首页 > 文库大全 > 精品范文库 > 14号文库

埋藏式心脏复律除颤器埋置技术及总结 d 文档

埋藏式心脏复律除颤器埋置技术及总结 d 文档



第一篇:埋藏式心脏复律除颤器埋置技术及总结 d 文档

埋藏式心脏复律除颤器埋置技术 人员和设备条件

1.1 人员 应有一组从事心血管介入治疗的专业队伍,术者应是熟练掌握起搏器安置技术和有丰富临床经验的心内科医生,还应有熟悉ICD使用的工程技术人员和有经验的护士配合。

1.2 手术间 ICD的埋置必须在无菌条件下进行,专用导管室或手术间是比较理想的手术环境。

1.3 药品和器械

1.3.1 体外除颤器 要求除颤性能良好。在ICD埋置术中诱发室性心动过速或(和)心室颤动(VT/VF)时,若发现电极导线位置不合适、起搏系统工作有问题(如导线与脉冲发生器连接不正确或机器本身性能故障)、病人机体反应不佳以及除颤阈值高等等情况,致ICD不能终止VT/VF,必须立即进行体外除颤。

1.3.2 血氧和血压监测 为随时了解病人血液动力学变化,对重要的生命体征进行动态监测十分必要。监测指标以血氧饱和度为佳,作动态血压监测亦可。

1.3.3 心电图机或多导生理记录仪 随时观察和记录病人的心率和心律变化,以便及时处理。

1.3.4 体外除颤分析仪 该仪器具有ICD功能,并能程控ICD参数、进行电生理检查、诱发VT/VF、测试除颤阈值、记录心电图等,是埋置ICD时不可缺少的。

1.3.5 起搏分析仪 ICD具有像起搏器一样的起搏功能,在电极导线固定后,需进行起搏和感知阈值测试。

1.3.6 药品 必须备齐心肺复苏、心律失常等抢救药品。亦应充分准备不同类型的电极导线,如:弹簧电极板、片状电极等,以备不时之需。在整个手术过程中应保持静脉通畅,静脉内最好保留细塑胶管,这样,即使血液动力学状态恶化,也能有供抢救的静脉通道;同时也可避免病人因躁动而致输液针头刺破静脉。

手术麻醉

埋置ICD对麻醉的要求不同于安装心脏起搏器,除了充分局麻外,还应辅以适当的静脉麻醉。但麻醉不宜太深,手术开始前给予少量镇静、镇痛剂,如杜冷丁、非乃根、安定等以减轻病人恐惧心理和制作囊袋时的疼痛。当需要诱发VT/VF和进行除颤阈值测定时,可给予异丙酚或咪唑安定。切忌使心率增快的兴奋剂。

埋置途径

早期系采用开胸埋置心外膜电极导线,其手术创伤大、并发症多;近年所用经静脉埋置的心内膜电极导线大大简化了手术操作,倍受临床医师欢迎。

3.1 经胸外科手术方式

3.1.1 手术切口 有数种可酌情选用。随着治疗室性快速心律失常的非药物治疗方法增多,就某一病人而言埋置ICD可能只是种种措施中的一种。外科手术方法的选择与病人的病史和是否需要同时进行心血管手术很有关系。假如只是单纯埋置ICD可作剑突下或左肋下切口,这不仅手术创伤小,而且左室可清楚暴露。对既往做过心脏外科手术或埋置ICD同时需要进行其它心脏手术的患者,宜采取左侧开胸或胸骨正中切口,这既可缩短手术时间,又可减少术后并发症的发生。

3.1.2 电极埋置 早期的ICD电极有四种类型:①片状电极,②心肌螺旋电极,③弹簧电极,④双极心内膜电极。四种电极组成两种工作方式。①全部经胸方式:两个片状电极组成一对,用于除颤放电和感知QRS波群;一对心肌螺旋电极用于感知频率。此种方式的电极埋置,全部通过开胸完成。②部分经胸、部分经静脉方式:经静脉的弹簧电极与一个经胸的心外膜片状电极组成一对,用于除颤放电和感知QRS波群;另一个经静脉双极心内膜电极用于感知频率。通常将阳极置于上腔静脉,阴极置于心尖部心外膜处。这种方式因需开胸和静脉插入导线,操作不如前种方式方便。

3.2 经静脉方式 CPI公司生产的Vantak PRx导线系统是一条长100 cm,由三个电极组成的经静脉导线。它集频率感知、除颤和起搏功能于一体,最远端接触右室心尖部的是一个翼状多孔头电极,作为阴极用于感知和起搏。另两个为弹簧电极,位于靠远端的电极具两种功能,阴极用于除颤和起搏,阳极用于感知;近端电极作为阳极,用于除颤。阈值高时也可将心内膜导线和一个片状电极合用,片状电极的面积为28 cm,埋于左胸部的皮下或肋骨下。

3.2.1 静脉选择 ICD的电极导线较起搏器的导线粗,一般选锁骨下静脉穿刺,用12 F扩张管、套管送入电极导线。为不影响病人上肢活动和避免肌电干扰、误感知,多采用左侧锁骨下静脉途径。穿刺点应选择锁骨中点,不宜太偏内侧,以避免导线在狭窄的锁骨与第一肋骨间的间隙通过而受挤压,甚至折断。

3.2.2 电极固定 ICD电极导线有两个电极比较粗,操作方便,容易越过三尖瓣固定于右室心尖部。将直指引钢丝头端塑成45°角度的弯曲,以使电极导线顺利地通过三尖瓣;再换成直指引钢丝操纵电极导线使其头端固定于右室心尖部。电极导线固定的位置关系到ICD能否感知心动过速和有效除颤。

23.2.3 囊袋制作 目前使用的ICD可像起搏器一样埋于胸前,不过脉冲发生器体积仍较大,最小者容积也达45 ml,重量不低于90 g。为防止皮肤受压而产生破溃,多采取肌肉下埋置,切口可选在胸三角区或锁骨下静脉下缘5~8 cm处。切开皮肤和皮下组织,暴露胸大肌,将胸大肌和胸小肌进行钝性分离(不剪断肌肉),彻底止血,作一适合脉冲发生器大小的囊袋,以脉冲发生器可完全埋入为度。在切口以下彻底止血,防止渗血和发生血肿。对肥胖、皮下组织丰满的病人,亦可在皮下制作囊袋。

阈值测定

阈值测定关系到埋置的ICD能否正确识别VT/VF并及时予以心律转复、除颤与起搏等。

4.1 起搏阈值 ICD具有起搏器的功能,所以拟用起搏分析仪测试起搏阈值和感知阈值。对ICD来说后者的测试则更为重要,要求R波振幅>5 mV,最好是达到8 mV。因为发生VT/VF时QRS波群振幅往往较低,如不能感知则不能除颤和转复心律,这将是很危险的。其它参数值与埋植起搏器的要求一样。适宜的起搏阈值是除颤阈值不高的间接反映。在测试除颤阈值时,宜从低能量开始,以减少VT/VF的诱发次数。

4.2 除颤阈值(Defibrillation threshold,DFT)系指将VF转为窦性心律的最低能量,为了安全起见,一般只要求有效转复心律的能量相对较低便可。因此所测定的DFT都比实际的DFT偏高。为了测试DFT需诱发VF。诱发的方式有四种:①T-电击,②50 hz暴发式起搏,③手控暴发式起搏,④程控电刺激。诱发VF应予静脉麻醉,使病人处于朦胧状态,以减少痛苦。当VF诱发时,如ICD不能终止,则应立即行高能量体外除颤。

术后观察

埋置ICD后应进行24 小时持续心电监测,了解心律和心率的变化,并观察伤口有无渗血。术后第二日应该用体外除颤分析仪进行电生理检查,诱发VT/VF,观察ICD的治疗效果。这一点实际上很难做到。但至少应进行一次起搏阈值和各项参数的测试,如各项参数没有太大变化、阈值低,说明电极导线固定位置良好,据此可推测ICD具有很好的抗心动过速起搏和除颤功能。

并发症的预防

良好的手术环境,规范的手术操作和术前停用一切抗凝药可以防止渗血、血肿、感染和电极移位的发生。DFT测试的次数不宜过多,特别对心功能不全的病人更要注意,以免因除颤次数多而发生血液动力学变化。对术后出现过心律转复的病人,应立即用体外程控仪调出储存的信息,了解心动过速的性质、发作次数、ICD治疗效果和是否需要调整参数。20例埋藏式心脏复律除颤器安置技术总结

中华心血管病杂志 1998年第6期第卷 临床研究

作者:任自文 宋有城 胡大一 张金荣 马虹 葛堪忆 杜雪平朱俊 丁燕生 杨新春 商丽华 王青 郭静萱 单位:100034 北京医科大学第一医院(任自文、丁燕生);中国医学科学院中国协和医科大学阜外心血管病医院(宋有城、朱俊);北京红十字朝阳医院(胡大

一、杨新春、商丽华);北京安贞医院(张金荣);中山医科大学附属第一医院(马虹);北京医科大学第三医院(葛堪忆、郭静萱);北京复兴医院(杜雪平、王青)

关键词: 除颤器,植入型;心动过速,室性;心室颤动

【摘要】 目的 总结20例埋藏式心脏复律除颤器(ICD)的安置经验。方法 总结分析20例患者的一般临床情况、手术技巧、心室颤动(室颤)的诱发及除颤阈值(DFT)测定方法以及ICD的程控原则。结果 20例患者中男18例, 女2例;平均年龄54.1±14.4岁;冠心病11例, 扩张型心肌病2例, 房缺修补术后1例,右室发育不良2例, 原发性室颤1例, 无器质性心脏病者3例;19例术前均接受胺碘酮治疗, 1例服用索他洛尔。手术全部采用单切口, ICD埋于胸大肌下, 电极导线于切口内经锁骨下静脉穿刺送入右心室。首选T波同步电击法诱发室颤, 成功率 80%。DFT18.4±4.7J, 1例对调电击极性、1例加用上腔静脉电极后DFT才符合要求。电击阻抗53.7±7.6Ω。R波振幅12.4±6.0mV, 1例因R波振幅低而加用心室螺旋电极。起搏阈值0.6±0.2V。起搏阻抗540.0±110.8Ω。1例与单极起搏器合用, 术中测试无相互影响。结论 胸部单切口置入ICD方法简便可靠, 术中需酌情决定上腔静脉电极及心室螺旋电极的使用, T波同步电击是一种安全有效的诱发室颤方法。ICD与起搏器合用时,术中需测定二者的相互影响。Implantation techniques of 20 implantable cardioverter-defibrillators Ren Ziwen, Song Youcheng, Hu Dayi, et al.The First Hospital of Beijing Medical University, Beijng 100034

【Abstract】 Objective To summarize the experience of implantation of imptanlable cardioverter-defibrillator(ICD)in 20 patients.Methods The general clinical status, skills of procedures, the methods of inducing ventricular fibrillation(Vf)and measuring defibrillation threshold(DFT), and the principles of programming ICD were analyzed in 20 cases.Results Eighteen males, two females;the average age was 54.1±14.4 years old;eleven patients with coronary heart disease, two with dilated cardiomyopathy, one with repaired atrial septal defect, two with right ventricular desplasia, one with primary Vf, three without organic heart diseases.Nineteen patients took amiodarone and one took sotalol before procedures.Single chest incision procedures were performed in all cases, ICDs were implanted under pectoralis major and the electrode leads were introduced to the apexes of right ventricles by puncturing subclavicular veins.T wave synchronous shock were used to induce Vf at first in all cases and success rate was 80%.DFT 18.4±4.7J.DFT was qualified after reversing polarity in one case and by using SVC lead in another case.Shock path impedance was 53.7±7.6 ohms.R wave was 12.4±6.0 mV, A screw-in electrode lead was added in right ventricle in one case because R wave was lower.Pacing threshold was 0.6±0.2V.Pacing impedance was 540.0±110.8 ohms.Combined use of ICD and unipolar pacemker in one case, measures revealed no interaction between them during the operation.Conclusions Single chest incision procedure of implanting ICD was simple and reliable.Whether use of screw-in electrode lead and SVC lead should be determined during operation according to the R wave amplitude and DFT.T wave synchronous shock is an effective and safety method of inducing Vf.The interaction of each other should be observed and measured during operation if using combined ICD and unipolar pacemaker.【Key words】 defibrillators, implantable

tachycardia, ventricular

ventricular fibrillation

临床对比研究业已证明,埋藏式心脏复律除颤器(implantable cardioverter-defibrillator,ICD)治疗恶性室性心律失常、预防猝死的效果优于抗心律失常药,ICD 的临床应用将日益受到重视。近年来, 我国应用ICD的数量虽有所增多, 但仍局限于少数医院, 绝大多数临床电生理工作者对ICD应用中的一些具体技术问题还不熟悉, 因此有关ICD的埋藏技术和随访经验对于促进我国广泛开展这一技术至关重要。本文总结20例ICD埋藏技术的有关经验体会。资料与方法

1.临床资料: 20例患者中男18例, 女2例;年龄20~74(54.1±14.4)岁;冠心病11例(其中6例有陈旧性心肌梗塞), 扩张型心肌病2例, 房缺修补术后1例,右室发育不良2例, 原发性心室颤动(室颤)1例, 无器质性心脏病者3例。19例患者有药物难治性室性心动过速(室速), 7例有室颤史;14例于术前有电击复律/除颤史;1例于ICD术前装有单极VVI起搏器(Prevail 8085)。19例患者术前接受胺碘酮治疗, 1例服用索他洛尔, 药物能减少但未能彻底预防室速/室颤发作, 术后继续服用。

2.ICD系统简介:Ventak PRxIII 1720与Endotak系列导线相匹配, 导线顶端为翼状起搏电极, 其后约1cm为远端弹簧电极, 距顶端15cm左右为近端弹簧电极, 顶端电极与远端弹簧电极为起搏感知电极, 电击通过二个弹簧电极进行。Jewel系列ICD与Sprint 6932导线相匹配。Sprint导线顶端为一对起搏感知电极, 其后约1cm处为一弹簧电极, 电击是通过弹簧电极和ICD机壳进行的。上述各型号ICD的快速心律失常识别标准均由频率阈值和持续时间所组成, 都有快速心律失常的突发性和稳定性二项辅助标准, 分别用以鉴别窦性心动过速和心房颤动;Micro Jewel 7223Cx尚有EGM宽度标准, 用以鉴别室上性心律失常。快速心律失常的治疗程序均有抗心动过速起搏(ATP)、电击复律(CV)/除颤二种方式。ATP有短阵快速和周长递减刺激二种方式。Micro Jewel 7223Cx最大电击能量为30J, 其它型号为34J;每种型号都可设置三个工作区即一个室颤和二个室速工作区。这些型号的ICD也都有抗心动过缓起搏功能以及储存心内心电图、快速心律失常发生时间、周长、联律间期、治疗方式和效果的功能, 便于术后随访, 正确调整工作参数。

3.ICD埋藏方法:除2例采用静脉全麻外均于局麻下在锁骨下约2~3 cm处做约10 cm长的横切口,切开皮下组织, 钝性分离胸大肌胸骨部与锁骨部,在胸大肌与胸小肌之间做ICD囊袋。经锁骨下静脉穿刺送入电极导线, 先端至右室心尖部。测定R波振幅(要求5mV以上)及起搏阈值(要求小于1mV), 均合要求后,连接导线尾端与体外心脏复律除颤器(ECD)及ICD模拟器并将模拟器置入囊袋。静脉注射安定20~30mg使患者深睡, 通过程控仪诱发室颤, 测定电击阻抗及除颤阈值(DFT), 若DFT≤24J, 电击阻抗在30~130Ω范围则置入ICD, 再诱发室颤, 用所测的DFT除颤成功则逐层缝合肌肉、皮下组织及皮肤。若DFT达不到要求时加用上腔静脉电极。R波振幅不满足要求时, 加用或换用心室螺旋电极。1例术中测定ICD与起搏器的相互影响。结果

8例用Ventak PRxIII, 1例用Jewel 7219, 7例用Jewel Plus7220, 2例用Micro Jewel 7221, 2例用Micro Jewel 7223;7例ICD埋于右胸,13例埋于左胸。

所有患者首选T波同步电击法诱发室颤, 成功率80%(16/20)。诱发成功能量0.6J 9例, 0.8J1例, 1.0J 4例, 1.2J 2例;未成功的4例采用交流电刺激诱发成功。本组DFT18.4±4.7J。1例DFT 34J, 交换电击极性后降为20J;1例DFT大于34J, 加用上腔静脉电极后降为24J。电击阻抗53.7±7.6Ω。R波振幅12.4±6.0mV。1例R波3mV以下, 加用心室螺旋电极专司感知后为6.9mV;1例R波3.5mV, 但术中诱发的3次室颤及3次室速均被及时感知, 未用螺旋电极。起搏阈值0.6±0.2V。起搏阻抗540.0±110.8Ω。1例术中测试观察未发现ICD与单极起搏器间的不良相互作用。讨论

1.埋藏方法及操作要点:ICD自临床应用以来,其功能和物理特点都有了很大改进, 体积和重量不断缩小, 现代的ICD都可以埋置在胸部;经静脉电极的使用避免了开胸手术[1],使埋藏技术大大简化。尽管如此, 目前ICD体积仍然较大, 不宜埋于皮下, 故本组20例全部埋于胸大肌下。分离胸大肌时要注意切勿损伤内侧靠近胸骨处的一束神经血管。在Jewel 和 Sprint 组成的ICD系统中,电击是在弹簧电极与机壳之间进行的, 为使电流最大限度地覆盖心脏, ICD应置于左侧;而在Ventak 和Endotak 组成的ICD系统中, 电击在导线的两个弹簧电极之间进行, 可以不依赖于机壳,因此亦可置于右侧。本组有7例Ventak置于右胸, DFT均符合要求。ICD放入囊袋时应将有字面朝向胸大肌, 反置虽不影响电击效果, 但影响程控和遥测。有1例发生此情况, 将ICD反转后始能正常询问和程控, 这与ICD的技术手册所述不同。

本组20例全部采用单切口手术, 在切口内行锁骨下静脉穿刺送入电极导线。切口宜内侧高、外侧低, 以便与胸大肌纤维平行, 否则影响囊袋入口的大小, 给ICD置入造成困难。锁骨下静脉穿刺点宜尽量靠外并需酌情朝锁骨方向分离皮下组织。

2.诱发室颤及测定DFT: 诱发室颤通常有两种方法, 一种是低能T波同步电击, 该方法诱发室颤速度快, 成功率高, 安全性大[2,3];另一种是用间期为20ms、30ms或50ms的交流电刺激, 交流电刺激时, 患者心跳及呼吸停止, 对患者损伤大。本组均首选T波同步电击, 不成功者再改用交流电刺激。我们体会,T波同步电击诱发的成功率与电击能量及其落在T波的位置有关, 一般从0.6J开始, 不成功时酌增能量, 电击位置在T波顶点附近最易成功。在心室起搏的情况下电击比感知自主心律电击的成功率高, 本组4例电击法诱发未成功者均未进行心室起搏。

DFT是指最小的除颤能量, 如再降低能量, 则除颤无效, 在术中逐步降低能量测定这样的DFT显然是不现实的, 因诱发室颤的次数越多, 患者的生命危险越大。实际上只要用比ICD最大电击能量小10J、除颤成功2~3次即符合要求, 因此ICD术中所测的DFT并非真正的除颤阈值。我们在前5例中首次选用15J,成功后降至10J再测一次, 10J不成功则再重复一次15J;从第6例开始, 用ECD和ICD各测一次15J, 均除颤成功即结束手术。不成功者试测24J, 再不成功加用上腔静脉电极, 尽量减少室颤诱发次数。胺碘酮对DFT的影响,看法尚不一致[4]。本组19例术前服胺碘酮, 有1例术中未诱发室颤, 但次日诱发成功,2例DFT不合要求, 1例加用上腔静脉电极, 1例改变电击极性后符合要求, 说明胺碘酮对诱发室颤及DFT影响不大。而术前服用胺碘酮对减少室速/室颤发作、安全等待ICD埋藏术是必要的。现在, 我国已有患者在ICD术前1日或数日内因室颤而死亡的事件发生, 这与患者精神高度紧张, 体内儿茶酚胺的增加不无关系, 因此术前应酌情给予适量的β受体阻滞剂。

诱发室颤前要做好体外除颤准备, 使用非手持除颤器最为理想, 其优点是不破坏无菌条件, 不需移动X线机头, 除颤迅速, 除颤后能按部就班进行手术。对于局部麻醉的患者, 诱发室颤之前要静脉注射安定让患者深睡, 避免疼痛与恐惧;本组18例采用此法, 术后无1例有痛觉回忆。1例用25mg安定后呼吸轻度抑制, 因此对年龄较大的患者要注意其呼吸状况, 并尽量减小用量。

诱发室颤和测定DFT时, 要扶牢程控仪磁头, 勿使移动位置, 否则可能会导致感知不足, 从而延误治疗。1例在诱发室颤后电击时程控仪磁头移位, ICD不再感知, 而第一次电击又未成功, 只好进行体外除颤, 这样对于患者是不安全的。

3.ICD与起搏器相互影响的观察: 1例术前已有单极起搏器(Prevail 8085)埋于右胸, 必须确认二者无不良相互影响才能置入ICD, 为此术中进行了以下测试观察:(1)将起搏器的输出及脉宽调至最大值, 分别为8.0V及1.5ms, 观察ECD在感知灵敏度为0.3mV时的感知标记, 未发现ECD对起搏脉冲及起搏除极的双感知;(2)置磁铁于起搏器脉冲发生器上使其为VOO工作方式, 通过ECD先后2次T波同步电击诱发室颤, ECD感知灵敏度1.2mV, 均及时感知并一次除颤成功;将ICD置入囊袋后,同样及时感知了诱发的室颤并除颤成功。以上3次诱发室颤后起搏器均有起搏脉冲发放, 但均迅速1次除颤成功, 说明室颤时起搏器未影响ICD感知。ICD除颤后起搏器起搏感知功能未受影响, 只是自动重设工作参数。术后随访表明,ICD与起搏器工作完全正常[5]。

4.ICD工作参数的设定及输入:

测定DFT之前要设定并输入ECD/ICD对室颤的工作参数, 同时也要设定室速和心动过缓起搏的工作参数, 因诱发室颤的方法也可能诱发室速, 而室颤/室速终止后可能发生心动过缓。室颤频率阈值一般设180~200次/分, 室速的频率阈值要比临床发作频率低10~20次/分。室颤只设2次电击除颤, 通常我们第一次用15J, 第二次用最大能量34J, 若第二次无效立即体外除颤。室速选用ATP、低能CV、高能CV的阶梯治疗方案, 180次/分以下的室速采用ATP方式终止成功率较高[6], 可先用短阵快速刺激, 起搏周长从心动过速周长的80%左右开始,每阵4~10个脉冲, 阵间递减10ms, 限定最小周长200ms, 共设4~5阵。第二套ATP程序可选用周长递减的起搏方式, 起搏周长从心动过速周长90%以上开始, 每阵3~4个脉冲, 共设3~4阵, 阵内、阵间均可递减10ms, 电击程序排在ATP之后, 首次能量1~10J, 第二次增加5~10J, 第三次开始可用最大能量。抗心动过缓起搏频率50~60次/分。

DFT测定完毕后要修改ICD工作参数能量: 将室颤治疗程序(4~6次CV)全部打开, 首次除颤能量比DFT高5~10J;第二次开始用最大能量, 最后1~2次改变电击方向。如果术中诱发室速, 根据原来程序的工作效果调整参数。易发生窦性心动过速者加设突发性标准, 有心房颤动的患者加用稳定性标准。

缝合伤口之前应将ICD工作程序暂时关闭, 以免缝合时发生肌电感知, 引起误放电。手术完毕再把ICD工作程序重新打开,并打印全部工作参数。

第二篇:心脏电除颤发展史

心脏电除颤发展史

何庆万智

心肺复苏是20世纪医学领域及社会大层面上普及得最为成功的急救知识、技能。确切地讲,从徒手CPR的创始人PeterSafar教授自1958年开始在欧美各地报告用口对口人工呼吸挽救濒死者生命,到1960年胸外心脏按压被推荐面世之后,在“任何地方”不借助医疗器械、对呼吸、心跳骤停徒手进行的紧急救命术——徒手心肺复苏术正式步入社会,从而构成了现代急救的主题。40年间,以口对口人工呼吸、胸外心脏按压为标志的现代心肺复苏风靡全球,猝死者复苏成功病例像雨后春笋般涌现。研究发现心脏电击除颤带来的复苏成功率更胜于徒手心肺复苏、药物等。电除颤技术已是最基本和最重要的急救手段,在现代心肺复苏中执行的是“尽早除颤”的理念。

电除颤的发展是一个多学科研究人员协作的成功范例,这项临床突破来自于医生、生物医学家、生理学家和两个非医学产业(电力业和电话业)研究者的通力合作。

一、对于电与心室纤颤、电击除颤关系的初步探索阶段

任何关于电除颤技术发展史的研究都无法绕开的一个话题是当代医学对心室纤颤的认识的发展过程,事实上,电除颤的历史是与医学对心室纤颤认识的历史交织发展的。

有文字记载的使用电除颤进行心肺复苏的历史可以追溯到1788年,Kite在英格兰皇家援救溺水协会年鉴上发表了一篇获得银奖的论文,描述了可能是首次成功的电除颤。文章中描述了一个手提式设备,将电无意中击向“所有目击者都认为已经死亡”的溺水女孩,挽救了生命。事实上这套电工用的设备具有许多现代除颤器特征,包括一个贮能的电容器、一个充电调钮和两个电极。早在19世纪中叶,欧洲医学家开始研究电对实验动物和人的影响。

1849年德国生理学家和波动曲线的发明者CarlLudwig教授和学生首次发现并记录了由电刺激诱导产生的快速心肌收缩,导致心脏骤停。1879年,德国医生HugoyonZiemssen首次完成了电流对人心脏影响的重要实验。他提出可以用直流电直击心脏,也可以通过在胸壁上电击来改变心率和节律。这是对心脏具有明显治疗价值的阳性干预,但由于一位英国医生进行动物实验后提出反对意见而一时被认为前途渺茫。

1887年Ludwig的学生MacWilliam首次阐释室颤的病因学及其临床意义。他认为“纤维状收缩”是心室肌肉不规则、无节律的收缩,同时动脉血压显著下降的状态。当心室壁快速颤动而不能将血液向前推动的时候,心肌活动也成为不协调的颤动。两年后,MacWilliam明确地将心脏骤停的原因区分为心脏停搏和心室纤颤。他认为“心脏骤停时仍表现出不规则的、不协调的能量(颤动),而不是静止的”,认为心室纤颤是猝死的重要原因,而且心室纤颤引起的猝死可能在各种心脏状态下发生。但由于当时其他研究者都在关注刚刚兴起的细菌学,所以MacWilliam理论未得到应有的重视,这个发现被后来很多的研究证实和发展,直到1915年,ThomasLewis才肯定的评价MacWilliam是第一个提出室颤是猝死主要原因的学者。另一方面,1880年以后电开始广泛应用,意外触电身亡明显增加,1882年人们发现250伏的交流电可以致命。瑞士生理学家Prevost和Batelli在1899年报道了不同电压和电流经过心脏后所产生的作用,发现一个微弱电刺激可以引起心室纤颤,但是一个更高强度的电刺激也能够终止心室纤颤,并且恢复规则的节律。这一发现使成功救治触电身亡的患者成为可能,但仍有两个难题没有解决,使之难以用于临床:没有复苏时最佳电压和电流强度的人类实验证据;在当时要现场或者很短的时间内提供要求电压下的电流也十分困难。第一份室颤的心电图于1911年发表。20世纪20年代,贝尔试验室开展了对于室颤和除颤的研究,同期还成立了5个委员会研究触电。当时发现室颤是氯仿麻醉时发生猝死的常见原因,在这种致命的心律失常之前往往会发生多形性室性期前收缩和室性心动过速。

二、电击除颤器的发明和推广使用阶段

1933年,约翰·霍普金斯大学的Hooker,Kouwenhoven等开始在狗身上诱发室颤并成功进行交流电体内除颤实验,显示了对实验动物进行胸外电除颤的可能性。1936年,CarlWiggers在美国生理协会的年会上宣布,将人工心脏按压和电除颤相结合可以增加心脏手术中突发室颤后复苏成功的可能性。

1941年,ClaudeBeck报道了两例患者在术中按照研究中的步骤接受了药物和电除颤,但没有成功。1947年,Beck为一位14岁的小孩进行胸部手术,麻醉诱导期出现了窦性心动过速,关胸时突发心脏骤停。Beck为他再次开胸,进行心脏按摩时发现心室在颤动,给予了肾上腺素、洋地黄和普鲁卡因等药物。10分钟后从实验室推来了一台除颤器,心脏骤停45分钟时进行了第一次除颤。60赫兹的交流电直接应用于心脏,几次除颤后心脏恢复了窦性心律,3小时后患儿开始正确回答问题,后来完全康复。这是一次体内除颤治疗,也是首次对人类除颤成功。Beck开设了一系列复苏的课程引导3000多内科医生认识室颤,并教其使用除颤器,他认为除颤器是挽救心脏的好工具。

Beck的除颤器体积庞大笨重,使用来自电源插座的交流电,需要大而重的变压器,更为重要是必须将电击直接作用于心脏。但是成功的案例促进了电击除颤方式很快被临床接受,并且开创了一个对心室纤颤和除颤广泛的基础和临床研究起点,一项将人类室颤转复为窦性心律的技术从此诞生。

到20世纪50年代,除颤器的发展进入一个新时代。1956年和1957年,Kouwenhoven重新进行20年前的研究,用胸壁上的电极对狗进行除颤,Zoll用同样的方式对人进行了除颤。这是第一例体表除颤的报道,首次记载了心脏骤停病人心肺复苏过程中成功使用除颤器,无疑掀开了医学史上崭新的一章。

1960年左右,医学界进行了有关直流电和交流电除颤的争论。Edmark及Lown等人发现直流电或脉冲式的除颤比交流电除颤更加有效、副作用更小。直流电的脉冲式波形在20世纪60年代后得到了进一步的发展。

1961年出现同步电复律。Lown等人发明了应用R波触动同步电除颤,该方法有效地防止了刺激落在心动周期的易损期上,应用100焦耳的同步放电可以终止多种心律失常的发作,故安全可靠。Lown将该法命名为心脏电除颤或电复律法(Cardioversion)。

直流电除颤除了并发症更少外,除颤器使用的电容器可以储存电能,因此可以用电池为除颤器供电,从而大大改善了除颤器的可移动性。1969年第一台可移动除颤器上市,重达33磅。法国通过救护车装备直流电除颤器组成移动式ICU,使院外生存率得以提高。

三、电击除颤器新概念和新设备推出阶段 20世纪70年代,设计出了实验性体内和体外装置来自动检测心室纤颤。1980年2月,第一台体内自动心脏复律器被植入人体。1985年美国FDA批准了自动心脏复律器的使用。此后逐渐出现数代更新、更精密的ICDs,最新的一代还不到4盎司,可以像起搏器一样植入,有8年以上的电池使用寿命,可以除颤、转复室速,以及在心动过缓时自动起搏,还可以储存数小时的感知和心电图信息。同期研究发现,由经过特殊训练的院前急救人员对心脏骤停患者进行除颤,比仅仅接受标准CPR治疗的心脏骤停患者生存率高。至此,AHA提出了对心脏骤停患者在院前应早期开始徒手心肺复苏和早期除颤的建议。为此,20世纪80年代开始进行自动体表除颤器(AutomatedExternalDefibrillator,AED)研发,使未经过医学培训的人员进行电击除颤变得切实可行。1986年,AED开始在院前急救中使用。

以后的10年中AED逐渐被推广,而今新一代自动除颤器以小巧、价廉、易学、易用等特点为世人青睐,最现代化的AED仅重4.4磅。美国心脏病协会、国际复苏联合会、红十字会及健康专家倡导更广泛使用AED,心肺复苏走出医院围墙,走进社会,走人家庭,挽救了不少濒死者的生命,这是近代复苏领域里的一次革命。30年前开创便携式除颤器的先河后,现在除颤器广泛应用已成为不争事实,美国实施公众使用电除颤计划(PAD)后,患者的存活率是以往的2倍16,17]。我们期望着在有灭火器的公共场所就能有AED等急救设备。

2000年5月22日,美国前总统克林顿亲眼目睹其重要幕僚心脏骤停,白宫工作人员在现场立即使用AED电除颤——徒手心肺复苏之后抢救成功,总统为此大发感慨,当日发表致全美人民的讲话:“今天我很高兴地告诉大家一种用于挽救成千上万人们生命的新方法,它使那些受害于最大杀手——心脏骤停的人劫后余生”,“感谢有了一种叫自动体表除颤器的新设备,它就是AED”,“希望在美国所有公众场合配置AED”。

对于心脏骤停病人从骤停到第一次进行电除颤的时间间隔能够缩短1—2分钟,其改善存活率的意义胜过所有药物、气道干预等。基于大量临床研究、社会发展需求、其他学科进步等背景而产生的“2000年国际心肺复苏及心血管急救指南”提出对心脏骤停者应该尽早行电除颤并强烈推荐AED。正是由于该指南的推动,一改以往概念的新型双向波电除颤器得以迅速普及推广。双向波电除颤器除颤具有效能高、损伤小、体积小、重量轻的特点,现在已经开始替换以前的单向波电除颤器。2005年12月23日,美国心脏协会最新的“2005美国心肺复苏及心血管急救指南”面世,依据循证医学的研究成就对电除颤程序和方法提出全新的建议引。回溯历史,在心肺复苏时成功使用除颤器以及电除颤技术的推广使用,是医学史上重要的进步。实验和实践证明电除颤治疗心室颤动是提高心脏骤停患者急救存活率的关键,尽早电除颤也是救治心脏骤停最重要的决定性因素。今天,AHA和ERC等国际组织认可了作为标准治疗的“早期除颤”概念,除颤也成为一项基本生命支持的措施引。但是,电除颤技术还远未达到完美的境地,前面路还很长。也许可以从历史的回顾中学习一些经验,加强多学科合作,进一步完善电除颤技术,拯救更多人的生命。

第三篇:三十三 除颤技术

三十三

除颤技术

【目的】

纠正患者心律失常

【准备】

护士:着装整洁,仪表端庄,会熟练使用除颤仪 环境:宽敞、安静、安全。

用物:除颤仪,导电糊(或浸湿生理盐水的纱布),治疗碗内清洁纱布1块,弯盘。【方法】

1、评估:了解室颤的类型及有无伴随症状。

2、备齐用物,携至床旁。

3、核对床号,准确判断室颤类型,暴露病人胸部。

4、取下电极板,打开除颤仪电源,涂抹导电糊,选择非同步除颤及除颤能量360WS(双向波选择能量200WS),按下充电按钮。

5、准确安放电极板,一个电极板(STERNUM)置于胸骨右缘第二肋间(心底部),另一电极板(APEX)放在左侧腋前线第五肋间(心尖部),电极板与胸壁紧密接触,嘱所有人离开病床,再次确认室颤类型,两手同时按压放电开关、除颤。

6、再次观察心电监护仪,室颤波形有无改变。

7、恢复窦性心律后,继续给予持续心电监护,整理病人及床单位。

8、若除颤无效,继续胸外心脏按压2min,并根据医嘱用药,产生粗颤,然后再重复电击,再次观察。

9、仪器清洁、消毒,指定地点充电、备用。

10、洗手、记录。

第四篇:沉井技术在水电站埋藏式压力管道工程施工中的应用

龙源期刊网 http://.cn

沉井技术在水电站埋藏式压力管道工程施工中的应用

作者:王葵华

来源:《科技创新导报》2012年第20期

摘 要:本文介绍西里水电站埋藏式压力管道施工过程中,采取沉井施工技术进行施工,确保了工程安全和施工安全。

关键词:沉井 水电站 埋藏式 压力管道

中图分类号:TV7 文献标识码:A 文章编号:1674-098X(2012)07(b)-0121-02引言

西里水电站位于四川省阿坝州黑水县境内,是黑水河左岸一级支流毛尔盖河水电梯级规划的最末一级电站。电站为引水式开发,电站闸址位于俄多沟与毛尔盖河汇口下游,厂址位于西里村毛尔盖河右岸,电站装机容量为3×26MW,多年平均年发电量3.634亿kW·h。

电站由首部枢纽、引水系统和地面发电厂房等组成。电站从闸址右岸侧向取水,引水隧洞沿毛尔盖河右岸布置,全长12556.52m。隧洞断面型式平底马蹄型。

厂址为三叠系上统侏倭组(T3zh)深灰~灰色变质砂岩夹砂质板岩及炭质片岩,岩体结构类型为层状,岩层产状N10~30°E/SE∠40~60°,为外倾坡,岩层走向与河流流向呈小~中等角度相交,倾向左岸偏下游。第四系松散堆积层主要分布于河床、阶地和谷坡及坡脚,为冲积、冲洪积、崩坡积及冰水堆积层,谷坡上部及坡顶还分布有残积土。厂址覆盖层厚度44.9~57.6m。厂址区位于占提克至工段倒转向斜东南翼,区内无区域性断裂通过,次级小断层随机分布。据现场调查,物理地质现象主要表现为较强烈的风化卸荷,推测强卸荷水平深度15~25m,弱卸荷水平深度35~55m。

压力管道为地下埋藏式,采用一条主管,经二个卜形岔管分为两条支管分别向厂房内两台机组供水的联合供水布置方式。压力管道内径4.5m,总长375.96m。压力管道与厂房连接段覆盖层埋深为16m。沉井施工技术介绍

沉井是修筑深基础和地下构筑物的一种新型施工工艺。施工时先在地面或基坑内制作开口的钢筋混凝土井身,待其达到规定强度后,在井身内部分层挖土运出,随着挖土和土面的降低,沉井井身靠其自重或在其他工程措施协助下克服与土壁间的摩阻力和刃脚反力,不断下沉,直至设计标高就位,然后进行封底。

沉井施工工艺的优点是:可在场地狭窄情况下施工较深(可达50m以上)的地下工程,且对周围环境影响较小;可在地质、水文条件复杂地区施工;施工不需复杂的机具设备;与大开挖相比,可减少挖、运和回填工程量。沉井工艺一般适用于工业建筑的深坑(料坑、铁皮坑、翻车机室等)、设备基础、水泵房、桥墩、顶管的工作井、深地下室、取水口等工程施工。

西里水电站沉井位于埋藏式压力管道与地面厂房连接处,压力管道从其中间穿过。该沉井平面形状为矩形,断面形式为8m×8.2m,井壁钢筋混凝土厚60cm,顶面设计标高为2135.30m,刃脚底部设计标高为2119.00m,沉井总深度为16.3m。该沉井根据地质和现场实际情况,采用“井中人工干挖取土法”施工,排水下沉,干封底。设计下沉起始标高为2134.8m。沉井制作

3.1 基础

沉井刃脚范围以外30cm基础要夯实,夯实后满铺50cm砂石垫层,整平后用平板振捣器振捣密实。在刃脚基础范围以外30cm做15cm的C10混凝土垫层。

3.2 钢筋制安

a钢筋加工

(1)钢筋现场钢筋制作场加工。

(2)钢筋的表面洁净无损伤,油漆污染和铁锈等在使用前清除干净。带有颗粒或片状老锈的钢筋不得使用。

(3)钢筋平直,无局部弯折,钢筋的调直遵守以下规定:

①采用冷拉方法调直钢筋时,Ⅰ级钢筋的冷拉率不宜大于4%;Ⅱ、Ⅲ级钢筋的冷拉率不宜大于1%;

②冷拔低炭钢丝在调直机上调直后,其表面不得有明显擦伤,抗拉强度不得低于施工图纸的要求。

(4)钢筋加工的尺寸符合施工图纸的要求,加工后钢筋的允许偏差不得超过表1和表2的数值。

钢筋的安装位置、间距、保护层及各部分钢筋大小、尺寸均按照施工图纸的规定进行,其允许偏差控制在《水工混凝土施工规范》(DL/T5144-2001)要求的范围内。为确保混凝土保护层的必要厚度,在钢筋和模板之间设置强度不小于结构设计强度的混凝土垫块,垫块中埋设铁丝与钢筋扎紧,垫块位置互相错开,分散布置。各排钢筋之间用短钢筋支撑,以保证位置准确。

c钢筋连接

现场钢筋的连接采用手工电弧焊焊接或机械连接,为提高工效,节约材料,对于能够采用机械连接的部位,优先考虑机械连接。钢筋接头分散布置,并符合设计及相关规范要求。现场所有焊接接头均由持有相电焊合格证件的电焊工进行焊接,以确保质量。

焊接方法包括:现场竖向或斜向(1∶0.5范围内)钢筋焊接:直径在22mm以下,主要采用搭接手工电弧焊;直径在22mm以上,主要采用接触帮条焊,单面焊10d,双面焊5d,钢筋中心线必须尽量保持一致;直径22mm以下考虑采用搭接接头,同一断面处的钢筋接头数量刃脚处不超过25%,其余区域不超过50%。

3.3 模板施工

首先在垫层上画出刃脚的外围尺寸线,并用木模支模,为保证砼成型质量,木模必须要经过挑选,表面毛糙或不平的不得使用且尽量使用大板的木模以减少接缝。筒内用钢管架做四壁支撑,四周搭设钢管架做外壁支撑,并做环形钢管箍固定木模防止爆模,墙内采用直径12mm的钢筋做间距500×500mm的对拉杆。刃脚模板在砼强度达到75%后方可进行拆除,其余在砼强度达到50%后进行拆除。模板拆除后要分类堆码,方便下次使用。

3.4 混凝土施工

此沉井分三节浇筑,第一节高5.55m,第二节高5.30,第三节高5.45m。混凝土强度:井壁、横梁、拱墙为C25,封底砼垫层为C15,找平层为C20。混凝土总方量为363.93m3。第一节为

112.2m3,第二节为107.74m3,第三节为144.02m3。混凝土采用现场搅拌,砼强度严格按设计挂牌施工,用塔吊吊运至仓位下料。

(1)混凝土分层

由于每节沉井较高,为了避免因下料高度过大造成砼离析,混凝土浇筑采用分层浇筑,每层厚度控制在30~50cm,用窜筒下料。

(2)混凝土振捣

由于沉井井壁较长,为了保证混凝土浇筑质量,混凝土振捣采用2~3台高频率插入式φ50电动振捣器振捣,振动棒各插点的间距均匀,中间不超过振动棒有效作用半径的1.5倍,为保证分层间的结合紧密振捣器插入下一层的深度不得小于50cm;振捣时,振捣器尽量避免接触模板,以防止模板变位。

(3)施工缝面处理

施工缝面处理方法为:在混凝土初凝后至终凝前,使用4~6kg/cm2压力水冲或人工去乳皮和灰浆,直到混凝土表面积水由浑变清,露出粗砂粒或小石为止。冲毛后,清冼干净,保持清洁、湿润,在浇筑上层混凝土前,层面松动物及积水清除干净后均匀铺设一层2~3cm厚的水泥砂浆,砂浆标号比同部位混凝土标号高一级,以铺设砂浆后30min内被覆盖为限,确保新老混凝土结合良好。

(4)砼养护:砼养护采用铺麻袋或薄膜覆盖养护28d。

(5)低温季节浇筑混凝土温控措施。

由于很快就进入冬季浇筑混凝土要采取保温措施,确保混凝土不被冻坏,措施如下:

对骨料设顶棚防雨、防雪和防霜,防止骨料结冰,提高骨料入机口温度,混凝土拌和时用热水拌和,提高混凝土出机口温度;

掺用早强剂,提高混凝土早期强度,增强抗冻能力;

运输过程中用保温薄膜覆盖,防止热量损失;拆模后立即用保温薄膜覆盖表面。并临时封堵孔洞,间歇层面保温至上层混凝土覆盖前为止。沉井下沉施工工艺

此沉井分三节第一节高5.55m,第二节高5.30,第三节高5.45m,分多次下沉到位。

4.1 下沉施工前的准备工作

(1)沉井下沉须对沉井办完验收工作,砼强度应达到设计强度的100%方可就位下沉。

(2)下沉前,先将沉井壁内外底部的模板拆除,保证沉井内外壁平整光滑,无影响下沉的障碍物。

(3)搭设钢质手扶梯,布设照明系统。

(4)沉井四周外测设标高控制点的轴线控制线,按序编号,以便于沉井下沉时进行观测。

(5)沉井下沉所需设备完好到位。

(6)劳动组织分工安排。

(7)测量水准点,技术复核确。

(8)下沉前安全检查,确认无隐患。

4.2 沉井下沉施工

(1)沉井就位后首先在井壁四角设置高程控制点,在井壁中心线内外壁对称设置中线及垂线控制线,便于在下沉过程中及时观测、测量控制。

(2)第一节下沉前先挖去刃脚下方的垫层,四周均匀掏空,中间留1~2m(视地质情况而定)的台,挖土顺序为先中间后四周,待大部分的土都挖完后才挖去台,要均匀的挖,不能一次把一个挖完否则会导致井偏斜,直至井下沉到开挖位置。每次开挖深度及下沉深度控制在20~30cm。后照此循环下沉到设计标高。如发现沉井下沉太慢则可以采取在井壁顶部增加荷载的方法使之下沉。

(3)此沉井土方开挖量为1070m3。沉井下沉中挖土必须均匀对称,挖土主要采用人工开挖,松散部分采用十字镐、钢钎等工具,如遇比较坚硬的基岩或大的孤石即采用钻孔爆破的方法开挖,爆破采用人工钻孔,用YT-28手风钻,造孔直径32mm,药卷直径25mm,为了爆破对沉井产生影响和破坏,爆破采取浅孔松动爆破。采用塔吊或搭设井架提升出土,运至指定地点或临时堆场,沉井周围严禁堆土。

(4)沉井下沉过程中必须严密检测,发现沉井倾偏及时纠正,每次下沉前和下沉后都要做观测记录和施工记录,记录下沉深度,偏移情况,开挖面地质情况。高程观测可用水准仪,垂直度和位移情况可用经纬仪或全站仪观测。及时分析观测记录,便于随时掌握沉井下沉情况,如发现问题便于及时采取措施。

(5)当沉井接近设计标高时须做稳定观测,观测24小时下沉量小于10cm即可。沉井至设计标高时偏差不超过下列值:

(a)水平位移与下沉深度之比不大于1/100,且不大于100mm;

(b)沉井刃脚平均标高与设计标高的偏差不大于80mm。

(6)施工排水

施工排水采用离心式水泵抽水,水排至施工区域外。坑内采用挖集水坑(初步计划

1.5m×1.5m×1m,视渗水情况而定)。

(7)对沉井偏移的控制及补救措施

在下沉过程中对沉井要及时观测,发现沉井偏移要采取补救措施。

在下沉过程中要使沉井均匀的下沉,防止因为多次下沉不均匀而沉井倾偏从而导致轴线偏移。当发现某一方下沉过慢时即沉井沉井有倾偏现象时则开挖时先挖那一侧,使之保持垂直下

沉。当发现轴线已经偏移则在开挖过程中有意识的把偏移轴线一侧多挖,使之倾偏再校正,反复多次使之回到原来的轴线上。沉井封底施工

待沉井下沉稳定后,将底部挖成锅盖形状,将刃脚部位填实。填铺15cm的砂石垫层并夯实后浇筑20cm厚C20砼。在浇筑砼之前底部要保持干燥,不能有积水。封底施工前在基坑底部打入钢管接离心泵抽水,随后将集水坑填实后进行封底施工。待封底砼达到一定强度后用快硬性砼将钢管封堵后填土。土方回填及拱墙施工

封底后,待砼达到一定强度后开始土方回填,填至标高2125m时开始进行拱墙的施工,拱墙施工后砼达到100%强度后开始2125m以上的土方回填。回填土要随填随夯实。每层厚度控制在30~40cm。结语

第五篇:铜渣除氯技术改革总结材料

技术改革总结材料

(采用自产铜渣进行废液脱氯)

2012年由于我公司为降低成本在火法系统中加入次氧化锌,造成大量Cl-进入湿法系统,Cl-由未加入次氧化锌时的500gm/l左右升至650gm/l。大量的Cl-进入湿法系统造成浸出搅拌等不锈钢材料和电解阳极板腐蚀严重,从而提高了我公司的加工成本。

2013年8月份副总经理孟庆雨提议,利用自产铜渣进行脱氯实验在综合回收实验室进行小系统实验。本次实验由生产计划技术部组织人员进行实验。选取5000ml烧杯加入电解废液和自产铜渣,搅拌10—15分钟,过滤、化验。经过孟总、王总的指导和多次小型试验,总结出一套合理、效果明显的方案。在小实验成功后计算液固比为1:2.8(m3:kg)。九月份公司将小实验放置在大系统进行实验性生产。在综合回收试验生产过程中采用单槽废液加入铜渣,经过压滤送至浸出进行使用,在公司领导和车间管理人员、员工的配合下,实验性生产效果显著,加入铜渣废液中Cl-由650mg/l降至180mg/l,但废液中Cu2+有所上升。10月份公司由于大流量生产原因,为不影响综合回收正常生产,王总决定将铜渣脱氯试验改至制酸车间污水处理。

10月份初由电解和制酸车间配合将原有生产管道进行整改,为正式进行废液铜渣脱氯做准备。污水进行铜渣脱氯过程经过多次试验采用连续作业方式,按照每三分钟加入7kg铜渣进行生产,实验效果良好,由于制酸车间人员缺少问题所以铜渣脱氯只能在白天处理。

在我部门密切跟踪、大力指导和污水工作人员的配合下,经过为期一个半月的努力,废液铜渣脱氯取得了可喜的成果。在处理期间总计处理废液10742.69m3,整个湿法大系统中Cl-由650mg/l左右降至现在的350mg/l左右。Cl-的降低缓解了湿法车间由于系统中氯离子过高而造成的搅拌等不锈钢材料和电解阳极板腐蚀过快的现象,从而为湿法车间解决了由于设备损坏的烦恼,为我公司在成本加工费用的降低做出了贡献。

生产计划技术部

2013年12月24日

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jingpin/14/1138725.html

相关内容

热门阅读

最新更新

随机推荐