首页 > 文库大全 > 精品范文库 > 14号文库

药物化学基础综合

药物化学基础综合



第一篇:药物化学基础综合

昆明理工大学硕士研究生入学考试《药物化学基础综合》考

试大纲

适用专业:100701药物化学

第一部分 考试形式和试卷结构

一、试卷满分及考试时间

试卷满分为300分,考试时间为180分钟.

二、答题方式 答题方式为闭卷.

三、试卷的内容结构

有机化学

% 药物化学

% 天然药物化学

四、试卷的题型结构

填空题

选择题

简答题(包括概念解释)

综合题(包括合成题)

第二部分 考察的知识及范围

一、有机化学

1.烷烃,环烷烃:结构,命名,性质和制备 2.烯烃:结构,命名,性质和制备,烯烃的加成反应 3.有机的基本反应机理:E1,E2,E1cb,SN1,SN2 4.炔烃和共轭双烯:结构,命名,性质和制备,反应 5.立体化学:手性,旋光异构,几何异构

6.卤代烃,醇和醚:结构,命名,性质和制备,反应

7.醛和酮:结构,命名,性质和制备,羰基的亲核加成、α活泼氢的反应的机理及应用

8.羧酸及其衍生物,胺:结构,命名,性质和制备,反应 9.芳核的亲电取代:苯的一元亲电取代

10.杂环化合物,酚,醌:结构,命名,性质和制备,反应 11.碳环化合物:周环反应

二、天然药物化学

掌握天然药物中有效成分的结构特点与类型;熟悉各类有效成分的理化性质、提取分离以及鉴别方法;了解典型有效成分的结构测定方法以及生物合成途径。

(一)总论

1.天然药物化学的概念、研究范围、内容与任务。2.学习天然药物化学的目的。

3.了解天然药物化学成分主要的生物合成途径。4.掌握天然药物化学成分常用的提取与分离方法。5.掌握天然药物化学成分结构研究的主要方法与程序。

(二)糖与苷

1.掌握单糖的绝对构型、端基差向异构、环氧结构及构象。2.掌握糖的化学性质:氧化反应,糠醛形成反应等。3.掌握苷键的裂解:酸催化水解反应,酶解等。4.熟悉糖、苷的主要提取、分离方法。5.熟悉糖、苷的分类。

6.熟悉糖的核磁共振谱(糖的1HNR-谱、13C-NMR谱基本特征,苷化位移)。7.了解糖链结构测定的一般程序及方法。

(三)苯丙素类

1.熟悉苯丙素类化合物的结构特点,了解苯丙酸类的基本结构,重要化合物。2.掌握香豆素的结构类型、理化性质(内酯性质等)。

3.掌握木脂素的定义、结构类型,重要化合物的结构、来源和生物活性。

(四)醌类化合物

1.掌握醌类化合物的结构类型及重要的理化性质(酸性及酸性强弱与结构的关系)。

2.了解醌类化合物的提取与分离方法,主要的生物活性。(五)黄酮类化合物

1.掌握黄酮类化合物的定义、基本结构、分类。2.掌握重要黄酮类化合物的结构、来源及生物活性。

3.掌握黄酮类化合物的性质与呈色反应:性状、溶解度、酸碱性、呈色反应(鉴别反应)。

4.熟悉黄酮类化合物的提取:溶剂提取法、碱提取酸沉淀法等;分离方法:聚酰胺柱色谱法、硅胶柱色谱法和凝胶柱色谱、pH梯度萃取法的原理以及它们与结构之间的关系。

5.掌握黄酮类化合物的检识与结构测定:色谱法、紫外光谱、1HNR-谱、13C-NMR谱、MS在结构鉴定中的应用;结构鉴定实例。(六)萜类和挥发油

1.掌握萜的定义和分类,了解萜类化合物的异戊二烯规则和生源。2.单萜类:掌握重要的单萜化合物,环烯醚萜类化合物。

3.倍半萜类化合物:掌握重要的倍半萜化合物及生物活性,愈创木脂类及奥类。4.二萜及二倍半萜类:掌握重要的二萜化合物及生物活性。5.了解萜类化合物的提取与分离

6.挥发油:挥发油的定义、性质、组成、提取分离与鉴定。

(七)三萜及其苷类

1.掌握四环三萜及五环三萜的结构类型、重要的化合物及生物活性。2.掌握三萜类化合物及其苷类的主要理化性质。呈色反应、表面活性、溶血作用、沉淀反应等。3.了解三萜类化合物及其苷类的提取分离方法。(八)甾体及其苷类

1.掌握强心苷及皂苷的结构特点。

2.掌握强心苷及皂苷重要的理化性质与呈色反应。3.了解强心苷及皂苷的提取分离方法。4.了解强心苷及皂苷的生物活性。(九)生物碱

1.掌握生物碱的定义,生物碱在植物界的分布,生物碱的存在形式。2.掌握生物碱的分类与生源关系: 3.掌握生物碱的检识和碱性。

4.了解生物碱合成的基本原理:环合反应,C-N键的裂解。

5.了解生物碱的提取与分离:总生物碱的提取,生物碱的分离,生物碱的提取与分离实例。(十)海洋天然药物

1.了解海洋生物中的主要化合物的类型 2.了解海洋天然产物的研究实例。(十一)天然药物的研究与开发 1.了解天然药物的研究开发程序。

2.熟悉天然药物中的活性成分的研究方法。

三、药物化学

《药物化学》是以化学药物为研究对象,以化学和生物学的理论和方法为主要手段,研究化学药物的结构、合成原理、生物效应,构效关系,以及新药寻找基本途径等的一门科学。

本大纲要求学生掌握药物化学的基本理论、基本知识和基本技能;主要药物的结构及药理作用、合成制备路线、重要药物的构效关系和寻找新药的一些基本理论与途径,为研究生入学后专业教育以及从事药物研究工作奠定基础。熟悉药物化学在药学中的地位和重要性。了解药物化学的新理论和应用的进展。要求能从基本化工原料出发,经多步反应进行1至3个经典化学药物的合成,并具有一定独立性设计实验方案、分析问题和解决问题的能力。

(一)绪论

了解药物的定义,药物的分类,药物化学的研究对象,药物化学的主要内容和任务,药物化学的发展简史,建国后我国药物化学的发展与成就,药物的研究与开发,以及药物的质量与标准。[基本要求] 熟悉药物化学的内容与任务,药物化学的发展简史及药物研究与开发的基本过程。

了解我国药物化学的发展与取得的成就,以及药物的质量与标准。(二)中枢神经系统药物

1.掌握镇静催眠药以及抗癫痫药的分类及代表性药物的名称与结构、结构特征以及合成方法,了解各类药物药效作用机制以及与结构的关系。2.掌握抗精神失常药分类、及代表性药物的名称与结构、结构特征,合成、药物结构及其构效关系。了解中枢兴奋药分类、及代表性药物的名称与结构特征。了解镇痛药分类、及代表性药物的名称与结构、结构特征以及新镇痛药研究方向。(三)外周神经系统药物

1.掌握拟胆碱药以及抗胆碱药的分类及代表性药物的名称与结构、结构特征,合成、药物结构及其构效关系。掌握拟肾上腺素药的分类及代表性药物的名称与结构、结构特征,合成、药物结构及其构效关系。熟悉胆碱受体与肾上腺素受体激动剂与阻断剂结构特征及药效团模型。

2.掌握组胺H1受体分类及代表性药物的名称与结构、结构特征,合成、药物结构及其构效关系。掌握局部麻醉药物的分类及代表性药物的名称与结构、结构特征,合成、药物结构及其构效关系。了解肌肉松驰药发展、分类和各代表药物的名称与结构、结构特征、药物结构及其构效关系。(四)循环系统药物

1.掌握离子通道的药物的分类,代表性药物的名称、结构、结构特点、合成、构效关系以及药理作用特点。熟悉作用于有关受体和有关递质的药物的分类,各类代表性药物的名称、结构、结构特点、合成、构效关系以及药理作用特点。了解NO供体药物作用机制代表性药物的名称、结构特点、药理作 用特点与应用。

2.掌握血管紧张素转化酶抑制剂、利尿剂、HMG-还原酶抑制剂代表药物的名称、结构、结构特点、合成、构效关系以及药理作用。了解单胺氧化酶抑制剂代表性药物的名称、结构特点、构效关系以及药理作用。(五)消化系统药物

1.掌握H2受体拮抗剂以及质子泵抑制剂的发现和发展过程,其代表药物的名称、结构、结构特征、合成、构效关系以及药理作用。掌握止吐药的分类,各代表药物的名称、结构、结构特征、合成、构效关系以及药理作用。2.了解肝胆疾病的辅助治疗药物及其分类、代表药物的名称、结构特点与基本药理。(六)解热镇痛药和非甾体抗炎药

掌握解热镇痛药和非甾体抗炎药分类及代表性药物名称、结构、结构特点、构效关系以及药理作用。了解新的非甾体抗炎药的研究方向。

(七)抗肿瘤药物

掌握烷化剂分类及代表性药物名称、结构、结构特点、合成、构效关系以及药理作用。掌握抗代谢药物及代表性药物名称、结构、结构特点、构效关系以及药理作用。熟悉抗肿瘤抗生素分类、代表性药物和重要抗肿瘤的植物药有效成分。

(八)抗生素

掌握β-内酰胺类抗生素的发展、分类及代表性药物名称、结构、结构特点、合成、构效关系以及药理作用。熟悉四环素类抗生素的发展、结构特点及代表性药物名称、结构、结构特点。熟悉氨基糖甙类、大环内酯类、氯霉素类抗生素的发展、分类及代表性药物名称、结构特点、构效关系以及药理作用。

(九)化学治疗药

掌握喹诺酮类、磺胺类抗菌药以及抗结核药物的发展、分类及代表性药物名称、结构、结构特点、合成、构效关系以及药理作用。掌握抗真菌药物的发展、分类及代表性药物名称、结构、结构特点、合成、构效关系以及药理作用。了解抗病毒药物以及抗寄生虫药物的发展、分类及代表性药物名称、结构特点、药理作用。

(十)利尿药和合成降血糖药

了解利尿药以及合成降血糖药物的结构分类和各代表性药物的名称、化学结 构和特征以及合成。

(十一)激素

掌握甾体激素的发展、分类及代表性药物名称、结构、结构特点、合成、构效关系以及药理作用。了解前列腺素、肽类激素及代表性药物名称、结构、结构特征。

(十二)维生素

掌握维生素分类及代表性药物名称、结构、结构特点、构效关系以及药理作用特点。

本大纲中所谓代表性药物一般系指其所属类别药物在选用教材(每章节)中的列举详述的药物。

第二篇:2014湖南师范大学药物化学及分析基础大纲(本站推荐)

2014年硕士研究生入学考试自命题考试大纲

考试科目代码:[730]

考试科目名称:药物化学及分析基础

一、考试形式与试卷结构

1)试卷成绩及考试时间:

本试卷满分为300分,考试时间为180分钟。2)答题方式:闭卷、笔试 3)试卷内容结构

(一)有机化学部分

50%

(二)分析化学部分

50% 4)题型结构

a: 单选题,20小题,每小题2分,共40分 b: 填空题,10小题,每小题3分,共30分 c: 书写反应方程式,5小题,每小题4分,共20分 d: 简答题,5小题,每小题10分,共50分 e: 机理题,3小题,每小题10分,共30分 f: 合成题,3小题,每小题 10分,共30分 g: 推断题,3小题,每小题 10分,共30分 h: 计算题,5小题,每小题12分,共60分 i: 分析方案设计,1小题,每小题10分,共10分

二、考试内容与考试要求

(一)有机化学

1、绪论 考试内容

有机化合物和有机化学,有机化合物的特点,含碳化合物的结构、化学键及

分子性质关系,酸碱概念,学习有机化学的目的、要求,有机化学发展方向及其未来。

考试要求

了解有机化合物和有机化学;掌握有机化合物的特点;了解有机化合物结构、化学键及分子性质关系;理解酸碱理论;了解学习有机化学的目的、要求。有机化学发展方向及其未来。

2、烷烃

考试内容

常见烷基的中英文名称,命名法(IUPAC),同分异构现象,烷烃分子的成键方式,透视式和纽曼投影式的表示方法,沸点、熔点、相对密度和溶解度,卤代反应的机理,硝化、磺化、氧化、异构化、裂化、裂解反应。

考试要求

掌握常见烷基的中英文名称;掌握命名法(IUPAC);掌握次序规则;理解烷烃分子的成键方式。掌握透视式和投影式的表示方法;了解沸点、熔点、相对密度和溶解度的一般规律;掌握卤代反应的机理;知道硝化、磺化、氧化、异构化、裂化、裂解等反应;了解烷烃同分异构体燃烧热值和结构之间的关系。

3、烯烃

考试内容

烯烃的结构,π键的特点,顺反命名法,Z/E标记法,命名,由烯烃的燃烧热或氢化热推测其相对稳定性,烯烃的物理性质,催化加氢与位阻的关系,烯烃的亲电加成反应:加卤素、加卤化氢、和硫酸的加成、加水、溶剂汞化反应、加次卤酸,烯烃的自由基加成反应,烯烃加成的定位规律,反马氏规则,硼氢化反应,烯烃的氧化,α卤代反应,羰基合成。烯烃的合成。

考试要求

了解烯烃的结构和π键的特点;掌握顺反命名法,Z/E标记法;了解由烯烃的燃烧热或氢化热推测其相对稳定性;理解烯烃的亲电加成反应;理解烯烃的自由基加成反应;理解烯烃加成的定位规律;掌握马氏规则和反马氏规则;了解烯烃的氧化反应;掌握α卤代反应反应;掌握烯烃的制法。

4、炔烃和二烯烃

考试内容

叁键的结构特点,炔烃的命名(IUPAC),炔烃的物理性质,Lindlar催化剂加氢的立体选择性,炔烃的亲电加成(加卤素、卤化氢、水)和亲核加成,硼氢化反应,氧化还原,聚合反应,叁键碳上氢原子的活泼性,炔烃的制法。二烯烃的分类,共轭二烯烃的结构和共轭效应,1,4-加成和双烯合成(立体专一性的顺式加成),二烯烃的聚合。

考试要求

解叁键的结构特点;掌握炔烃的命名(IUPAC);知道炔烃的物理性质;知道Lindlar催化剂加氢的立体选择性;理解炔烃的亲电加成(加卤素、卤化氢、水);知道炔烃的亲核加成;知道炔烃的硼氢化反应、氧化还原、聚合反应;掌握叁键碳上氢原子的活泼性;掌握炔烃的制法;了解二烯烃的分类;理解共轭二烯烃的结构和共轭效应;熟练掌握1,4-加成和双烯合成(立体专一性的顺式加成);知道二烯烃的聚合。

5、脂环烃 考试内容

环烷烃的定义,顺反异构现象,双环化合物的命名,Baeyer张力学说,影响环状化合物稳定性的因素,环己烷椅式构象的表示方法,平伏键和直立键的画法,环己烷椅式构象的翻转和取代环己烷最稳定构象的确定。十氢化萘的构象。

考试要求

了解环烷烃的定义;掌握双环化合物的命名;了解Baeyer张力学说;掌握影响环状化合物稳定性的因素;掌握环己烷椅式构象的表示方法,平伏键和直立键的画法;了解环己烷椅式构象的翻转和取代环己烷最稳定构象的确定;了解十氢化萘的构象。

6、芳烃 考试内容

苯的结构,共振论的规定,芳烃的物理性质(侧重折光率),芳环上的亲电取代反应:卤代、硝化、磺化、弗—克反应。側链上的卤代和氧化反应。邻对位定位基和间位定位基的结构特点,其对苯环的活化和钝化,苯的二元取代物的定位规律,定位规律的应用。联苯及稠环芳烃的命名和性质,萘、蒽、菲的结构和芳性以及一些有手性的芳烃。休克尔规则,环丁二烯和环辛四烯的结构,环丙烯

正离子、环戊二烯负离子、环辛四烯负离子、轮烯的结构。

考试要求

理解苯的结构;知道共振论的规定;知道芳烃的物理性质;熟练掌握芳环上的亲电取代反应;了解側链上的卤代和氧化反应;了解邻对位定位基和间位定位基的结构特点,理解其对苯环的活化和钝化;掌握苯的二元取代物的定位规律;了解萘、蒽、菲的结构和芳性以及一些有手性的芳烃;掌握解休克尔规则及芳向性;环丙烯正离子、环戊二烯负离子、环庚三烯正离子、环辛四烯负离子、轮烯的结构。

7、立体化学 考试内容

同分异构现象的分类法,分子的手性,对映体,分子的四种对称因素:对称面、对称中心、对称轴、更叠对称轴,旋光性、旋光度、比旋光度,外消旋体和内消旋体,费歇尔投影式的投影原则,R/S标记法,含一个、两个或三个手性碳原子的立体异构,环状化合物的立体异构,不含手性碳原子化合物的对映异构(手性中心、其它手性原子、丙二烯型化合物、联苯型)。制备手性化合物的方法及旋光异构在研究自由基加成反应和卤素与烯烃的加成反应历程中应用。

考试要求

了解分子的手性,对映体;了解分子的四种对称因素:对称面、对称中心、对称轴、更叠对称轴;理解旋光性、旋光度、比旋光度、外消旋体和内消旋体的涵义;掌握费歇尔投影式的投影原则和R/S标记法;掌握含一个、两个或三个手性碳原子的立体异构;了握环状化合物的立体异构;了解不含手性碳原子化合物的对映异构(手性中心、其它手性原子、丙二烯型化合物、联苯型);了解制备手性化合物的方法;掌握旋光异构在研究自由基加成反应和卤素与烯烃的加成反应历程中应用。

8、卤代烃 考试内容

卤代烃的普通命名法,系统命名法,卤代烃的分类和制法。卤代烃的化学性质:取代反应、消除反应、活泼金属的反应和还原反应。亲核取代反应历程:SN1和SN2两种历程的影响因素,SN1和SN2的立体化学,离子对机理,邻基参与反应机理及芳环上亲核取代反应机理。消除反应历程:E2和E1两种历程的影响因

素,E2反应的区域选择性,E2反应的立体化学。

考试要求

了解卤代烃的普通命名法,掌握系统命名法;熟悉卤代烃的分类和制法;掌握卤代烃的化学性质;理解SN1和SN2两种历程的影响因素;掌握SN1和SN2的立体化学;理解消去反应历程:E2和E1;掌握E2反应的区域选择性。掌握E2反应的立体化学;了解离子对机理;了解邻基参与反应机理;了解芳环上亲核取代反应机理。

9、醇和酚 考试内容

醇的结构,分类,命名,氢键对物理性质的影响,醇的卤代、脱水、酯化、氧化、脱氢等基本化学性质,取代和消去反应中的重排反应,频哪醇重排。醇的制法:发酵法、卤代烃水解、烯烃加成,及由格式试剂或醛酮制备。1,2-二醇的制法。酚的结构,命名,制法,物理性质,酚的酸性,酚羟基的反应,酚芳环上的反应。酚的制备、来源和用途。

考试要求

了解醇的结构、分类。掌握醇的命名(IUPAC)和制法;理解氢键对沸点和溶解度的影响;掌握醇的卤代、脱水、酯化、氧化等基本化学性质;了解醇取代和消去反应中的重排反应;掌握频哪醇重排;掌握醇制法(卤代烃水解,由烯烃、格式试剂、醛、酮合成醇);了解1,2-二醇的制法;理解酚的结构,掌握酚的命名和制法;掌握酚羟基的反应,酚芳环上的反应。;了解酚的制法和用途。

10、醚和环氧化合物 考试内容

醚的分类和命名,醚的结构和物理性质,醚的化学性质:佯盐的形成、醚键的断裂、过氧化物的生成,克莱森重排,醚的制备:醇分子间脱水、威廉姆逊合成法、烷氧汞化-脱汞反应、乙烯基醚制法。冠醚的结构、命名、性质和合成,环氧化合物:结构、制法、相关反应及开环反应机理,开环反应的立体化学。

考试要求

掌握各种命名法;理解醚的制法:醇分子间脱水、威廉姆逊合成法、烷氧汞化-脱汞反应;了解醚的物理性质;掌握醚的化学性质:生成 盐、醚键的断裂、过氧化物的形成、克莱森重排;了解冠醚的结构、命名、性质和合成;掌握环氧化合物开环反应的机理、开环方向和立体化学;了解环氧化合物的制法。

11、醛和酮 考试内容

醛酮的结构和命名,醛酮的物理性质,醛酮的化学性质:亲核加成反应、与氨衍生物的反应,α-H的反应、氧化反应和还原反应、其他反应。羰基加成反应的立体化学。醛酮的制备:炔烃的水合,胞二卤代物的水解,由烯烃、芳酯烃和醇制备,傅-克酰基化,盖德曼-柯赫反应,罗森孟德还原,酰氯与金属有机试剂作用。α,β-不饱和醛酮的结构、反应及制备。

考试要求

醛酮的结构和命名,醛酮的物理性质;掌握醛酮的化学性质;掌握醛酮亲核加成反应及活性(与HCN、NaSO3、ROH、RMgX、氨的衍生物的加成);掌握醛酮亲核加成反应机理;掌握α-H的反应;掌握醛酮氧化反应(KMnO4/H+、Tollens试剂、Fehling试剂、拜耶尔-维立格氧化);掌握醛酮还原反应(催化氢化、LiAlH4,NaBH4还原、Clemmensen还原、Wolff-kishner-黄鸣龙还原、Meerwein-Ponndorf还原、金属还原、歧化反应);掌握醛酮的Wittig反应,安息香缩合,Beckman重排及与PCl5的反应;掌握羰基加成反应的立体化学;了解α,β-不饱和醛酮的结构、反应及制备;掌握醛酮的制备:炔烃的水合,胞二卤代物的水解,由烯烃、芳酯烃和醇制备,傅-克酰基化,盖德曼-柯赫反应,罗森孟德还原,酰氯与金属有机试剂作用。

12、核磁共振和质谱 考试内容

核磁共振谱的基本原理,质子的屏蔽效应和化学位移,影响化学位移的因素,自旋偶合和自旋裂分,根据简单有机化合物的核磁共振谱推测其结构。质谱的基本原理,质谱所能提供的信息,MS中的M+及裂解方式,烃类和卤代烃的质谱特征。

考试要求

了解核磁共振谱的基本原理;理解质子的屏蔽效应和化学位移;了解自旋偶合和自旋裂分;会根据简单有机化合物的核磁共振谱提供的信息,推测其结构;知道质谱的基本原理,质谱所能提供的信息,MS中的M+及裂解方式。

13、红外与紫外光谱 考试内容

红外光谱的基本原理,影响红外吸收的因素,紫外光谱的基本原理,影响紫外吸收的因素。

考试要求

了解红外光谱的基本原理和特征吸收;掌握影响红外吸收的因素;了解紫外光谱的基本原理和特征吸收;掌握影响紫外吸收的因素。

14、羧酸 考试内容

羧酸的分类,结构,物理性质,羧酸的制法,羧酸的命名(IUPAC)。化学性质:酸性,取代基对酸性影响,羧酸羰基的反应,脱羧反应,α-H卤代反应。二元酸的酸性及热分解反应。羧酸的制法:氧化法,腈的水解,由格式试剂合成及油脂的水解。酚酸的制备,考试要求

了解羧酸的分类。理解羧基的结构;知道羧酸的物理性质;掌握羧酸的命名(IUPAC);掌握羧酸的酸性及影响酸性的因素;掌握羧酸的制法;掌握羧酸还原为醇,脱羧,α-H卤代等反应;掌握二元酸的酸性及热分解反应;了解酚酸的制备;了解羟基酸的制备及化学反应。

15、羧酸衍生物 考试内容

羧酸衍生物的结构,命名,物理性质,酯、酰卤、酸酐、酰胺和腈的取代反应及相互转化,亲核取代反应机理和反应活性。酰氯、酯、腈与金属试剂的反应,酯、酰卤、酰胺和腈的还原反应。酯的热消去反应。

考试要求

了解羧酸衍生物的结构、命名和物理性质;掌握酯、酰卤、酸酐、酰胺和腈的取代反应及相互转化;掌握亲核取代反应机理和反应活性;掌握酰氯、酯、腈与金属试剂的反应;掌握酯、酰卤、酰胺和腈的还原反应;了解酯的热消去反应。

16、羧酸衍生物涉及碳负离子的反应及在合成中的应用

考试内容

氢的酸性和互变异构,酯缩合反应及其在合成中的应用,乙酰乙酸乙酯和丙二酸二乙酯和其它酸性化合物的氢碳负离子的亲核取代反应、亲核加成反应及在有机合成中的应用。

考试要求

了解氢的酸性和互变异构;掌握酯缩合反应及其在合成中的应用;掌握乙酰乙酸乙酯和丙二酸二乙酯和其它酸性化合物的氢碳负离子的亲核取代反应及在有机合成中的应用;乙酰乙酸乙酯和丙二酸二乙酯和其它酸性化合物的氢碳负离子的亲核加成反应及在有机合成中的应用;掌握克脑文盖尔反应、麦克尔加成、瑞佛马斯基反应、达尔森反应及普尔金反应。

17、胺 考试内容

胺的分类,结构,胺的命名,主要物理性质,胺的制法,胺的碱性及影响碱性的因素。胺的制备:卤代烃氨解,盖布瑞尔合成,硝基化合物的还原,腈及其他含氮化合物的还原,霍夫曼重排,布歇尔反应,曼尼许反应。胺的化学性质:胺的烷基化,彻底甲基化和霍夫曼消去反应,叔胺氧化和科浦消去反应,酰化和磺酰化反应,伯、仲、叔胺与HNO2反应。烯胺的生成及其反应。芳胺环上的反应。重氮化反应和重氮盐,重氮甲烷的结构和反应。

考试要求

理解胺的分类、结构;掌握胺的命名(系统命名法与国际命名法有别);理解胺主要的物理性质;掌握胺的制法:卤代烃氨解,盖布瑞尔合成,硝基化合物的还原,腈及其他含氮化合物的还原,霍夫曼重排,布歇尔反应,曼尼许反应;掌握胺的碱性及影响碱性的因素,了解拆分手性胺的方法;理解胺的烷基化,彻底甲基化和霍夫曼消去反应,叔胺氧化和科浦消去反应,酰化和磺酰化反应;掌握伯、仲、叔胺与HNO2反应的区别;掌握芳胺的特殊反应;掌握烯胺的生成及其反应;掌握重氮化反应和重氮盐。

18、协同反应 考试内容

协同反应的特点,前线轨道法,轨道对称性守恒原则,立体选择性的解释。4nπ和(4n+2)π电子体系的电环化,环加成反应的一般规律,氢和碳的[l,j]迁移及

[3,3]迁移。

考试要求

了解协同反应的特点;了解前线轨道法;了解轨道对称性守恒原则;掌握协同反应的立体选择性;了解4nπ和(4n+2)π电子体系的电环化;理解环加成反应的一般规律;氢和碳的[l,j]迁移及[3,3]迁移。

19、碳水化合物 考试内容

碳水化合物的定义和分类,单糖的D/L构型,葡萄糖和果糖的结构和变旋光现象,单糖的氧化反应:Fehling 试剂、Tollens试剂、溴水、硝酸、高碘酸,还原,醚的生成,酯的生成,醛糖的递升和递降,月杀、苷的生成。重要的单糖: 葡萄糖、果糖、核糖、2-去氧核糖。蔗糖、麦芽糖、纤维二糖的结构及确定其构型的实验根据。淀粉的水解和分离,直链淀粉、支链淀粉的结构和性质,糊精的物理性质和淀粉的改性。纤维素的来源,结构,物理和化学加工方法。

考试要求

了解碳水化合物的定义和分类;了解单糖的D/L构型;理解葡萄糖和果糖的结构和变旋光现象;了解单糖的氧化反应:Fehling 试剂,Tollens试剂,溴水,硝酸,高碘酸;了解单糖的还原,醚的生成,酯的生成;了解醛糖的递升和递降;理解月杀,苷的生成;了解重要的单糖:葡萄糖、果糖、核糖、2-去氧核糖;了解蔗糖、麦芽糖、纤维二糖的结构及确定其构型的实验根据;知道淀粉的水解和分离;知道直链淀粉、支链淀粉的结构和性质;知道糊精的物理性质和淀粉的改性;知道纤维素的来源、结构、物理和化学加工方法。

20、杂环化合物 考试内容

杂环化合物分类和命名,五元杂环化合物呋喃、噻吩和吡咯的结构、性质和合成。六元杂环化合物吡啶的结构、性质。稠杂环喹啉和异喹啉的结构、性质。

考试要求

了解杂环化合物分类和命名;掌握五元杂环化合物呋喃、噻吩和吡咯的结构、性质和合成;掌握六元杂环化合物吡啶的结构、性质;了解稠杂环喹啉和异喹啉的结构、性质。

21、氨基酸、蛋白质和核酸 考试内容

氨基酸的结构和命名、性质、反应,α氨基酸的合成。肽的结构和性质,多肽和蛋白质的结构测定,多肽和蛋白质的合成。核酸,脱氧核糖核酸,核糖核酸,蛋白质的生物合成。

考试要求

了解氨基酸的分类;掌握主要氨基酸的命名和性质;了解蛋白质、核酸的组成和性质。

22、脂肪、萜、甾族化合物 考试内容

脂肪、萜、甾族化合物的结构应用。考试要求

了解脂肪、萜、甾族化合物的结构、命名。

(二)分析化学

1、概论 考试内容

分析化学的任务和作用,分析方法的分类,滴定分析法概述。考试要求

了解分析化学的任务和作用,分析方法的分类;明确基准物质、标准溶液等概念,掌握滴定分析的方式、方法,对化学反应的要求;掌握标准溶液配制方法、浓度的表示形式及滴定分析的相关计算。

2、分析试样的采集与制备 考试内容

分析试样的采集、制备、分解及测定前的预处理。考试要求

了解分析试样的采集、制备、分解等相关过程及测定前的预处理。

3、分析化学中的误差与数据处理 考试内容

分析化学中的误差,有效数字及其运算规则,分析化学中的数据处理,显著性检验,可疑值取舍,回归分析法,提高分析结果准确度的方法。

考试要求

了解误差的种类、来源及减小方法;掌握准确度及精密度的基本概念、关系及各种误差及偏差的计算,掌握有效数字的概念、规则、修约及计算;掌握总体和样本的统计学计算;了解随机误差的正态分布的特点及区间概率的概念;掌握少数数据的t分布,并会用t分布计算平均值的置信区间;掌握t检验和F检验;熟练掌握异常值的取舍方法;了解系统误差的传递计算和随机误差的传递计算;掌握一元线性回归分析法及线性相关性的评价;了解提高分析结果准确度的方法。

4、分析化学中的质量保证与质量控制 考试内容

分析全过程的质量保证与质量控制;标准方法与标准物质;不确定度和溯源性。

考试要求

了解分析全过程的质量保证与质量控制;掌握标准方法与标准物质;了解不确定度和溯源性。

5、酸碱滴定法 考试内容

溶液中酸碱反应与平衡,分布分数δ与平衡浓度的计算,质子条件与溶液pH的计算,酸碱缓冲溶液,酸碱指示剂,酸碱滴定基本原理,终点误差,酸碱滴定法的应用。

考试要求

了解活度的概念和计算,掌握酸碱质子理论;掌握酸碱的离解平衡,酸碱水溶液酸度、质子平衡方程;掌握分布分数的概念及计算以及pH值对溶液中各存在形式的影响;掌握缓冲溶液的性质、组成以及pH值的计算;掌握酸碱滴定原理、指示剂的变色原理、变色范围及指示剂的选择原则;掌握各种酸碱滴定曲线

方程的推导;熟悉各种滴定方式,并能设计常见酸、碱的滴定分析方案。

6、络合滴定法 考试内容

分析化学中常用的络合物,络合物的平衡常数,副反应常数和条件稳定常数,金属离子指示剂,络合滴定法的基本原理,准确滴定与分别滴定判别式,络合滴定中酸度的控制,提高络合滴定选择性的途径,络合滴定方式及其应用。

考试要求

理解络合物的概念,理解络合物溶液中的离解平衡的原理;熟练掌握络合平衡中的副反应系数和条件稳定常数的计算;掌握络合滴定法的基本原理和化学计量点时金属离子浓度的计算;了解金属离子指示剂的作用原理;掌握提高络合滴定的选择性的方法;学会络合滴定误差的计算;掌握络合滴定的方式及其应用和结果计算。

7、氧化还原滴定法 考试内容

氧化还原平衡,氧化还原滴定原理,氧化还原滴定法中的预处理,氧化还原滴定法的应用,氧化还原滴定结果的计算。

考试要求

理解氧化还原平衡的概念,了解影响氧化还原反应的进行方向的各种因素;理解标准电极电势及条件电极电势的意义和它们的区别,熟练掌握能斯特方程计算电极电势;掌握氧化还原滴定曲线,了解氧化还原滴定中指示剂的作用原理;学会用物质的量浓度计算氧化还原分析结果的方法,掌握氧化还原终点的误差计算方法;了解氧化还原滴定前的预处理,熟练掌握KMnO4法、K2Cr2O4法及碘量法的原理和操作方法。

8、沉淀滴定法和滴定分析小结 考试内容

沉淀滴定法,沉淀滴定终点指示剂和沉淀滴定分析方法,滴定分析小结。考试要求

掌握莫尔法、佛尔哈德法、法扬司法的滴定条件和应用范围。

9、重量分析法 考试内容

重量分析概述,沉淀的溶解度及其影响因素,沉淀的类型和沉淀的形成过程,影响沉淀纯度的主要影响因素,沉淀条件的选择,有机沉淀剂的分类。

考试要求

了解重量分析的基本概念;熟练掌握沉淀的溶解度的计算及影响沉淀溶解度的因素;了解沉淀的形成过程及影响沉淀纯度的因素,掌握沉淀条件的选择;熟练掌握重量分析结果计算。

10、吸光光度法 考试内容

物质对光的选择性吸收和光吸收的基本定律,分光光度计及吸收光谱,显色反应及影响因素,吸光光度分析及误差控制,其它吸光光度法和吸光光度法的应用。

考试要求

了解光的特点和性质;熟练掌握光吸收的基本定律,理解引起误差的原因;了解比色和分光光度法及其仪器,掌握显色反应及其影响因素;熟练掌握光度测量和测量条件的选择;掌握吸光光度法测定弱酸的离解常数、络合物络合比的测定、示差分光光度法和双波长分光光度法等应用。

11、分析化学中常用的分离和富集方法 考试内容

气态分离法,沉淀与过滤分离法,萃取分离法,离子交换分离法,色谱分离法,电分离法,气浮分离法,膜分离法等。

考试要求

了解分析化学中常用的分离方法,掌握其基本原理及应用。

12、色谱分析法 考试内容

气相色谱法分离原理,色谱有关术语,色谱法基本理论,气相色谱仪(气相

色谱检测器),气相色谱固定相及其选择,气相色谱分离条件的选择,定性和定量分析,气相色谱分析方法及应用,毛细管气相色谱,高效液相色谱的主要类型及分离原理,分配色谱,液固色谱,离子交换色谱和离子色谱,尺寸排斥色谱,高效液相色谱仪,高效液相色谱应用。

考试要求

掌握色谱法的基本理论:塔板理论和速率理论;明确基线、峰高、保留值、分配比、区域宽度等基本术语的含义;掌握色谱分析定性及定量方法;掌握柱效、选择性、分离度的基本概念及影响因素;了解色谱仪的仪器构造,掌握气相色谱固定相,气相色谱分离条件及检测器的选择原则,了解气相色谱分析方法及应用;掌握高效液相色谱法的基本原理及分类,了解高效液相色谱仪的仪器构造,了解不同分离方法的应用对象。

13、电分析 考试内容

电分析化学方法分类,电极电位及标准电极电位、工作电极、参比电极、辅助电极等基本术语与概念,电分析方法的特点及应用,电位分析法的原理,膜电位的产生,离子选择性电极的作用原理,扩散电位、电位选择性系数等基本概念,电位测量仪器的基本结构及原理,电位分析的定量分析方法和应用范围,普通极谱法的基本原理,极谱波的形成,扩散电流方程及主要影响因素,极谱分析中的干扰电流及消除方法,极谱波的类型及方程式,单扫描极谱法的特点等。

考试要求

了解有关电池,电极反应,电池图解式的表示规则。明确标准电极电位与条件电位的概念,掌握奈斯特公式的应用;掌握电位分析法,伏安法和极谱法,电解和库仑分析法的基本原理;明确金属基指示电极,膜电位与离子选择电极,物质的传递与扩散控制过程,扩散电流理论等的定义;了解离子选择电极的类型,离子选择电极的性能参数,离子选择电极的特点及应用,电解分析方法的应用。

14、光谱分析 考试内容

电磁辐射的波动性,辐射的量子力学性质,光谱分析分类。(1)原子光谱

原子发射光谱法的基本原理,等离子体、电弧和火花光源,摄谱法,光电光谱法,原子发射光谱仪,原子发射光谱定性、定量、半定量及应用;原子吸收光谱的基本原理,原子吸收光谱仪,原子化的方法,原子吸收分析中的干扰效应及抑制方法,原子吸收分析定量分析方法;原子荧光光谱法。

(2)分子光谱

紫外—可见分子吸收光谱法,光吸收定律,紫外及可见分光光度计,化合物电子光谱的产生,紫外—可见分子吸收光谱法的应用;红外吸收光谱法基本原理,产生的条件,基团频率和特征吸收峰,影响基因频率位移的因素,红外光谱仪,试样的制备,红外吸收光谱法的应用。

考试要求

了解电磁辐射的性质。掌握电磁辐射与物质相互作用的原理。(1)原子光谱

了解原子光谱法的基础,元素光谱化学性质的规律性,明确原子化的方法及试样的引入,掌握原子吸收光谱、原子发射光谱、原子荧光光谱的基本原理及分析中的干扰效应及抑制方法,了解原子吸收分析的实验技术及仪器基本结构。

(2)分子光谱

掌握紫外一可见分子吸收光谱法,红外吸收光谱法等的基本原理。掌握光吸收定律,红外特征吸收峰,影响基因频率位移的因素。了解相关分析仪器的构造。能够应用以上分析方法解决一些实际问题。

三、参考书目

[1] 王积涛, 张宝申, 王永梅, 胡青眉, 有机化学(第二版), 南开大学出版社, 2003.[2] 武汉大学主编, 分析化学(第五版), 上册, 高等教育出版社, 2006.[3] 朱明华, 胡坪, 仪器分析(第四版), 高等教育出版社, 2008.

第三篇:化学药物论文

化 学 药 物 在 生 活 中 的 应 用

化学与环境科学学院 应用化学专业092班

091104077

来苗

化学药物在生活中的应用

摘要:我们将从天然矿物、动植物中提取的有效成分,以及经过化学合成或生物合成而制得的药物,统称为化学药物。结构明确的具有预防、治疗、诊断疾病,或为了调节人体功能、提高生活质量、保持身体健康的特殊化学品。化学药物是以化合物作为其物质基础,以药效发挥的功效(生物效应)作为其应用基础的。,关键字:化学应用 化学药物 生活

引言:化学药物可以是无机的矿物质或合成的有机化合物,从天然药物中提取得到的有效单体,以及通过发酵方法得到的抗生素等等。在日常生活中应用广泛。正文:药物是人类为了繁衍生息而对自然界的改造过程中发现和发展起来的,而对药物的化学研究则和化学、生物学、医学的研究和发展密切分不开的。

本文将带大家一起了解化学药物在医学,生物学,工业等的应用。

(一)医学

生活中,化学药物与大家息息相关。

举一个很简单,日常到处可见的一种药物。诺氟沙星胶囊。首先。听到名字,大家一定都不陌生。估计使用最多的情况就是拉肚子的时候吃几粒便可缓解。诺氟沙星胶囊,诺氟沙星,其化学名为1-乙基-6-氟-1,4-二氢-4-氧代-7-(1-哌嗪基)-3-喹啉羧酸。分子式:C16H18FN3O3 分子量:319.24。为氟喹诺酮类抗菌药,具广谱抗菌作用,尤其对需氧革兰阴性杆 菌的抗菌活性高,诺氟沙星体外对多重耐药菌亦具抗菌活性。对青霉素耐药的淋病奈瑟菌、流感嗜血杆菌和卡他莫拉菌亦有良好抗菌作用。诺氟沙星为杀菌剂,通过作用于细菌DNA螺旋酶的A亚单位,抑制DNA的合成和复制而导致细菌死亡。可见,在此领域,化学药品同样的至关重要。

(二)形体学

相信大家对自己的体形也有不满意的时候。所以很多时候,大家会选择减肥。而同时减肥药的安全性对大家来说,是一个很关注的问题。因此,针对这个问题,化学药物在此处就起了很重要的作用。有可能这些化学药物里的所含的化学成分是对大家有毒的,身体百害而无一用的。因此,可以通过检测里面的化学成分来确保减肥药对大家的安全性。所以针对快筛检测减肥类中成药、保健食品和食品中非法添加酚酞、西布曲明等化学成分的方法。可以用快筛试管法和薄层色谱法检测产品所含的酚酞、西布曲明等化学成分,并通HPLC-DAD/HPLC-MS确认。

(三)农业

在农业生产过程中,化学药物的作用就应用于各种领域。首先,科学家做过化学药物防治霉菌及对香菇菌丝生长的影响试验最后得出的几轮是,在香菇生产中要从全局考虑利弊而慎重选用药物。至于除抑制效果较好的一种化学药物外,另外的几种是否对霉菌抑制作用不大或效果较差,还有待今后进一步研究探讨。其次,还有化学药物诱导油菜(B.nap“)孤雌生殖初探的实验比较著名,经观察杂种诱导产生的孤雌生殖一代植株在一些性状上出现了分离.作者初步考查的某些性状,结果与分析基本一致,还有待进一步分析验证。

(四)犯罪学

“惩治毒品犯罪,遏制毒品蔓延”,已成为世界各国刻不容缓的共同责任。随着时代的推移,海洛因、可卡因等麻醉药品没有停止对人们的危害,冰毒、摇头丸、K粉等精神药品又被越来越多的人们所接受。按毒品的生产过程,通常可将毒品分为三种:天然毒品化学合成毒品,即直接用化学品在一定条件下经过化学反应合成,如冰毒(也可由麻黄素半合成制造)、摇头丸等。随着科技的发展,毒品的制造已逐渐由半合成向化学合成转型,易制毒化学品在毒品的制造过程中的作用越来越重要。因此,从某种意义上来说:没有易制毒化学品就没有毒品。虽然毒品是负面的,但是,这是化学药品的应用,科技的进步。

(五)工业

科学家有采用试管液体法在浏定混合稀土及2种化学药物添加剂奎乙酸、阿散睦单独抗菌活

性的基拙上将它们与常用杭生素金车素、土霉素进行组合联用,浏定其联用后的抗菌效果。结果表明,混合稀土、阿长酸与金霉素、土霉素联合应用后呈相加作用或无拮抗作用。奎乙睦与金牢素、土宾素联合作用后有较好的协同抗菌作用。试脸结果时于畜教业生产中将化学药物添加荆与扰生素之合使用其有一定参考价值。

以上便是化学药物在日常生活中的应用的一部分,可以是治疗疾病,可以是检测合格产品的指标,可以是危害社会的毒品等等,但是,指的说明的是,对社会的各种贡献。

参考文献:1,第19卷1999年第2期6月微生物学杂志研究报告混合稀土及化学药物添加剂与抗生素联合应用的抗菌效果测定(王学仁左玉萍)2,食品与药品 Food and Drug 2011年第 13卷第 03期减肥类中成药、保健食品、食品中非法添加酚酞、西布曲明等化学成分的快筛检测方法研究(黄诺嘉,杨文红,黄奕滨)3,1984年四川大学学才又第4期化学药物诱导油菜(B.nap“)孤雌生殖初探(周宏治)4,化学药物防治霉菌及对香菇菌丝生长的影响试验初报(陶佳喜,陈年友,肖全福,王宝林,李大红)5,生物技术通BIOTECHNOLOGY BULLETIN2010年第11期化学药物对与人遗传病相关的DNA重复序列不稳定性的影响(赵宏宇,蔡禄,赵秀娟,王晶妍,陈元秀,刘水峰)6,徐叔石.药理实验方法学.北京:人民R生出版社.1994,1340一1361.7,中华人民共和国兽药典委员会编.中华人民共和国曾药典.1985,徐叔石.8,中国药理学与毒理学杂志 2008年6月。

第四篇:药物化学实验报告

北京广播电视大学医药分校

北京广播电视大学《药物化学》实验报告

姓名:学号:组别:_2013秋药学班_____成绩:

【实验名称】阿司匹林(乙酰水杨酸)的合成【实验时间】2014年5月25日

【实验目的】 1.通过本实验,掌握阿司匹林的性状、特点和化学性质

2.熟悉和掌握酯化反应的原理和实验操作

3.巩固和熟悉重结晶的原理和实验方法

4.了解阿司匹林中杂质的来源和鉴别

【实验材料】[仪器] 锥形瓶、温度计、水浴器、铁架台及其附件、玻璃棒、吸滤瓶(布氏漏

斗)、漏斗、滤纸、烧杯、结晶皿,量筒

[药品] 水杨酸、醋酐、浓硫酸、乙酸乙酯、饱和碳酸氢钠、1%三氯化铁溶液、浓盐酸

【实验操作】(1)脂化

1.在250ml的锥形瓶中,加入水杨酸2.0g,醋酐5.0ml;

2.然后用滴管加入5滴浓硫酸,缓缓地旋摇锥形瓶,使水杨酸溶解。

3.将锥形瓶放在水浴上慢慢加热至85~90℃,维持温度10min。

4.然后将锥形瓶从热源上取下,使其慢慢冷却至室温。

5.在冷却过程中,阿司匹林渐渐从溶液中析出。

6.在冷到室温,结晶形成后,加入水50ml;

7.并将该溶液放入冰浴中冷却。

8.待充分冷却后,大量固体析出,抽滤得到固体,冰水洗涤,并尽量压紧抽干,得到阿司匹林粗品。

9.空气中风干,称重,粗产物约1.8g。

(2)初步精制

1.将阿司匹林粗品放在150ml烧杯中,加入饱和的碳酸氢钠水溶液25ml

2.搅拌到没有二氧化碳放出为止(无气泡放出,嘶嘶声停止)。

3.有不溶的固体存在,真空抽滤,除去不溶物并用少量水(5-10ml)洗涤。

4.另取150ml烧杯一只,放入浓盐酸4-5ml和水10ml,将得到的滤液慢慢地分多次倒入烧杯中,边倒边搅拌。

Redstone7054@126.com 主讲人:李云巍1

5.阿司匹林从溶液中析出

6.将烧杯放入冰浴中冷却,抽滤固体

7.用冷水洗涤,抽紧压干固体

8.转入表面皿上,干燥约1.5g。mp.133~135℃。

9.取几粒结晶加入有5mL水的小烧杯中,加入1-2滴1%三氯化铁溶液,观察有无颜色反

(3)精制

1.将所得的阿司匹林放入25ml锥形瓶中加入少量的热的乙酸乙酯(约3-4ml)

3.在水浴上缓缓地不断地加热直至固体溶解,如不溶,则热滤

4.滤液冷却至室温,或用冰浴冷却,阿司匹林渐渐析出

5.抽滤得到阿司匹林精品

6.称重、测熔点。mp.135~136℃。

(4)鉴别试验

1.取本品0.1g,加水10ml,煮沸,放冷,加三氯化铁一滴,即呈紫色

2.取本品0.5g,加碳酸钠试液10ml,煮沸2分钟后,放冷,加过量的稀硫酸,即析出白色沉淀,并发生醋酸臭气。

五、注意事项

1.前体药物是指将有生物活性的药物分子与前体基团键合,形成在体外无活性的化合物。在体内经酶或非酶作用,重新释放出母体药物的一类药物。

2.仪器要全部干燥,药品也要实现经干燥处理,醋酐要使用新蒸馏的,收集139~140℃的馏分。.注意控制好温度(水温90℃)

4.几次结晶都比较困难,要有耐心。在冰水冷却下,用玻棒充分磨擦器皿壁,才能结晶出来。

5.由于产品微溶于水,所以水洗时,要用少量冷水洗涤,用水不能太多。

6.有机化学实验中温度高反应速度快,但温度过高,副反应增多。

7.使用抽滤泵的时候注意,先拔下抽滤管再关泵。

8.产品尽量抽压紧实。

【结论与讨论】

【思考题】

第五篇:药物化学学习心得

药物化学学习心得

姓名:刘文晶 班级:药学0901班 学号:U200913187

药物化学学习心得

药物化学是一门发现与发明新药,合成化学药物,阐明药物化学性质,研究药物分子与机体细胞之间相互作用规律的综合性学科,是药学领域中重要的带头学科。

药物化学的任务主要是研究药物的化学结构,理化性质,作用靶点,作用与副作用,合成与其在机体内的代谢以及构效关系。

本学期药物化学在学习过程中是以药物作用为分类进行分章节学习的,主要有以下几章: 一.中枢神经系统药物:

中枢神经系统药物按照治疗的疾病分类为:镇静催眠药,抗癫痫药,抗精神病药,抗抑郁药,镇痛药和中枢兴奋药,这些药物对中枢神经活动分别起到抑制或兴奋的作用,用于治疗相关的疾病。1.镇静催眠药:

镇静催眠药可使服用者处于安静或思睡状态,催眠药可引起类似正常的睡眠,这两类药物并无本质上的区别。通常使用较小剂量时产生镇静作用,较大剂量时产生催眠作用,大剂量时则产生麻醉,抗惊厥作用,统称为镇静催眠药。主要分为巴比妥类和苯二氮卓类,代表药物分别为异戊巴比妥和地西泮。2.抗癫痫药物:

癫痫是因为大脑就神经元过度兴奋,产生阵发性放电,所导致的慢性,反复性和突发性的大脑功能障碍,除了在镇静催眠药中使用的异戊巴比妥和地西泮等之外还有例如苯妥英钠,卡马西平等药物可用于治疗癫痫。

3.抗精神病药:

抗精神失常药是用于治疗精神疾病的一类药物。根据药物的主要适应症,抗精神失常药可分为抗精神病药,抗抑郁药,抗躁狂症药和抗焦虑药,抗精神病药可在不影响意识清醒的条件下,控制兴奋,躁动,幻觉及妄想等症状,主要药物按结构分类可分为:噻吩类,硫杂蒽类,苯二氮卓类,丁酰类,代表药物有:盐酸氯丙嗪,氯氮平,盐酸吗啡,盐酸哌替啶,盐酸美沙酮,咖啡因等 二.外周神经系统药物:

主要是根据交感神经节前纤维,副交感神经节后纤维,运动神经纤维都以乙酰胆碱为神经递质,交感神经节后纤维主要以去甲肾上腺素为神经递质,是肾上腺素能神经。因此外周神经系统药物主要是以结构类似物的竞争抑制为主,按结构分类可分为:拟胆碱药,抗胆碱药,拟肾上腺素药和抗肾上腺素药,以及组胺受体H1拮抗剂。1. 拟胆碱药

拟胆碱药是一类具有与乙酰胆碱相似作用的药物。按其作用环节和机制的不同,可分为胆碱受体阻断药和胆碱受体激动剂,胆碱受体激动药分为M受体激动和N受体激动,但临床主要使用M受体激动剂,代表药物有氯贝胆碱。

2.乙酰胆碱酯酶抑制剂:

乙酰胆碱酯酶抑制剂,又称抗胆碱酯酶药,因不与胆碱能受体直接相互作用,属于简介拟胆碱药,其可可逆或不可逆性的结合乙酰胆碱酯酶,使乙酰胆碱的分解受阻。其代表药物有:溴新斯的明。

3.抗胆碱药:

对于因胆碱能神经系统过度兴奋造成的病理状态,可用抗胆碱药物治疗。目前临床使用的抗胆碱药主要是阻断乙酰胆碱与胆碱受体的相互作用,既胆碱受体拮抗剂,按照药物的作用部位及胆碱受体亚型选择性的不同,抗胆碱药通常分为M受体拮抗剂,N受体拮抗剂,其代表药物有:硫酸阿托品,溴丙胺太林。

4.肾上腺素受体激动剂:

目前临床应用的肾上腺素能神经系统药物,包括拟肾上腺素药和抗肾上腺素药,主要是作用于肾上腺素受体这一环节,或合并其他使用,其代表药物有:肾上腺素,盐酸麻黄碱。

5.组胺H1受体拮抗剂:

组胺药物依其作用环节的不同可分为组胺脱羧酶抑制剂,阻断组胺释放的抗组胺药,组胺H1受体拮抗剂和组胺H2受体拮抗剂。在这一节中只讨论了H1受体拮抗剂,H1受体拮抗剂竞争性阻断组胺的H1效应,临床主要用于皮肤黏膜变态反应疾病,代表药物有:马来酸氯苯那敏。

6.局部麻醉药:

局麻药的化学结构通常包括三个部分:亲酯性芳香环,中间连接功能基,亲水性胺基。中间部分连接芳环和胺基的功能基是酯键时即为脂类,是酰胺键时则为酰胺类,其他结构如胺基醚,胺基酮等,主要代表药物有:盐酸普鲁卡因,盐酸利多卡因

三.循环系统药物:

细血管系统药物种类繁多,它不仅需要对冠心病,脑卒中或脑栓塞等疾病本身进行药物治疗,而且与这些疾病有关的症状如高血压,心律不齐,心衰,心绞痛等以及形成这类疾病的病因,如高血脂,动脉粥样硬化等因素也需要用药物治疗,主要分为β-受体阻滞剂,钙拮抗剂,血管紧张素1转化酶抑制剂等。1.β受体阻滞剂:

根据已经应用的各种结构的β受体阻滞剂对这两种受体亚型亲和力的差异,可以将β受体阻滞剂分为以下三种类型:非选择性β受体阻滞剂,选择性β受体阻滞剂,非典型β受体阻滞剂,其代表药物有:盐酸普萘洛尔。

2.钙通道阻滞剂:

钙通道阻滞剂是在细胞膜生物通道水平上选择性的阻滞钙离子经细胞膜上的钙离子通道进入细胞内,减少钙离子浓度的药物。该类药物早期被称为钙离子拮抗剂,其代表药物有:硝苯地平,盐酸地尔硫卓。

3.钠钾通道阻滞剂:

作用机制与钙通道阻滞剂相同,都为阻滞细胞膜上的钠钾通道,是膜外钠离子,钾离子难以进入细胞,代表药物有:硫酸奎尼丁。

4.血管紧张素转化酶抑制剂与血管紧张素2受体抑制剂:

若ACE受到抑制,则Ang2合成受阻,内源性Ang2减少,导致血管紧张,血压下降,Ang2可以视为Ang2受体的配体,而Ang2受体阻滞剂,则可阻滞Ang2的生理作用,同时可使血管扩张,血压下降。故血管紧张素转化酶抑制剂和Ang2受体拮抗剂能有效的降低血压,其代表药物有:卡托普利,氯沙坦。

5.NO供体药物:

NO之所以能获得人们如此的重视,主要有三个原因:①NO作用的广泛性,②NO是体内第一个发现的气体信使分子,③NO调控剂在新药研究方面具有潜在的价值,其代表药物有:硝酸甘油。

6.强心药:

强心药是指能选择性增强心肌收缩能力,临床上主要用于治疗充血性心力衰竭的药物,故强心药又可称为正性肌力药,其主要代表药物有:地高辛。

7.调血脂药:

人体高血脂症主要是VLDL和LDL增多,高血脂症与动脉粥样硬化有着密切的关系,维持相对恒定的浓度,是预防和消除动脉粥样硬化的关键,因而调酯药可被看作为心血管疾病的预防药物,其代表药物有:洛伐他汀。四.消化系统药物:

消化系统的疾病种类多而常见,用药繁杂。根据临床治疗的目的,消化系统药物可分为抗溃疡药,助消化药,止吐药,催吐药,泻药和止泻药,肝病辅助治疗药,胆病辅助治疗药等几大类。1.抗溃疡药:

传统的溃疡治疗方法是用抗酸药,如氢氧化铝,氧化镁等弱碱性无机化合物中和胃酸。该类药物的副作用较大,疗效不确切。在近代揭示了胃酸分泌的机制后,通过抑制胃酸的分泌,出现了新的抗溃疡药物,代表药物有:西咪替丁,盐酸雷尼替丁,奥美拉唑

2.止吐药:

呕吐是人体的一种本能,但是频繁而剧烈的呕吐可能妨碍进食,导致失水,电解质紊乱等,故呕吐也可进行对症治疗 3.促动力药:

促动力药是促使胃肠道内容物向前移动的药物,临床上用于治疗胃肠道动力障碍的疾病,如反流症状,反流性食管炎,消化不良,肠梗阻等。五.解热镇痛药和非甾体抗炎药:

1.解热镇痛药:

解热镇痛药从化学结构上主要可分为水杨酸类,苯胺类及吡唑酮类。这三类化合物的解热镇痛作用的发现都比较早,临床上应用的时间均较久。水杨酸类因其副作用较低,应用广泛。苯胺类及吡唑酮类由于毒副作用大,应用不如水杨酸类广泛,有些品种已经在临床上停止使用,代表药物有:阿司匹林,对乙酰氨基酚。2.非甾体抗炎药:

非甾体抗炎药的研究起始于19世纪末水杨酸钠的使用,阿司匹林一直作为抗炎药物在临床上使用。从20世纪40年代起抗炎药物的研究和开发得到迅速的发展,代表药物有:羟布宗,吲哚美辛,布洛芬,吡罗昔康。六.抗肿瘤药:

抗肿瘤药物按作用靶点可以分为:以DNA为作用靶点的药物,如烷化剂和抗代谢物,以有丝分裂过程为作用靶点的药物,如某些天然活性成分。按其作用机制和来源可分为生物烷化剂,抗代谢物,抗肿瘤抗生素,抗肿瘤植物药有效成分,抗肿瘤金属化合物。1.生物烷化剂:

生物烷化剂也称烷化剂,是抗肿瘤药物中使用的最早,非常重要的一类药物。而这类药物在体内形成缺电子活泼中间体或其他具有活泼的亲电性基团化合物,进而与生物大分子中含有丰富电子的基团进行亲电反应共价结合,使其丧失活性或使DNA分子发生断裂,其代表药物有:盐酸氮芥,环磷酰胺,顺铂。

2.抗代谢药物:

抗代谢药物通过抑制DNA合成所需的叶酸,嘌呤,嘧啶及嘧啶核苷途径,从而抑制肿瘤细胞的生存和复制所必须的代谢途径,导致肿瘤细胞死亡。其代表药物有:氟尿嘧啶。七.抗生素:

抗生素是微生物的此生代谢产物或合成的类似物,在体外能抑制微生物的生长和存货,而对宿主不会产生严重的毒副作用。在临床应用上,多数抗生素是抑制病原菌的生长,用于治疗细菌感染性疾病。除了抗感染外,某些抗生素还具有抗肿瘤活性,用于肿瘤的化学治疗,有些抗生素还具有免疫抑制和刺激植物生长的作用。1.β-内酰胺抗生素:

β-内酰胺抗生素是指分子中含有四元的β-内酰胺环的抗生素。分为青霉素类抗生素和头孢类抗生素。β-内酰胺环是该类抗生素发挥生物活性的必须基团,在和细菌作用时,β-内酰胺环开环与细菌发生酰化作用,抑制细菌的生长。而同时由于β-内酰胺是由四个原子组成,环的张力较大,使其化学性质不稳定,易发生开环导致失活,代表药物有:青霉素钠,头孢,阿莫西林等。

八.化学治疗药物:

1.喹诺酮类抗菌药:

从化学结构上分类,它们可分为①萘啶酸类,②增林羧酸类,③吡啶并嘧啶羧酸类,④喹啉羧酸类,其代表药物有:吡哌酸,诺氟沙星,2.磺胺类药物及抗菌增效剂:

磺胺类药物的发现,开创了化学治疗的新纪元,使死亡率很高的细菌性传染疾病得到了控制。这类药物的发现,应用到作用机制学说的建立,只有短短十几年的时间。尤其是作用机制的阐明,开辟了一条从代谢拮抗寻找新药的途径,对药物化学的发展起到了重要的作用,其代表药物有:磺胺嘧啶,甲氧苄啶。

3.抗病毒药物:

因为病毒没有自己的代谢系统,必须依靠宿主细胞进行复制,某些病毒又极易变异。理想的抗病毒药物应能有效的干扰病毒的复制,又不影响正常细胞代谢,但遗憾的是至今还没有一种抗病毒药物可达到此目的。许多抗病毒药物在达到治疗剂量时对人体亦产生毒性,其代表药物有:盐酸金刚烷胺,利巴韦林,齐多夫定,阿昔洛韦。九.激素:

激素药物主要用于治疗由于内分泌失调引起的疾病,在人体内以发现的激素种类很多,但它们中许多尚不能成为药物,在结构尚未阐明之前,经常把它们称为活性因子,只有那些性质相对稳定,有治疗价值且能工业生产的才有可能成为激素药物。1.甾体激素:

甾体激素是一类四环酯化合物,具有环戊烷多氢菲母核。按其药理作用,可分为性激素及皮质激素,根据其化学结构,可分为雌甾烷,雄甾烷及孕甾烷三大类,甾体激素是在研究哺乳动物内分泌系统时发现的内源性物质,在维持生命,调节性功能,对机体发育,免疫调节,皮肤疾病治疗及生育控制方面等,具有极重要的医药价值,其代表药物有:雌二醇,丙酸睾酮,醋酸甲羟孕酮,氢化可的松,醋酸地塞米松。

学习过程中虽然对各种类型的药物有了基本的了解,但是却对新药设计与开发的内容知之甚少,而且对于各种药物在市场上的商业价值以及走向等都鲜有提及,希望能在以后的学习中进一步掌握这些知识。

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jingpin/14/1105612.html

相关内容

热门阅读

最新更新

随机推荐