②原函数法

例 2设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,又g(x)在[a,b]上连续

求证:(a,b)使得f()g()f()

分析:这时不论观察还是凑都不容易找出要构造的函数,于是换一种方法

现在把与f 有关的放一边,与g 有关的放另一边,同样把  换成 x

两边积分f(x)g(x)dxg(x)lnf(x)g(x)dxlnCf(x)Ce

f(x)

f(x)eg(x)dxC 现在设C0,于是要构造的函数就很明显了

F(x)f(x)eg(x)dx

③一阶线性齐次方程解法的变形法

对于所证式为fpf0型,(其中p为常数或x 的函数)

可引进函数u(x)e,则可构造新函数F(x)fepdxpdx

例:设f(x)在[a,b]有连续的导数,又存在c(a,b),使得f(c)0

f()f(a)

ba

f()f(a)分析:把所证式整理一下可得:f()0ba

1[f()f(a)][f()f(a)]0,这样就变成了fpf0型ba求证:存在(a,b),使得f()

-dx-引进函数u(x)eba=eba(令C=0),于是就可以设F(x)eba[f(x)f(a)]

注:此题在证明时会用到f(c)

2、所证式中出现两端点

①凑拉格朗日 1xxf(b)f(a)0f(b)f(a)这个结论ba

例 3设f(x)在[a,b]上连续,在(a,b)内可导

证明至少存在一点(a,b)使得bf(b)af(a)f()f()ba

分析:很容易就找到要证的式子的特点,那么可以试一下,不妨设

F(x)xf(x),用拉格朗日定理验证一下

F()f()f()

②柯西定理 bf(b)af(a)ba

例 4设0x1x2,f(x)在[x1,x2]可导,证明在(x1,x2)至少存在一点c,使得

ex1ex2e1e2f(c)f(c)(x1)f(x2)

e1f(x2)e2f(x1)

ex1x2xxxx分析:先整理一下要证的式子e

这题就没上面那道那么容易看出来了

xxf(c)f(c)x1x2发现e1f(x2)e2f(x1)是交叉的,变换一下,分子分母同除一下e

f(x2)f(x1)

ex2e

ex11x2e

③k值法 1x1于是这个式子一下变得没有悬念了用柯西定理设好两个函数就很容易证明了

仍是上题

分析:对于数四,如果对柯西定理掌握的不是很好上面那题该怎么办呢?

在老陈的书里讲了一个方法叫做k 值法

第一步是要把含变量与常量的式子分写在等号两边

以此题为例已经是规范的形式了,现在就看常量的这个式子

设 e1f(x2)e2f(x1)

ex1x2xxe

很容易看出这是一个对称式,也是说互换x1x2还是一样的记得回带k,用罗尔定理证明即可。k 整理得ex1[f(x1)k]ex2[f(x2)k]那么进入第二步,设F(x)ex[f(x)k],验证可知F(x1)F(x2)

④泰勒公式法

老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。

3、所证试同时出现ξ和η

①两次中值定理

例 5f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)1

试证存在,(0,1)使得e[f()f()]1

分析:首先把与分开,那么就有e[f()f()]e

一下子看不出来什么,那么可以先从左边的式子下手试一下

很容易看出e[f()f()][ef()],设F(x)exf(x)

ebf(b)eaf(a)利用拉格朗日定理可得F()再整理一下ba

ebeaebea

e[f()f()]只要找到与e的关系就行了baba

这个更容易看出来了,令G(x)ex则再用拉格朗日定理就得到

ebea

G()ee[f()f()]ba

②柯西定理(与之前所举例类似)

有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。

第五篇:有关中值定理的证明题

中值定理证明题集锦

1、已知函数f(x)具有二阶导数,且limx0f(x)0,f(1)0,试证:在区间(0,1)内至少x存在一点,使得f()0.证:由limf(x),由此又得00,可得limf(x)0,由连续性得f(0)x0x0xf(x)f(0)f(x)f(0)limlim0,由f(0)f(1)0及题设条件知f(x)在[0,1]x0x0x0x上满足罗尔中值定理条件,因此至少存在一点 c(0,1),使得f(c)0,又因为f(0)f(c)0,并由题设条件知f(x)在[0,c]上满足拉格朗日中值定理的条件,由拉格朗日中值定理知,在区间(0,1)内至少存在一点,使得f()0.2、设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)0,证明:存在一点(0,a),使得f()f()0.证:分析:要证结论即为:[xf(x)]x0.令F(x)xf(x),则F(x)在[0,a]上连续,在(0,a)内可导,且F(0)F(a)0,因此故存在一点(0,a),使得F()0,F(x)xf(x)在[0,a]上满足罗尔中值定理的条件,即f()f()0.注1:此题可改为:

设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)0,证明:存在一点(0,a),使得

nf()f()0.)nf()(0给分析:要证结论nf()f()等价于nn1f(nn1n,而nf()f()0即为[xf(x)]x0.nf()f()两端同乘以n1)故令F(x)xf(x),则F(x)在[0,a]上满足罗尔中值定理的条件,由此可证结论.注2:此题与下面例题情况亦类似:

设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)0,x(0,1),有f(x)0,证:nnN,(0,1),使得

nf()f(1)成立.f()f(1)分析:要证结论可变形为nf()f(1)f()f(1)0,它等价于nfn1()f()f(1)fn()f(1)0(给nf()f(1)f()f(1)0两端同乘以fn1()),而nfn1(f)f()(fn1f)(即)为(1)0[fn(x)fx1(x,用罗尔中值定理)]0.以上三题是同类型题.3、已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)0,f()1,证明:(1)存在一点(,1),使f().(2)存在一点(0,),使f()1.(3)存在一点x0(0,),使f(x0)1(f(x0)x0).证:(1)分析:要证结论即为:f()0.12121211111显然F(x)在[,1]上连续,且F()f()0,F(1)f(1)110,2222211因此F(x)在[,1]上满足零点定理的条件,由零点定理知,存在(,1),使F()0,22令F(x)f(x)x,则只需证明F(x)在(,1)内有零点即可。即f().(2)又因为F(0)f(0)00,由(1)知F()0,因此F(x)在[0,]上满足罗尔中值定理条件,故存在一点(0,),使F()0,即f()10,即f()1.(3)分析:结论f(x0)1(f(x0)x0)即就是F(x0)F(x0)或F(x0)F(x0)0,F(x0)F(x0)0ex0[F(x0)F(x0)]0,即[exF(x)]xx00.故令G(x)exF(x),则由题设条件知,G(x)在[0,]上连续,在(0,)内可导,且G(0)e0F(0)0,G()eF()0,则G(x)在[0,]上满足罗尔中值定理条件,命题得证.4、设f(x)在[0,x]上可导,且f(0)0,试证:至少存在一点(0,x),使得f(x)(1)ln(1x)f().证:分析:要证结论即为: f(x)f(0)(1)[ln(1x)ln1]f(),也就是f(x)f(0)f(),因此只需对函数f(t)和ln(1t)在区间[0,x]上应用柯西中值定理1ln(1x)ln11即可.5、设f(x)、g(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,且g(x)0,证明:至少存在一点(a,b),使得f()g()f()g().证:分析:要证结论即为: f()g()f()g()0,等价于

f()g()f()g()0,2g()即就是[即可.f(x)f(x)在区间[a,b]上应用罗尔中值定理]x0,因此只需验证函数F(x)g(x)g(x)

6、设f(x)在[x1,x2]上可导,且0x1x2,试证:至少存在一点(x1,x2),使得x1f(x2)x2f(x1)f()f().x1x2f(x2)f(x1)f(x)()xx2x1x证:分析:要证结论即为: ,因此只需对函f()f()111()xx2x1x数f(x)1和在区间[x1,x2]上应用柯西中值定理即可.xx此题亦可改为:

设f(x)在[a,b]上连续,(a,b)内可导,若0ab,试证:至少存在一点(a,b),使得af(b)bf(a)[f()f()](ab).7、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)0,试证:(1)(a,b),使得f()f()0;(2)(a,b),使得f()f()0.证:(1)令F(x)xf(x),利用罗尔中值定理即证结论.(2)分析:f()f()0e[f()f()]0[e22x22f(x)]x0,因此令F(x)ex22f(x),利用罗尔中值定理即证结论.8、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)1,试证:,(a,b),使得e[f()f()]1.[exf(x)]xe[f()f()]证:分析:要证结论即为1,即就是1.xe(e)x令F(x)ef(x),令G(x)e,则F(x)和G(x)在[a,b]上满足拉格朗日中值定理的条件,由拉格朗日中值定理知: xxebf(b)eaf(a)ebea,即就是e[f()f()].(a,b),使得F()babaebeaebea,即就是e.(a,b),使得F()babae[f()f()]因此,有1,即就是e[f()f()]1.e9、设f(x)、g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)g(a),f(b)g(b),试证:(a,b),使得f()g().0.证:分析:要证结论即为[f(x)g(x)]x令F(x)f(x)g(x),(1)若f(x)、g(x)在(a,b)内的同一点处取得相同的最大值,不妨设都在c点处取得最大值,则F(a)F(c)F(b)0(acb),则F(x)分别在[a,c]、[c,b]上满足罗尔中值定理条件,故1(a,c),2(c,b)使得F(1)0,F(2)0.由题设又知,F(x)在[1,2]上满足洛尔定理条件,故存在(1,2),使得F()0,即就是f()g()].(2)若f(x)、g(x)在(a,b)内的不同的点处取得相同的最大值,不妨设f(x)在p点处、g(x)在q点处取得最大值,且pq,则F(p)f(p)g(p),F(q)f(q)g(q)0,由零点定理知,c(p,q)(0,1),使得F(c)0,由此得 F(a)F(c)F(b)0(acb),后面证明与(1)相同.10、设f(x)在[a,b]上连续,在(a,b)内可导,且f(x)0,若极限limxaf(2xa)存在,xa试证:(1)存在一点(a,b),使得

b2a2baf(x)dx22; f()22b(2)在(a,b)内存在异于的点,使得f()(ba)f(x)dx.;

aa证:(1)令F(x)xaf(t)dt,G(x)x2,则F(x)、G(x)在[a,b]上满足柯西中值定理

b2a2ba条件,故存在一点(a,b),使得

b2a2af(t)dtf(t)dta2成立,即就是f()bab222成立,即就是2f(x)dx(ba)f()成立.af(x)dxf()(2)由(1)知,2ba22因此要证f()(ba)f(x)dx(b2a2)f(),2bf(x)dx.,aa即要证f()(ba)221a(b2a2)f(,)即要证f()(a)f(,)由已知

xalimf(2xa)f(2xa)0,可得,lim从而得f(a)0,因此要证f()(a)f(),xaxa即要证f()(a)f()f(a),显然只需验证f(x)在[a,]上满足拉格朗日中值定理条件即可。

相关内容

热门阅读

最新更新

随机推荐