第一篇:医学免疫学知识总结
简答题
简述T及B淋巴细胞执行特异性免疫的原理。
T细胞和B细胞执行特异性免疫,首先需要被抗原性物质活化,而不同的抗原性物质如病原体成分具有不同的抗原性。一个T或B细胞只表达一种TCR或BCR,只能特异性地识别并结合一种Ag分子,所以,T及B细胞对抗原的识别具有严格的特异性,而在T及B细胞的整个群体中,则能识别各种各样的抗原分子。由于T及B细胞识别抗原的特异性,决定其执行的免疫应答的特异性。
1.淋巴细胞再循环的方式及作用。
全身的淋巴细胞与淋巴结内的淋巴细胞不断进行动态更换。淋巴细胞经淋巴循环及血液循环,运行并分布于全身各处淋巴器官及淋巴组织中,经淋巴循环,经胸导管进入上腔静脉,再进入血液循环。血液循环中的淋巴细胞及各类免疫细胞在毛细血管后微静脉处穿过高壁内皮细胞进入淋巴循环。从而达到淋巴循环和血液循环的互相沟通。
淋巴细胞的再循环,使淋巴细胞能在体内各淋巴组织及器官处合理分布,能动员淋巴细胞至病原体侵入处,并将抗原活化的淋巴细胞引流入局部淋巴组织及器官,各类免疫细胞在此协同作用,发挥免疫效应。
1.简述三类免疫性疾病。
三大类免疫性疾病即超敏反应性疾病,免疫缺陷病和自身免疫病。
超敏反应性疾病:由抗原特异应答的T及B细胞激发的过高的免疫反应过程而导致的疾病。分为速发型和迟发型。前者由抗体介导,发作快;后者由细胞介导,发作慢。
免疫缺陷病:免疫系统的先天性遗传缺陷或后天因素所致缺陷,导致免疫功能低下或缺失,易发生严重感染和肿瘤。
自身免疫病:正常情况下,对自身抗原应答的T及B细胞不活化。但在某些特殊情况下,这些自身应答T及B细胞被活化,导致针对自身抗原的免疫性疾病。
1.简述抗体与免疫球蛋白的区别和联系。(1)区别:见概念。
(2)联系:抗体都是免疫球蛋白而免疫球蛋白不一定都是抗体。原因是:抗体是由浆细胞产生,且能与相应抗原特异性结合发挥免疫功能的球蛋白;而免疫球蛋白是具有抗体活性或化学结构与抗体相似的球蛋白,如骨髓瘤患者血清中异常增高的骨髓瘤蛋白,是由浆细胞瘤产生,其结构与抗体相似,但无免疫功能。因此,免疫球蛋白可看做是化学结构上的概念,抗体则是生物学功能上的概念。
1.2.试述免疫球蛋白的主要生物学功能。
(1)与抗原发生特异性结合 :主要由Ig的V区特别是HVR的空间结构决定的。在体内表现为抗细菌、抗病毒、抗毒素等生理学效应;在体外可出现抗原抗体反应。(2)激活补体:IgG(IgG1、IgG2和IgG3)、IgM类抗体与抗原结合后,可经经典途径激活补体;聚合的IgA、IgG4可经旁路途径激活补体。
(3)与细胞表面的Fc 受体结合:Ig经Fc段与各种细胞表面的Fc受体结合,发挥调理吞噬、粘附、ADCC及超敏反应作用。
(4)穿过胎盘:IgG可穿过胎盘进入胎儿体内。
(5)免疫调节:抗体对免疫应答具有正、负两方面的调节作用。
1.简述免疫球蛋白的结构、功能区及其功能。
(1)Ig的基本结构:Ig单体是由两条相同的重链和两条相同的轻链借链间二硫键连接组成的四肽链结构。在重链近N端的1/4区域内氨基酸多变,为重链可变区(VH),其余部分为恒定区(CH);在轻链近N端的1/2区域内氨基酸多变,为轻链可变区(VL),其余1/2区域为恒定区(CL)。VH与VL内还有高变区。
(2)免疫球蛋白的肽链功能区:Ig的重链与轻链通过链内二硫键将肽链折叠,形成若干个球状结构,这些肽环与免疫球蛋白的某些生物学功能有关,称为功能区。IgG、JgA、JgD的H链有四个功能区,分别为VH、CH1、CH2、CH3;IgM、IgE的 H 链有五个功能区,多一个CH4区。L链有二个功能区,分别为VL和CL。VL与VH是与相应抗原特异性结合的部位,CL与CH1上具有同种异型的遗传标志,IgG的CH2、IgM的CH3具有补体C1q的结合部位,IgG的CH3可与某些细胞表面的Fc受体结合,IgE的CH2和CH3可与肥大细胞和嗜碱性粒细胞的IgE Fc受体结合。
1.简述单克隆抗体技术的基本原理。
1975年,KÖhler和Milstein 首创了B淋巴细胞杂交瘤细胞和单克隆抗体技术。其基本原理是:使小鼠免疫脾细胞与小鼠骨髓瘤细胞融合,形成杂交瘤细胞,每一个杂交瘤是用一个B细胞融合而产生的克隆。这种细胞既保持了骨髓瘤细胞大量无限增殖的特性,又继承了免疫B细胞合成分泌特异性抗体的能力。将这种融合成功的杂交瘤细胞株体外扩增或接种于小鼠腹腔内,则可从上清液或腹水中获得单克隆抗体。用这种方法制备的抗体具有结构高度均一,特异性强,无交叉反应等特点。
1.简述补体系统的概念及其组成。(1)概念:见名词解释1。
(2)补体系统由30多种成分构成,按其生物学功能分为三类:
a.固有成分:存在于体液中、参与活化级联反应的补体成分,包括C1~C9、MBL、B因子、D因子。
b.补体调节蛋白:以可溶性或膜结合形式存在。包括备解素、C1抑制物、I因子、C4结合蛋白、H因子、S蛋白、Sp40/40、促衰变因子、膜辅助因子等。c.补体受体:包括CR1~CR5、C3aR、C4aR、CaR等。简述补体系统的生物学功能。
(1)溶菌和溶细胞作用:补体系统激活后,在靶细胞表面形成MAC,从而导致靶细胞溶解。(2)调理作用:补体激活过程中产生的C3b、C4b、iC3b都是重要的调理素,可结合中性粒细胞或巨噬细胞表面相应受体,因此,在微生物细胞表面发生的补体激活,可促进微生物与吞噬细胞的结合,并被吞噬及杀伤。
(3)引起炎症反应:在补体活化过程中产生的炎症介质C3a、C4a、C5a。它们又称为过敏毒素,与相应细胞表面的受体结合,激发细胞脱颗粒,释放组胺之类的血管活性物质,从而增强血管的通透性并刺激内脏平滑肌收缩。C5a还是一种有效的中性粒细胞趋化因子。(4)清除免疫复合物:机制为:①补体与Ig的结合在空间上干扰Fc段之间的作用,抑制新的IC形成或使已形成的IC解离。②循环IC可激活补体,产生的C3b与抗体共价结合。IC借助C3b与表达CR1和CR3的细胞结合而被肝细胞清除。
(5)免疫调节作用:①C3可参与捕捉固定抗原,使抗原易被APC处理与递呈。②补体可与免疫细胞相互作用,调节细胞的增殖与分化。③参与调节多种免疫细胞的功能。
1.简述细胞因子共同的基本特征。
①细胞因子通常为低相对分子质量(15~30kD)的分泌性糖蛋白;②天然的细胞因子是由抗原、丝裂原或其他刺激物活化的细胞分泌;③多数细胞因子以单体形式存在,少数可为双体或三体形式;④细胞因子通常以非特异性方式发挥作用,也无MHC限制性;⑤细胞因子具有极强的生物学效应,极微量的细胞因子就可对靶细胞产生显著的生物学效应;⑥细胞因子的产生和作用具有多源性和多向性;⑦细胞因子作用时具有多效性、重叠性以及拮抗效应和协同效应,从而形成复杂的网络;⑧多以旁分泌和(或)自分泌及内分泌形式在局部或远处发挥作用。
1.细胞因子有哪些主要的生物学功能 ? ★★
细胞因子的主要生物学作用有:①抗感染、抗肿瘤作用,如IFN、TNF等。②免疫调节作用,如IL-
1、IL-
2、IL-
5、IFN等。③刺激造血细胞增殖分化,如M-CSF、G-CSF、IL-3等。④参与和调节炎症反应。如:IL-
1、IL6、TNF等细胞因子可直接参与和促进炎症反应的发生。
1.简述细胞因子及其受体的分类。
细胞因子共分六类:白细胞介素、干扰素、肿瘤坏死因子、集落刺激因子、生长因子和趋化性细胞因子。
细胞因子受体共分五个家族:
① 免疫球蛋白基因超家族,IL-
1、IL-
6、M-CSF、SCF、FGF等受体属于此类。
② I型细胞因子受体家族,又称红细胞生成素受体家族或造血因子受体家族。IL-2~IL-
7、IL-
9、IL-
11、IL-
13、IL-
15、GM-CSF、G-CSF受体属于此类。③ I型细胞因子受体家族,这类受体是干扰素的受体。
④ III型细胞因子受体家族,又称肿瘤坏死因子受体家族,是TNF及神经生长因子受体。⑤ 趋化性细胞因子受体家族,这一家族是受体是G蛋白偶联受体。
1.HLA复合体的结构及产物:根据HLA复合体各位点基因及其编码产物结构和功能的不同,将HLA复合体分为三个区域,即I类基因区、Ⅱ类基因 区和介于I类与Ⅱ类基因区之间的Ⅲ类基因区。(1)I类基因区内含经典HLA的A、B、C基因位点和新近确定的非经典 HLA的E、F、G、H等基因位点。HLA的A、B、C各位点基因编码 HLA I类抗原分子的重链(α链),与β2m结合共同组成人类的 HLA I类抗原。
(2)Ⅱ类基因区包括HLA的DP、DQ、DR三个亚区和新近确定的HLA的DN、DO、DM三个亚区。HLA的DP、DQ、DR三个亚区编码相应的HLA的DP、DQ、DR抗原的α链和β链,组成HLA Ⅱ类抗原。
(3)Ⅲ类基因区位于I类与Ⅱ类基因区之间,内含众多编码血清补体成分和其他血清蛋白的基因,主要基因产物为 C4、C2、B因子、肿瘤坏死因子和热休克蛋白70等。
1.HLA 的多态性主要由以下原因所致:①复等位基因:HLA复合体的每一个位点均存在为数众多的复等位基因,这是HLA高度多态性的最主要原因。②共显性:HLA复合体中每一个等位基因均为共显性,从而大大增加了人群中HLA表型的多样性。
2.MHC 抗原分子的主要生物学功能有 :
(1)引起移植排斥反应。器官或组织细胞移植时,同种异体内MHC抗原可作为异己抗原刺激机体,发生强烈的移植排斥反应。
(2)抗原提呈作用。在抗原提呈细胞内,MHC分子通过抗原肽结合区与胞浆内加工处理过的抗原肽结合,形成MHC-抗原肽复合体,经转运表达于抗原提呈细胞表面,可被具有相应抗原受体的淋巴细胞识别结合,完成抗原呈递,启动免疫应答。
(3)制约免疫细胞间的相互作用即MHC限制性。抗原提呈细胞与T细胞相互作用时,只有当二者MHC分子一致时,T细胞才能被激活,即细胞间相互作用的MHC限制性。CD4+Th细胞与抗原提呈细胞之间相互作用受MHCⅡ类分子的制约,CD8+Tc细胞与肿瘤或病毒感染细胞之间的相互作用受MHC I类分子的制约。
(4)诱导胸腺细胞分化。MHC分子参与胸腺细胞(前T细胞)在胸腺中的分化和发育。通过阴、阳性选择后,胸腺产生对自身抗原无反应性的T细胞,形成天然自身免疫耐受;同时亦产生对非己抗原具有应答作用的T细胞,T细胞对非已抗原的应答作用受MHC分子制约。
1.HLA I 类和Ⅱ类抗原的结构、组织分布、功能及与抗原肽相互作用特点: HLA抗原类别 肽结合 结构域 表达特点 组织 分布 功能 与抗原肽相互作用特点 Ⅰ类(A、B、C)α1+α2 共显性 所有 有核 细胞
表面 识别和提呈内源性抗原肽,与辅助受体CD8结合,对CTL的识别起限制作用 Ⅰ类抗原凹槽两端封闭,接纳的抗原肽长度有限,为8-10个氨基酸残基,锚定位为P2和P9 Ⅱ类(DR、DQ、DP)α1+β1 共显性 APC 及活 化的 T 细
胞 识别和提呈外源性抗原肽,与辅助受体CD4结合,对Th的识别起限制作用 Ⅱ类抗原凹槽两端开放,接纳的抗原肽长度变化较大,为13-17个氨基酸残基,锚定位为P1、P4、P6和P9 1.白细胞分化抗原的生物学作用有:⑴参与细胞生长、分化、正常组织结构的维持⑵参与免疫应答过程中免疫细胞的相互识别,免疫细胞抗原识别、活化、增值和分化,以及免疫功能的发挥⑶造血细胞的分化和造血过程的调控⑷参与炎症的发生、血栓形成和组织修复⑸肿瘤的恶化和转移。
2.粘附分子的分类和功能:粘附分子根据结构特点分为整合素家族、选择素家族、免疫球蛋白超家族、钙粘蛋白家族,此外还有一些尚未归类的粘附分子。功能:⑴参与免疫细胞的免疫发育与分化。如胸腺细胞发育成熟过程中涉及到胸腺细胞上CD8和CD4分子与胸腺基质细胞上的MHCⅠ、Ⅱ类抗原间的相互作用;T细胞活化分化过程中必须有粘附分子提供的细胞间协同刺激信号的存在。⑵通过白细胞与血管内皮细胞上的粘附分子之间的作用参与炎症过程 ⑶通过淋巴细胞上的淋巴细胞归巢受体与内皮细胞上的地址素之间的作用参与淋巴细胞归巢。
3.参与T细胞识别、粘附及活化的CD分子的种类、结构特点、识别配体及其功能有: 种类 结构特点 识别配体 功能
CD3 五聚体,与TCR组成TCR/CD3复合物 稳定TCR结构、传递活化信号 CD4 单体分子 MHCⅡ类分子 增强TCR与APC或靶细胞的亲和性,并参与信号传导。
CD8 异源二聚体 MHCⅠ类分子 增强TCR与APC或靶细胞的亲和性,并参与信号传导。
CD2 单体分子 CD58(LFA-3)增强T细胞与APC或靶细胞的粘附及CD2分子所介导的信号传导
CD58 单体分子 CD2 促进T细胞识别抗原,参与T细胞信号传导 CD28 同源二聚体 B7 提供T细胞活化的辅助信号 CD152 同源二聚体 B7 对T细胞活化有负调节作用
CD40L 三聚体 CD40 是B细胞进行免疫应答和淋巴结生发中心形成的重要条件
1.参与B细胞识别、粘附及活化的CD分子的种类、结构特点、识别配体及其功能有: 种类 结构特点 识别配体 功能
CD79 异源二聚体 与mIg组成BCR复合物,介导B细胞信号传导 CD19 单体分子 促进B细胞激活
CD21 单体分子 C3片段EB病毒 增强B细胞对抗原的应答,参与免疫记忆 CD80/CD86 单体分子 CD28 提供T细胞活化的辅助信号
CD40 单体分子 CD40L 是B细胞进行免疫应答和淋巴结生发中心形成的重要条件
1.IgFc受体的分类和功能分别为:
(1)FcγR:是IgG Fc受体,又可分为① F cγR Ⅰ(即CD64):是高亲和力IgG Fc受体,可介导ADCC,清除免疫复合物,促进吞噬细胞对颗粒性抗原的吞噬作用,促进吞噬细胞释放IL-
1、IL-6和TNF-α等介质;② FcγR Ⅱ(即CD32):是低亲和力IgG Fc受体,可介导中性粒细胞和单核巨噬细胞的吞噬作用和氧化性爆发;③FcγRⅢ(即CD16):是低亲和力IgG Fc受体,可与FcεRγ链或与TCR-CD3δ链相连,传递活化信号,并可介导促进吞噬和ADCC作用。
(2)FcαR(即CD89):是IgA Fc受体,能结合IgA,介导吞噬细胞的吞噬作用、超氧产生、释放炎症介质以及发挥ADCC。
(3)FcεR:是IgE Fc受体,可分为:①FcεR Ⅰ:是IgE高亲和力受体,可介导Ⅰ型超敏反应;② FcεRⅡ(即CD23):是IgE低亲和力受体,可以不同方式参与IgE合成的调节。
1.T细胞主要的表面分子及其主要作用是 表面分子 主要作用
TCR 特异性识别由MHC分子提呈的抗原肽 CD3 稳定TCR结构,传递活化信号
CD4/CD8 增强TCR与APC或靶细胞的亲和性,并参与信号传导。CD28 LFA-2(CD2)提供T细胞活化的第二信号
可与CD58结合,能介导T细胞旁路激活途径,还能介导效应阶段的激活途径 CD40L 可表达于部分活化的T细胞表面,可与B细胞表现CD40结合,产生的信号是B细胞进行免疫应答和淋巴结生发中心形成的重要条件。
丝裂原受体 与丝裂原结合后,直接使静止状态的T细胞活化增殖转化为淋巴母细胞
1.T细胞亚群分类及其功能。
T细胞是异质性群体,分类方法有很多:按CD分子不同可分为CD4+和CD8+两个亚群;按TCR分子不同可分为TCRαβ和TCRγδT细胞;按功能不同可分为辅助性和抑制性T细胞;按对抗原的应答不同可分为初始T细胞、抗原活化过的T细胞、记忆性T细胞。功能:(1)CD4+辅助性T细胞(Th):增强免疫应答;活化细胞,增强其吞噬或杀伤功能;
(2)CD8+杀伤性T细胞(Tc):特异性直接杀伤靶细胞,与细胞免疫有关;(3)抑制性T细胞(Ts):抑制免疫应答
(4)迟发型超敏反应性T细胞(TD):主要为Th1,还有CTL,Th1分泌多种淋巴因子,引起以单核细胞浸润为主的炎症反应,CTL可以直接破坏靶细胞。Th1细胞与Th2细胞各分泌的细胞因子及其主要作用是:
Th1细胞分泌IL-
1、IFN-γ、TNF-β等细胞因子,引起炎症反应或迟发型超敏反应;Th2细胞分泌IL-
4、IL-
5、IL-
6、IL-10等细胞因子,诱导B细胞增殖分化合成并分泌抗体,引起体液免疫应答。
1.Ts细胞既可以是CD4+T细胞又可以是CD8+T细胞。
2.T细胞与B细胞:表面的抗原受体不同,T细胞是TCR而B细胞是BCR;初始T细胞与记忆T细胞: 二者表面CD45分子的异构型不同,初始T细胞表达CD45RA,而记忆T细胞表达CD45RO;Th1细胞与Th2细胞:二者分泌的细胞因子不同,Th1细胞分泌IL-
1、IFN-γ,与TDH和TC细胞的增殖分化成熟有关,可促进细胞介导的免疫应答;而Th2细胞偏向于分泌IL-
4、IL-
5、IL-
6、IL-10,与B细胞增殖成熟和促进抗体生成有关,可增强抗体介导的免疫应答。
1.CD8+杀伤性T细胞破坏靶细胞的机制有2种:细胞裂解和细胞调亡。
⑴细胞裂解:CD8+杀伤性T细胞特异性识别靶细胞表面的抗原肽:MHC分子复合物后,通过颗粒胞吐释放穿孔素,使靶细胞膜上出现大量小孔,膜内外渗透压不同,水分进入胞浆,靶细胞胀裂而死;
⑵细胞调亡:有2种不同机制:①Tc活化后大量表达FasL,可与靶细胞表面的Fas结合,通过Fas分子胞内段的死亡结构域激活caspase,在激活一系列caspase,引起死亡信号的逐级转导,最终激活内源性DNA内切酶,使核小体断裂,并导致细胞结构毁损,细胞死亡;②Tc细胞颗粒胞吐释放的颗粒酶,可借助穿孔素构筑的小孔穿越细胞膜,激活另一个caspase10,引发caspase级联反应,使靶细胞调亡。1.NK1.1+T细胞表型的特点有:表达NKR.P1C(NK1.1),通常为CD4-CD8-,TCR多为TCRαβ。其功能有: ⑴细胞毒作用:①可分泌穿孔素使靶细胞溶解; ②胸腺中的该细胞可通过FasL/Fas途径诱导CD4+CD8+双阳性的胸腺细胞调亡;
⑵免疫调节作用:①在受某些抗原刺激时,如寄生虫感染,可分泌大量IL-4,可诱导活化的Th0细胞分化为Th2细胞,参与体液免疫应答或诱导B细胞发生Ig类别转换,产生特异性IgE;②在病毒抗原作用下,可产生IFN-γ,与IL-12共同作用,可使Th0细胞转向Th1细胞,增强细胞免疫应答。
1.B细胞的特点:
在哺乳动物,B细胞在骨髓中发育成熟,成熟B细胞可定居于周围淋巴组织,是体内唯一能产生抗体的细胞,B细胞表面可表达多种膜分子,如:BCR、CD79a、CD79b、CD19、CD20、CD40、CD80、CD86、CD35、CD21、CD22、CD32、MHC分子、丝裂原受体等等。B细胞的主要生物学功能。
(1)产生抗体,参与特异性体液免疫;(2)作为APC,提呈抗原;
(3)产生细胞因子,参与免疫应答炎症反应及造血过程。
1.B1细胞与B2细胞的主要特征: 性质 B1 B2 初次产生时间 胎儿期 出生后 分布 胸腔腹腔 外周免疫器官 CD5 + -
BCR mIgM MigM,mIgD 识别抗原 TI抗原 TD抗原 更新方式 自我更新 由骨髓产生 自发性Ig的产生 高 低
特异性 多反应性 单特异性,尤在反应后 分泌的Ig的同种型 IgM>IgG IgG>IgM 免疫记忆 易形成 不易形成
1.简述BCR多样性产生的机制。BCR是通过其V区抗原结合部位来识别抗原的。BCR V区,尤其是V区CDR1、CDR2和CDR3氨基酸序列的多样性,就决定了对抗原识别的多样性。造成BCR多样性的机制主要有:①组合造成的多样性:编码BCR重链 V区的基因有V、D、J三种,编码轻链V区的有V和J两种基因,而且每一基因又是由很多的基因片段组成的。这样,重链基因的组合和重链基因与轻链基因的组合,将产生众多不同特异性的BCR。②连接造成的多样性:编码BCR CDR3的基因位于轻链V、J或重链V、D、J片段的连接处,两个基因片段的连接可以丢失或加入数个核苷酸,从而显著增加了CDR3的多样性。③体细胞高频突变造成的多样性:在BCR各基因片段重排完成之后,其V区基因也可发生突变,而且突变频率较高,因而增加其多样性。
1.简述多能造血干细胞的主要特征及其表面标志。
造血干细胞是存在于骨髓中的一类原始的造血细胞,具有自我增生和分化功能,是各种血细胞的共同祖先,可增生分化产生多种功能不同的血细胞。其主要的表面标志为:CD34+和CD117+。
1.何谓阳性选择?其生理意义是什么?:
阳性选择是T细胞在胸腺内分化成熟过程中经历的一个发育阶段。胸腺内CD4+、CD8+双阳性的T细胞与胸腺上皮细胞表达的自身肽-MHC-I或MHC-II类分子以适当亲和力结合。其中与MHC-I类分子结合的双阳性细胞CD8分子表达升高,而CD4分子表达下降;与MHC-II类分子结合的双阳性细胞CD4分子表达升高,而CD8分子表达下降,选择性发育分化为CD4+或CD8+的单阳性细胞。而未能与胸腺上皮细胞表达的自身肽-MHC-I或MHC-II类分子结合的或亲和力过高的双阳性的T细胞则发生凋亡。此过程称为阳性选择。阳性选择的结果,使双阳性T细胞发育为成熟单阳性T细胞时获得了MHC限制性。
1.何谓阴性选择?其生理意义是什么?
在T细胞发育的阳性选择后,单阳性的T细胞与胸腺树突状细胞、巨噬细胞表达的自身肽-MHC-I或MHC-II类分子发生高亲和力结合而被清除或不能活化。只有那些未能与胸腺树突状细胞、巨噬细胞表达的自身肽-MHC-I或MHC-II类分子结合的T细胞才能发育分化为成熟的T细胞,此过程称为阴性选择。阴性选择清除了自身反应性T细胞克隆,是T细胞形成自身耐受的主要机制。
1.简述T、B、NK细胞形成自身耐受的机制。
T细胞自身耐受的形成是在T细胞发育阶段经阴性选择后产生的。双阳性的T细胞在胸腺皮质、皮髓交界处以及髓质区与胸腺树突状细胞、巨噬细胞表达的自身肽-MHC-I类或II类分子发生高亲和力结合后而被清除,这样保证了机体T细胞库中不含有针对自身成分的细胞克隆。
B细胞自身耐受的形成是在B细胞分化过程中产生的。当早期B细胞逐渐发育为不成熟B细胞时,细胞膜表面表达mIgM,此时如接受自身抗原刺激,则易形成自身耐受。NK细胞在发育成熟过程中可表达具有抑制作用的杀伤细胞抑制受体(KIR)和CD94分子等。这些抑制性受体通过识别自身的MHC-I类分子使NK细胞处于受抑制状态,发生自身耐受。1.决定抗原免疫原性的因素有哪些?怎样才能获得高效价的抗体?
决定抗原免疫原性的因素有:①异物性:异物性是抗原分子免疫原性的核心。一般来讲,抗原必须是异物,而且抗原与机体的亲缘关系越远,其免疫原性越强。但某些自身物质在一定情况下,免疫系统也可将其视为异物而发生免疫应答。②抗原分子的理化性状:如大分子物质、复杂的化学性质和结构、具有一定的分子构象和物理状态等。
用抗原免疫动物后,要想获得高效价的抗体,应考虑以下方面的问题:动物的遗传背景、年龄、健康状态、抗原的剂量、免疫的途径、次数等。必要时应加一定量的免疫佐剂。
1.简述T细胞表位与B细胞表位的区别。T细胞表位 B细胞表位 表位受体 TCR BCR MHC分子 需 不需
表位性质 线性短肽 天然多肽
表位大小 8~12个氨基酸 5~15个氨基酸
12~17个氨基酸
表位类型 线性表位 构象表位或线性表位 表位位置 在抗原分子任意部位 在抗原分子表面 简述TD-Ag与TI-Ag的区别。
TI-Ag TD-Ag 化学性质 主要为某些糖类 多为蛋白质类
结构特点 结构简单,具有相同或重复出现的同一抗原决定基 多种且不重复的抗原决定基 载体决定基 无 有 T细胞依赖性 无 有
免疫应答类型 体液免疫 体液免疫细胞免疫 产生Ig类型 IgM IgG 免疫记忆 无 有 MHC限制性 无 有 再次应答 无 有
1.如何理解抗原抗体结合的特异性和交叉反应性。
结构复杂,往往具有抗原与抗体结合的特异性,是指某一抗原表位与相应抗体结合的特异性。这种结合的分子机制是抗原表位的空间结构与抗体分子超变区互补的结果。而交叉反应是指两种抗原分子表面存在有相同或相似的抗原表位时,同一种抗体结合的现象。因此,交叉反应实质上也是抗原与抗体的特异性结合。
1.简述超抗原与普通抗原的区别。
普通抗原 超抗原 化学性质 蛋白质
多糖 细菌外毒素或逆转录病毒的产物 APC处理 需 不需
MHC-II类分子结合部位 抗原结合槽 非多肽区 T细胞反应频率 10-6 ~ 10-10 1/20 ~ 1/5 MHC限制性 有 无
1.何谓佐剂?佐剂的种类有哪些?作用机制如何?
凡与抗原一起注射或预先注射机体时,可增强机体对抗原的免疫应答或改变免疫应答类型的物质称为佐剂。常用的佐剂有生物佐剂(如BCG、CP、LPS和细胞因子等)、化学佐剂(如氢氧化铝、明矾等)及人工合成的佐剂(poly I:C、poly A:U)等。
作用机制是:改变抗原的物理性状,增加抗原在体内存留的时间;增加单核巨噬细胞对抗原的处理及提呈;刺激淋巴细胞增生分化,增强和扩大免疫应答的能力。
试述巨噬细胞及树突状细胞在处理和提呈抗原方面的特点。
巨噬细胞摄取抗原的方式有吞噬作用、胞饮作用和受体介导的胞吞作用三种方式,可摄入较大的固体物质、极小的颗粒状物质、液态物质等。巨噬细胞表面带有大量不同的受体如FcR、CR等,也可通过受体介导将抗原摄取。这些抗原被摄取后,首先在细胞内溶酶体的作用下被降解成小分子的多肽片段,然后与细胞内合成的MHC-II类分子结合形成抗原肽-MHC-II类分子的复合物,提呈给T细胞。
树突状细胞摄取抗原的方式有巨吞饮作用、受体介导的内吞作用和吞噬作用三种方式。可吞入非常大量的液体,也可摄入较大颗粒的抗原性物质。但是树突状细胞与巨噬细胞不同的是,其仅在发育的某些特定的阶段才具有一定的吞噬功能。外来抗原性物质被树突状细胞摄入后处理成13~25个氨基酸的肽段,与MHC-II类分子结合后表达在细胞表面,再提呈给CD4+ T细胞。
1.简述MHC-I类分子提呈内源性抗原的过程。
内源性抗原是指由细胞内合成的抗原,如胞内蛋白质、核蛋白及病毒感染细胞合成的病毒蛋白等。这些抗原在细胞内合成后首先在胞浆内蛋白酶体的作用下降解成小分子的肽段,这些8~11个左右氨基酸组成的肽段大小与MHC-I类分子肽结合区凹槽相仿,在抗原加工相关转运体(TAP)的作用下转移至内质网腔中,与新组装的MHC-I类分子结合,形成抗原肽-MHC I类分子复合物。然后通过分泌途径运
1.简述MHC-II类分子提呈外源性抗原的过程。
外源性抗原是指来自细胞外的抗原。当外源性抗原进入机体后,大部分抗原被抗原提呈细胞以吞噬、吞饮及受体介导的胞吞方式摄入至细胞浆中,被内体及溶酶体中的蛋白酶水解为能与MHC-II类分子结合的抗原肽片段。在内质网中新合成的MHC-II类分子与抗原肽结合,形成稳定的抗原肽-MHC II类分子复合物,然后转运至细胞膜表面,提呈给CD4+ T细胞。
1.T细胞识别抗原的特点是什么?
T细胞只能特异性识别表达在APC表面并与MHC分子结合成复合物的肽类抗原,这又称为TCR的双识别,即TCR在特异性识别APC所提呈的抗原肽的过程中,必须同时识别与抗原肽形成复合物的MHC分子,也就是说,T细胞对抗原肽的识别受MHC分子种类的限制。TCR所识别的,是由氨基酸一级序列所决定的抗原肽的线性决定簇,后者可在APC表面MHC分子的肽结合凹槽中形成特定构象。体内表达TCRab的T细胞是参与特异性免疫应答的主要细胞群,它们识别抗原肽-MHC复合物时,由TCRab 链可变区进行特异性识别:ab 链可变区的CDR1 和CDR2 结构域识别并结合MHC分子的非多态性区和抗原肽的两端;ab 链的CDR3 结构域识别并结合于抗原肽中央的T细胞表位,所以决定TCRab 识别抗原特异性的是CDR3区。
1.T细胞活化的信号要求是什么?
T细胞特异性识别APC 所提呈的MHC-抗原肽复合物,并被激活和发生增生,进而分化成效应细胞。在上述过程中,T 细胞均需要两个来自胞外的信号刺激,即淋巴细胞活化的双信号作用。
T 细胞的第一激活信号主要来自TCR与MHC 分子-抗原肽复合物的特异性结合,即抗原识别。另外,CD4和CD8分子作为共受体,可分别与MHC-II 及MHC-I 类分子结合,除可增强T细胞与APC 间的黏附作用外,还参与第一激活信号的启动和转导。
T细胞活化的第二信号来自协同刺激分子,故又称协同刺激信号,即由APC上的协同刺激分子与T 细胞表面的相应受体分子间的相互作用所提供。在参与T细胞激活的诸多协同刺激分子中,最重要的是T 细胞表面CD28分子与APC 表面相应配体B7-1(CD80)和B7-2(CD86)的结合。由CD28/B7发出的第二信号,可增强细胞因子基因的转录与表达,进而使T 细胞增殖;还可增加bcl-xL的表达,保护T 细胞免于凋亡。
活化T细胞还表达CTLA-4,后者的配基也是B7-1和B7-2。但与CD28分子的作用相反,CTLA-4与配基结合后可向T细胞发出抑制信号,降低活化T细胞的子代细胞对抗原刺激的敏感性,从而将T细胞应答的强度限制在一定范围。APC表面表达的其他协同刺激分子还包括VCAM-
1、ICAM-1 和LFA-3,它们分别与T 细胞表面的VLA-
4、LFA-1和CD2分子结合,共同提供T细胞活化的第二信号。缺乏协同刺激信号,T细胞活化不充分,不能表现效应功能,或使抗原特异性T淋巴细胞凋亡,或被诱导呈无能状态。1.效应T细胞的主要功能是什么?
抗原活化T细胞后,经克隆扩增及功能分化,成为效应T细胞:CD4+Th1细胞和CD8+Tc细胞。其主要功能有:
(1)抗感染作用:主要针对胞内感染的病原体,包括抗细菌、抗病毒、抗真菌、抗寄生虫感染等。
(2)抗肿瘤作用:Tc细胞的特异性杀伤表达抗原的肿瘤细胞;藉细胞因子直接或间接的杀伤肿瘤细胞。
(3)免疫损伤作用:效应T细胞可引起IV型超敏反应、移植排斥反应、某些自身免疫病的发生和发展。
1.Th1细胞分泌的细胞因子及其生物学作用:
Th1细胞主要分泌IL-
2、TNF-b和IFN-g等细胞因子,其生物学作用简述如下:(1)IL-2:促进Tc细胞增殖分化为致敏Tc细胞;通过自分泌和旁分泌作用途径,促进Th1细胞增殖分化,合成分泌细胞因子,扩大细胞免疫效应。
(2)TNF-b:作用于血管内皮细胞,使之表达粘附分子和分泌IL-8等趋化性细胞因子(这些粘附分子和趋化因子能使血流中中性粒细胞、淋巴细胞和单核细胞等与血管内皮细胞粘附,进而迁移和外渗至局部组织,引起慢性炎症反应);激活中性粒细胞,增强其吞噬杀菌能力;局部产生的高浓度TNF-b可使周围组织细胞发生损伤坏死。
(3)IFN-g 作用于巨噬细胞和内皮细胞,使之MHC II类分子表达增强,提高抗原提呈效率,扩大细胞免疫应答;活化单核吞噬细胞,增强其吞噬和胞内杀伤功能,并使之获得杀伤肿瘤的功能;促使活化巨噬细胞产生多种引发炎症反应的细胞因子和介质;活化NK细胞,增强杀瘤和抗病毒作用,提高机体免疫监视功能。
1.致敏Tc细胞对靶细胞发挥杀伤作用的机制:
(l)致敏Tc细胞对靶细胞的杀伤作用具有抗原特异性,并受MHC I类分子限制。它们只能杀伤表达相应致敏抗原的靶细胞,并且必须与靶细胞密切接触。致敏Tc细胞对靶细胞的作用是通过其表面TCR-CD3复合受体分子与靶细胞表面抗原肽-MHC I类分子复合物特异性结合,并在表面CD8分子与靶细胞表面相应配体(自身MHC I类分子Ig样区)的相互作用下实现的,此时致敏Tc细胞分泌穿孔素、丝氨酸蛋白酶和FasL等细胞毒性物质,使靶细胞溶解破坏和发生细胞凋亡。
(2)致敏Tc细胞杀伤溶解靶细胞后本身不受损伤,它们与溶解破坏的靶细胞分离后,又可继续攻击杀伤表达相应致敏抗原的其他靶细胞。通常一个致敏Tc细胞在几小时内可连续杀伤数十个靶细胞。这种由CD8+ Tc细胞介导的特异性细胞杀伤效应在清除病毒感染、同种移植排斥和抗肿瘤免疫中具有重要意义。
1.试述CD4+初始T细胞(Th0)在免疫应答中的活化过程及效应: CD4+ 初始T细胞通过表面TCR-CD3复合受体与抗原呈递细胞表面抗原肽-MHC II 类分子复合物特异性结合,在CD4分子的辅助下,产生T细胞活化第一信号。进而通过抗原呈递细胞和CD4+初始T细胞表面一组粘附分子(协同刺激分子与协同刺激分子受体)的相互作用,产生协同刺激信号,即T细胞活化第二信号。在上述两种信号刺激下,初始T细胞活化,分泌IL-2、4、5、6等细胞因子,这些细胞因子是诱导T、B细胞增生分化的重要生物活性介质。
活化CD4+初始T细胞在以IL-4为主的细胞因子的作用下,可增殖分化为Th2细胞。后者产生大量以IL-4、5、6、10为主的细胞因子,辅助B细胞激活、增殖与抗体产生。活化CD4+初始T细胞在巨噬细胞分泌的IL-12作用下,可增殖分化为Th1细胞(即炎性T细胞)。后者可通过释放IL-
2、IFN-g和TNF-b等细胞因子,使局部组织产生以淋巴细胞和单核吞噬细胞浸润为主的慢性炎症反应或迟发型超敏反应。
1.体液免疫应答的特点。
机体的特异性体液免疫应答主要由B细胞介导,藉B细胞分泌的抗体执行。B细胞对TD抗原的免疫应答始于BCR对TD抗原的识别,所产生的第一活化信号经由Iga/Igb向胞内传导。BCR辅助受体复合物加强第一活化信号的传导。Th细胞藉与B细胞表面分子的相互作用(CD40-CD40L 等)及分泌的细胞因子向B细胞提供第二活化信号。B细胞从骨髓进入周围淋巴器官后,在抗原刺激下,迁移进入原始淋巴滤泡,形成生发中心,并在生发中心发生抗原受体编辑、体细胞高频突变、抗原受体亲和力成熟及类别转换,最后分化成熟为浆细胞或记忆B细胞。B细胞在外周淋巴器官的发育分化大致可分为活化、增殖和分化三个阶段。TI抗原诱导B细胞产生免疫应答一般不需要T细胞的辅助。
1.Th细胞如何辅助B细胞的免疫应答。
(1)Th细胞的激活:在B细胞应答中,Th细胞的激活分为两种不同情况①初次免疫应答时,DC和巨噬细胞负责摄取、处理抗原,以MHC II类分子-抗原肽复合物的形式将抗原提呈给CD4+Th细胞;②再次免疫应答时,由B细胞内吞抗原,将抗原加工、处理成小肽段,并以MHC II类分子-抗原肽复合物的形式将抗原提呈给CD4+Th细胞。
(2)Th细胞提供B细胞活化的第二信号:活化的T细胞表达CD40L与B细胞表面组成性表达的CD40相互作用,向B细胞传递重要的第二活化信号。在Th细胞对B细胞的辅助中,其他膜分子间的作用(如ICAM-1/LFA-
1、CD2/LFA-3等)也很重要。
(3)Th细胞产生细胞因子的作用:活化的Th细胞(主要是Th2)产生多种细胞因子(如IL-
4、IL-
5、IL-
6、IL-
10、IL-13等),可辅助B细胞活化、增生与分化及抗体的产生。
1.黏膜免疫应答的特点。
黏膜免疫是免疫系统中一个特殊的组成部分。产生黏膜免疫IgA的B细胞主要来自黏膜伴随淋巴组织(MALT)。这里产生的B细胞可经血流迁移到全身的外分泌器官。在黏膜上皮的下面,富含巨噬细胞、树突状细胞,它们与B、T细胞混处在一起。M细胞输送颗粒抗原给巨噬细胞及树突状细胞,进而活化T细胞。B细胞藉BCR与相应抗原结合,并内吞抗原,然后把加工处理过的小肽提呈给T细胞,T细胞被激活,产生IL-2,并增殖。活化的T细胞反过来辅助B细胞产生抗原特异的IgA。在穿越黏膜上皮的过程中,IgA与存在于外分泌液中的分泌成分结合,增加了IgA对外分泌液中蛋白水解酶的抵抗。同时,IgA也许会与侵入细胞的相应抗原结合,把病原体或其产物从胞内带出到黏膜腔,从而避免对黏膜上皮细胞的伤害。
1.B细胞在生发中心的分化成熟。
在周围淋巴器官的T细胞区激活的部分B细胞进入原始淋巴滤泡,分裂增殖,形成生发中心。生发中心在抗原的刺激下于一周形成。生发中心的B细胞大约6小时分裂一次。这些分裂增殖的B细胞称为生发中心母细胞,有着B细胞的典型形态特征。不发生分裂增殖的B细胞被推向外侧,形成冠状带。在生发中心,B细胞继续分化发育,发生抗原受体编辑、体细胞高频突变、抗原受体亲和力成熟及Ig类别转换,最后分化成熟为浆细胞或记忆B细胞。
1.免疫应答的概念、基本类型和生物学意义:
(1)概念: 免疫应答是指机体受抗原性物质刺激后,免疫细胞发生一系列反应以排除抗原性异物的过程。主要包括抗原提呈细胞对抗原的加工、处理和呈递,以及抗原特异性淋巴细胞活化、增殖、分化,进而产生免疫效应的过程。
(2)类型: 免疫应答根据其效应机理,可分为B细胞介导的体液免疫和T细胞介导的细胞免疫两种类型。
(3)生物学意义: 免疫应答的重要生物学意义是及时清除体内抗原性异物以保持内环境的相对稳定。但在某些情况下,免疫应答也可对机体造成损伤,引起超敏反应或其他免疫性疾病。
1.TD抗原诱导的体液免疫应答感应阶段的基本过程: 此阶段系指抗原提呈细胞(APC)摄取、加工、处理和呈递抗原,以及Th细胞和B细胞识别抗原后启动活化的阶段。TD抗原经APC加工处理后,以抗原肽MHC II 类分子复合物特异性结合,并在CD4分子与APC表面相应配体(MHC II 类分子的Ig样区)相互作用下,诱导产生Th细胞活化第一信号。进而通过细胞表面协同剌激分子与协同刺激分子受体(B7与CD28、ICAM-l与LFA-
1、LFA-3与LFA-2)间的相互作用,产生协同刺激信号,即Th细胞活化第二信号。在上述二种信号剌激下,Th细胞活化,活化的Th细胞可分泌IL-2、4、5和IFN-g等多种细胞因子。与此同时,巨噬细胞可分泌IL-
1、12等细胞因子,这些细胞因子是诱导T、B细胞增殖分化的重要生物活性介质。
B细胞作为免疫效应细胞,通过表面抗原受体结合摄入抗原时可产生活化第一信号,通过Th细胞表面协同刺激分子(CD40L与ICAM-1)和B细胞表面的协同刺激分子受体(CD40与LFA-1)的相互作用,产生协同刺激信号,即B细胞活化第二信号。在上述二种活化信号作用下,B细胞被激活。
1.TD抗原诱导的体液免疫应答反应阶段的基本过程:此阶段系指活化的T、B细胞在细胞因子的作用下增生分化为效应细胞的阶段。活化的Th细胞通过表面IL-4、2、6 等细胞因子受体,与以IL-4为主的细胞因子(自分泌或旁分泌)结合,可进一步增殖分化为Th2细胞。该种T细胞形成细胞克隆,产生大量IL-4、5、6、10等多种细胞因子,从而为活化B细胞和其他T细胞的增殖分化做好物质准备。活化B细胞通过表面IL-2、4、5、6等细胞因子受体与活化Th和Th2细胞产生的IL-2、4、5、6等细胞因子作用后,可进一步增殖分化为浆细胞,合成、分泌Ig。在B细胞分化阶段有部分B细胞停止分化,成为记忆B细胞,该种B细胞再次与相同抗原接触后,可迅速增殖分化为浆细胞,合成分泌抗体。
2.初次应答和再次应答的主要不同点见下表 : 表 16-1 初次应答和再次应答的鉴别
区别点 初次免疫应答 再次免疫应答 抗原提呈细胞 巨噬细胞为主 B 细胞为主 抗体出现的潜伏期 较长 较短 抗体高峰浓度 较低 较高 抗体维持时间 较短 较长 抗体类别 IgM 为主 IgG 为主 抗体亲和力 较低 较高
1.在TI抗原引起的免疫应答中,B1细胞的活化机制:TI 抗原可分为I型TI抗原和II型TI抗原,在TI抗原引起的体液免疫应答中,其诱导B1细胞活化的机制不同。(1)I型TI抗原(如细菌脂多糖和聚合鞭毛素等)诱导Bl细胞活化的机制为:B1细胞通过表面抗原受体(SIgM)与I型TI抗原表面特异性抗原决定簇结合,产生第一信号;通过表面有丝分裂原受体与I型TI抗原表面相应有丝分裂原结合,产生第二信号。B1细胞接受双信号作用后活化。
(2)II型TI抗原(如肺炎球菌荚膜多糖和D-氨基酸聚合物等),表面具有多个重复出现的抗原决定簇,呈线状排列。这些抗原决定簇在体内不易降解,对B1细胞抗原受体亲和力强,它们与Bl细胞抗原受体结合后,B1细胞由于受体交联而活化。
1.Ⅰ型超敏反应的特点是: ①具有明显的个体差异和遗传背景;②反应发生快,几秒至几十分钟内出现症状,恢复也较迅速;③由结合在肥大细胞和嗜碱粒细胞上的IgE抗体所介导;④通常反应发生后效应器官出现功能紊乱,而没有严重的组织细胞损伤;⑤补体不参与该反应。
2.脱敏注射的方法及其作用机制:
在注射抗血清时,如遇皮肤试验阳性者,可采用小剂量、短时间(20~30分钟)、连续多次的注射方法,称为脱敏注射。这是因为小剂量变应原进入机体,与有限数量的致敏靶细胞膜表面的IgE结合后,靶细胞释放的生物活性介质较少,不足以引起明显的临床症状,同时介质作用时间短无积累效应。在短时间内多次小剂量注射变应原,可使体内致敏靶细胞分期分批脱颗粒,在短时间内全部解除致敏状态。此时大剂量注射抗血清时,不会发生超敏反应。1.青霉素引起的过敏性休克的发生机制:青霉素本身并无免疫原性,但是其降解产物青霉噻唑醛酸和青霉素烯酸为半抗原。这些半抗原能与人体内蛋白质结合而产生免疫原性,从而刺激机体产生特异性IgE,使机体处于致敏状态。当青霉素致敏的个体再次使用青霉素时,即可在几分钟内发生过敏性休克。有时初次注射青霉素也可发生过敏性休克,这可能与患者曾经无意识地接触过青霉素降解产物或青霉素样物质有关。
2.Ⅱ型超敏反应的发病机制是:靶细胞表面抗原与相应IgG或IgM类抗体结合后引起以下的病理过程:(1)补体系统被激活并参与溶解靶细胞作用:靶细胞表面的特异性抗原与IgG或IgM类抗体结合后,可激活补体经典途径,形成膜攻击复合物(C5b6789),导致靶细胞溶解破坏。(2)调理吞噬作用:吞噬细胞通过其表面的IgG Fc受体和C3受体,与抗体或C3b粘附的靶细胞结合,可促进吞噬细胞对靶细胞的吞噬与破坏作用。
(3)ADCC效应:当IgG与靶细胞表面的特异性抗原结合后,可通过Fc段与NK细胞膜表面IgG Fc受体结合,触发NK细胞的杀伤作用,使靶细胞溶解破坏。巨噬细胞或中性粒细胞对无法吞噬的固定的靶细胞也有此作用。
⑷抗细胞表面受体的抗体与相应受体结合,可导致细胞功能紊乱,表现为受体介导的对靶细胞的刺激或抑制作用。
1.两种血型不符引起的新生儿溶血症的发生机制、特点和临床预防措施:
ABO血型不符引起的溶血症多发生于母亲为O型血的非O型血胎儿。新生儿临床症状较轻。其发生机制是当分娩或经其他途径进入母体内的红细胞,可通过表面A或B血型抗原刺激母体产生IgG类抗A或抗B抗体。当母亲妊娠或再次妊娠时,该种抗体可通过胎盘进入胎儿体内,与红细胞表面相应血型抗原结合,引起胎儿出生后的新生儿溶血。因为胎儿或新生儿体内除红细胞外,在血清和其他体液及某些组织细胞也存在A或B血型物质,所以从母体进入胎儿或新生儿体内的IgG类血型抗体,可与上述体内A或B血型物质结合,从而竞争性抑制IgG类抗A或抗B抗体对红细胞的溶解破坏作用,此即临床症状较轻的主要原因。Rh血型不符引起的新生儿溶血症发生于Rh一母亲所怀的Rh+胎儿,尤其多见于再次妊娠所分娩的新生儿。当首次妊娠分娩时,胎儿的Rh+红细胞可进入母体,剌激母体产生抗Rh抗体。当再次妊娠仍为Rh+胎儿时,母体产生的抗Rh抗体(IgG)即可通过胎盘进入胎儿体内,与胎儿Rh+红细胞结合,导致胎儿红细胞的破坏。从而引起流产或出生后的严重溶血现象,甚至死亡。对ABO血型不符引起的新生儿溶血症,现在尚无特异性预防措施。为预防Rh血型不符引起的新生儿溶血症,可在Rh一母亲首次娩出Rh+的新生儿后的72小时内,给母亲注射抗RhD抗体(RhD抗血清),该抗体与母亲体内的胎儿Rh+红细胞结合,并及时将其清除,从而清除Rh抗原对母体的免疫刺激作用,阻止Rh抗体的形成。
第二篇:医学免疫学重点知识总结
第一章
免疫学概论
一、免疫系统的基本功能
免疫(immunity):是免疫系统抵御抗原异物的侵入,识别“自己”和“非己”的抗原,对“自己”的抗原形成天然免疫耐受,对“非己”抗原进行排除,维持机体内环境平衡和稳定的生理功能。
抗原的概念稍后会介绍,这里通俗的说,就是机体认为不是自己的,外界来的大分子物质。比如输血,如果输的血型与自身的血型不同,机体就认为这种血是外来的“抗原”
免疫系统包括:免疫器官、免疫细胞、免疫分子
机体的免疫功能概括为:①免疫防御
②免疫监视
③免疫自身稳定
免疫功能
正常生理功能
异常病理功能
免疫防御
清除病原微生物及其他抗原性异物
超敏反应(过度).免疫缺陷病(不足)
免疫自身稳定
清除损伤或衰老的细胞
自身免疫性疾病
免疫监视
清除突变或畸变细胞
肿瘤发生,病毒持续感染
二、免疫应答的种类及其特点
免疫应答(immune
response):是指免疫系统识别和清除抗原的整个过程。分为固有免疫和适应性免疫
⒈固有免疫(innate
immunity):也称先天性免疫或非特异性免疫,是生物长期进化中逐步形成的,是机体抵御病原体入侵的第一道防线
特点:先天具有,无免疫记忆,无特异性。
⒉适应性免疫(adaptive
immunity):亦称获得性免疫或特异性免疫。由T、B淋巴细胞介导,通过其表面的抗原受体特异性识别抗原后,T、B淋巴细胞活化、增殖并发挥免疫效应、清除抗原;须经历克隆增殖;
分为三个阶段:①识别阶段
②活化增殖阶段
③效应阶段
三个主要特点
①特异性
②耐受性
③记忆性
因需要细胞的活化、增殖等较复杂过程,故所需时间较长
第二章
免疫组织与器官
免疫系统(Immune
System):由免疫器官、免疫细胞和免疫分子构成。
免
疫
系
统
免疫器官
中枢
胸腺
T细胞分化、发育、成熟的场所
骨髓
各种血细胞和免疫细胞发生及成熟的场所
外周淋巴结
TB细胞定居,免疫应答,过滤作用
脾脏
粘膜相关
淋巴组织
⒈参与黏膜局部免疫应答
⒉(B细胞)产生分泌型IgA
免疫细胞
造血干细胞
产生红细胞及免疫细胞
淋巴细胞
细胞免疫和体液免疫
抗原提呈细胞
捕获、处理并递呈抗原
其他免疫细胞
免疫分子
抗体
补体
细胞因子
MHC分子、CD分子
第一节
中枢免疫器官和组织
中枢免疫器官,是免疫细胞发生、分化、发育和成熟的场所
一、骨髓
是各种血细胞和免疫细胞发生及成熟的场所
㈠骨髓的功能
⒈各类血细胞和免疫细胞发生的场所
⒉B细胞分化成熟的场所
⒊体液免疫应答发生的场所
再次体液免疫应答的主要部位
二、胸腺
是T细胞分化、发育、成熟的场所
㈠胸腺的结构
胸腺分为皮质和髓质。皮质又分为浅皮质区和深皮质区;
㈡胸腺微环境:由胸腺基质细胞、细胞外基质及局部活性物质(如激素、细胞因子等)组成,其在胸腺细胞分化发育过程的不同环节均发挥作用。
㈢胸腺的功能
⒈T细胞分化、成熟的场所
⒉免疫调节
⒊自身耐受的建立与维持
第二节
外周免疫器官和组织
外周免疫器官
是成熟淋巴细胞定居的场所,也是这些淋巴细胞针对外来抗原刺激启动初次免疫应答的主要部位
一、淋巴结
1.T、B细胞定居的场所
⒉免疫应答发生的场所
⒊参与淋巴细胞再循环
⒋过滤作用(过滤淋巴液)
二、脾
人体最大的外周免疫器官
⒈T、B细胞定居的场所
⒉免疫应答发生的场所
⒊合成某些生物活性物质
⒋过滤作用(过滤血液)
三、粘膜相关淋巴组织(MALT)
主要指呼吸道、胃肠道及泌尿生殖道粘膜固有层和上皮细胞下散在的无被膜淋巴组织,以及某些带有生发中心的器官化的淋巴组织
⒈参与黏膜局部免疫应答
⒉(B细胞)产生分泌型IgA
四、免疫细胞
免疫细胞(immunocyte):是指所有参与免疫应答或与之有关的细胞。根据免疫细胞在免疫应答中的作用可概括为四类:
①淋巴细胞:包括T、B淋巴细胞,由于T、B细胞可以TCR、BCR特异识别抗原故也称抗原特异性淋巴细胞。其分别介导细胞免疫和体液免疫。
②抗原递呈细胞(APC细胞):包括树突状细胞、巨噬细胞等。能捕获、处理并递呈抗原的细胞,在免疫应答过程中具有重要的递呈抗原肽及免疫调节作用。
③吞噬细胞:包括单核-巨噬细胞和中性粒细胞。具有吞噬和杀菌功能,在固有免疫中发挥重要作用。
④自然杀伤细胞:即NK细胞,可自发杀伤病毒感染细胞及肿瘤细胞,在固有免疫中发挥重要作用。
第三节
淋巴细胞归巢与再循环
成熟淋巴细胞离开中枢免疫器官后,经血液循环趋向性迁移,并定居于外周免疫器官或组织的特定区域,称淋巴细胞归巢。
淋巴细胞在血液、淋巴液、淋巴器官或组织间反复循环的过程称为淋巴细胞再循环
淋巴细胞再循环及其生物学意义
①使体内淋巴细胞在外周免疫器官和组织分布的更趋合理
②淋巴细胞可不断从循环池中得到新的淋巴细胞得到补充
③增加了抗原和APC接触的机会
④使机体所有免疫器官和组织联系成为一个有机整体,并将免疫信息传递给全身各处的淋巴细胞和其他免疫细胞
第三章
抗原(1)
抗原(Antigen,Ag):是指能与T细胞、B淋巴细胞的TCR(T
细胞受体)或BCR(B细胞受体)结合,促使其增殖、分化,产生抗体或致敏淋巴细胞,并与之结合,进而发挥免疫效应的物质
抗原有两个重要特性:免疫原性、抗原性
免疫原性:抗原刺激机体产生免疫应答,诱导产生抗体或效应淋巴细胞的能力
抗原性:即抗原与其所诱导产生的抗体或效应淋巴细胞特异性相结合的能力
半抗原/不完全抗原:仅具备抗原性而不具备免疫原性的物质。
TCR:
T
cell
receptor,T细胞受体;BCR就不用解释了吧,要记住哦,后面就这么叫了
第一节
抗原的异物性与特异性
一、异物性
异物即非“己”的物质。一般来说,抗原与机体之间的亲缘关系越远,组织结构差异越大,异物性越强,其免疫原性就越强。
①异物性不仅存在于不同种属之间;
②也存在于同种异体之间,如同种异体移植物是异物,也有免疫原性;
自身成份也可被机体视为异物。(如发生改变;在胚胎期未与免疫活性细胞充分接触。)
二、特异性
是指抗原刺激机体产生免疫应答及其与应答产物发生反应所显示的专一性,即某一特定抗原只能刺激机体产生特异性的抗体或致敏淋巴细胞,且仅能与该抗体或对该抗原应答的淋巴细胞有特异性结合。
1.抗原表位
决定抗原特异性的结构基础是存在于抗原分子中的抗原表位。抗原表位(epitope)、又称抗原决定簇(antigenic
determinant)
①抗原分子中决定抗原特异性的特殊化学基团;
②它是与TCR/BCR及抗体特异性结合的基本结构单位
2.抗原表位的类型:
构象表位:前者指短肽或多糖残基在空间上形成的特定的构象,也称非线性表位
顺序表位:又称线性表位,由连续性线性排列的短肽构
抗原结合价(antigenic
valence):指一个抗原分子上能与相应抗体发生特异性结合的抗原决定簇的总数
T细胞抗原表位和B细胞抗原表位的概念及区别:
T细胞表位
B细胞表位
识别表位受体
TCR
BCR
MHC分子参与
必需
无需
表位性质
主要为线性短肽
天然多肽、多糖、脂多糖、有机化合物
表位类型
线性表位
构象表位或线性表位
表位位置
抗原分子任意部位
抗原分子表面
3.表位-载体效应(carrier
effect)
B
细胞应答产生抗体需要
Th
细胞的辅助。半抗原为简单分子,只能提供B细胞表位;载体则提供Th细胞识别的T细胞表位。
在免疫应答中,B细胞识别半抗原,并提呈载体表位给CD4+
T细胞,Th细胞识别载体表位,这样载体就可把特异T-B细胞连接起来(T-B桥联),T细胞才能激活B细胞。
4.共同抗原表位(common
epitope)
①某些抗原分子中常带有多种抗原表位,不同抗原之间含有的相同或相似的抗原表位。
②某些抗原不仅可与其诱生的抗体或致敏淋巴细胞反应,还可与其他抗原诱生的抗体或致敏淋巴细胞反应。、5.交叉反应(cross-reaction):抗体或致敏淋巴细胞对具有相同和相似表位的不同抗原的反应。
第二节
影响抗原免疫应答的因素
一、抗原分子的理化性质
1.化学性质::大分子有机物,如蛋白质、糖蛋白脂蛋白和多糖类、脂多糖等都有免疫原性。
2.分子量大小:分子量越大,含有抗原表位越多,结构越复杂,免疫原性越强。大于100kD的为强抗原,小于10kD的通常免疫原性较弱,甚至无免疫原性。
3.结构的复杂性
4.分子构象
(conformation):某些抗原分子在天然状态下可诱生特异性抗体,但抗原分子构象发生改变,可以影响其抗原特异性甚至免疫原性。此因素主要影响
B
细胞免疫。
5.易接近性(accessibility):
是指抗原表位能否被淋巴细胞抗原受体所接近的程度。
6.物理状态:一般聚合状态的蛋白质较其单体有更强的免疫原性;颗粒性抗原的免疫原性强于可溶性抗原。因此常将免疫原性弱的物质吸附在某些大颗粒表面,可增强其免疫原性。
二、宿主方面的因素:
①遗传因素
②年龄、性别与健康状态
三、抗原进入机体方式的影响:
①抗原剂量要适中,太低和太高则诱导免疫耐受;
②免疫途径:皮内免疫>皮下免疫>腹腔注射/静脉注射>口服易诱导耐受;
③注射间隔时间要适当,次数不要太频;
④要选择好免疫佐剂,弗氏佐剂主要诱导IgG类抗体产生,明矾佐剂易诱导IgE类抗体产生。
第三节
抗原的种类
一、根据诱生抗体时需否Th细胞参与分类
1.胸腺依赖性抗原(thymus dependent
antigen,TD-Ag):需在T细胞辅助才能激活B细胞产生Ab,由T细胞表位和B细胞表位组成。绝大多数Ag属此类。
2.胸腺非依赖性抗原(thymus
independent
antigen,TI-Ag):需T细胞辅助或依赖程度较低即可刺激机体产生抗体,由多个重复的B表位组成。少数Ag属此类。如细菌多糖、聚合鞭毛蛋白等。
3.TD-Ag与TI-Ag的特性比较
胸腺依赖性抗原
胸腺非依赖性抗原
组成B、T细胞表位
重复B细胞表位
T细胞辅助
必需
无需
免疫应答类型
体液、细胞免疫
体液免疫
抗体类型
多种
IgM
免疫记忆
有
无
化学组分
蛋白质
多糖
二、根据抗原与机体的亲缘关系分类
1.异嗜性抗原(heterophilic
antigen)(Forssman
抗原):为一类与种属无关,存在于人、动物及微生物之间的共同抗原。如:溶血性链球菌的表面成分与人肾小球基底膜及心肌组织。
2.异种抗原(xenogenic
antigen):来自不同种属的抗原。
3.同种异型抗原(allogenic
antigen):HLA;ABO系统和Rh系统等。
4.自身抗原(autoantigen):在感染、外伤、服用某些药物等影响下,使免疫隔离部位的抗原释放,或改变和修饰了的自身组织细胞,可诱发对自身成分的免疫应答,这些可诱导特异性免疫应答的自身成分称为自身抗原,例如晶状体抗原等。
5.独特型抗原(idiotypic
antigen):T细胞抗原识别受体(TCR)及BCR或Ig的V区所具有的独特的氨基酸顺序和空间构象,可诱导自体产生相应的特异性抗体,这些独特的氨基酸序列称为独特型(idiotype,Id)抗原而成为自身免疫原,所诱生的抗体(即抗抗体,或称Ab1)称抗独特型抗体(AId)。
三、根据抗原是否在抗原提呈细胞内合成分类
1.内源性抗原(endogenous
antigen):指在抗原提呈细胞内新合成的抗原。如病毒感染细胞合成的病毒蛋白、肿瘤细胞内合成的肿瘤抗原等。此类抗原在细胞内加工处理为抗原短肽,与MHC-Ⅰ类分子结合成复合物,被CD8+T细胞的TCR识别。
2.外源性抗原(exogenous
antigen):指并非由抗原提呈细胞合成、来源于细胞外的抗原。抗原提呈细胞可通过胞噬、胞饮和受体介导的内吞等作用摄取外源性抗原,如吞噬的细胞或细菌等。在内吞体及溶酶体内,此类物质被酶解加工为抗原短肽后,与MHC-Ⅱ类分子结合为复合物,被CD4+T细胞的TCR识别。
第四节
非特异性免疫刺激剂
一、超抗原
普通蛋白质抗原可激活机体总T细胞库中万分之一至百万分之一的T细胞。
某些抗原物质,只需要极低浓度(1~10ng/ml)即可激活2%~20%T细胞克隆,产生极强的免疫应答,这类抗原称之为超抗原(superantigen,SAg)。
SAg的作用特点:
①具有强激活T细胞作用
②不需APC处理
③可激活T细胞,又可致T细胞产生免疫耐受或抑制.实际为多克隆激活剂,有内源性和外源性之分
二、佐剂
预先或与抗原同时注入体内,可增强机体对该抗原的免疫应答或改变免疫应答类型的非特异性免疫增强性物质,称为佐剂(adjuvant)。
分类:
①生物性:卡介苗(BCG)、短小棒状杆菌(CP)、脂多糖(LPS)和细胞因子(如GM-CSF);
②无机化合物:氢氧化铝[Al(OH)3];
③人工合成:双链多聚肌苷酸:胞苷酸(poly
I:C)和双链多聚腺苷酸:尿苷酸(poly
A:U);矿物油;脂质体;免疫刺激复合物(ISCOMs)
;含CpG脱氧寡核苷酸
等。
弗氏完全佐剂(Freund's
complete
adjuvant,FCA)、弗氏不完全佐剂(Freund's
incomplete
adjuvant,FIA)是目前动物试验中最常用的佐剂。
作用机制:
①改变抗原物理性状,延缓抗原降解和排除,延长抗原在体内潴留时间;
②刺激单核-巨噬细胞系统,增强其对抗原的处理和提呈能力;
③刺激淋巴细胞的增殖分化,从而增强和扩大免疫应答的能力。
三、丝裂原(mitogen)
亦称有丝分裂原,因可致细胞发生有丝分裂而得名。由于其与淋巴细胞表面的相应配体结合,刺激静止淋巴细胞转化为淋巴母细胞和有丝分裂,激活某一类淋巴细胞的全部克隆,因而被认为是一种非特异性的淋巴细胞多克隆激活剂。
第四章
免疫球蛋白
抗体(antibody,Ab)是介导体液免疫的重要效应分子,是B细胞接受抗原刺激后增殖分化为浆细胞所产生的球蛋白,主要存在于血清等体液中,通过与相应抗原特异性结合发挥体液免疫功能
免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白称为免疫球蛋白,有分泌型和膜型之分
分泌型主要存在于血液及组织液中,具有抗体的各种功能;
膜型构成B细胞膜上的抗原受体
第一节
免疫球蛋白的结构
一、免疫球蛋白的基本结构
㈠重链和轻链
⒈重链
分为五类或五个同种型
IgM、IgD、IgG、IgA、IgE,相应重链为μδγαε链
⒉轻链
分为两型
κλ,相应轻链为κλ链
㈡可变区和恒定区
轻链和重链接近N端氨基酸序列变化较大的区域,为可变区,靠近C端氨基酸序列相对稳定的区域,为恒定区
⒈可变区
VH和VL各有3个区域的氨基酸组成和排列顺序高度可变,称为高变区HVR
或互补决定区CDR
VH和VL的3个CDR共同组成Ig的抗原结合部位,决定着抗体的特异性,负责识别及结合抗原,从而发挥免疫效应
V区中,CDR之外区域的氨基酸和排列顺序相对不易变化,称为骨架区FR
⒉恒定区
同一种属的个体,针对不同抗原的同一类别的Ig,V区不同,C区恒定,免疫原性相同
针对不同抗原的人IgG,V区不同,C区相同
㈢铰链区
位于CH1和CH2之间,含有丰富的脯氨酸,易伸展弯曲,能改变两个结合抗原的Y形臂之间的距离,有利于两臂同时结合两个抗原表位
㈣结构域
Ig的两条重链和两条轻链都可折叠为数个球形结构域,每个结构域一般都具有其相应的功能
轻链:VL、CL
重链:VH、CH1、CH2、CH3
二、免疫球蛋白的其他成分
㈠J链
是一富含半胱氨酸的多肽链,由浆细胞合成,主要功能是将单体Ig分子连接为二聚体或多聚体
IgA→二聚体
IgM→五聚体
IgG、D、E→单体型,无J链
㈡分泌片
是分泌型IgA的辅助成分,由黏膜上皮细胞合成、分泌,并结合于IgA二聚体上,使其成为分泌型IgA,并一起被分泌到黏膜表面
功能:保护分泌型IgA铰链区免受蛋白水解酶降解的作用,并介导IgA二聚体从黏膜下转运到黏膜表面
三、免疫球蛋白的水解片段
㈠木瓜蛋白酶水解片段
水解IgG的部位:铰链区二硫键连接的二条重链的近N端→2个Fab,1个Fc
Fab可结合抗原,不发生凝集、沉淀反应,Fc可形成结晶,是Ig与效应分子、细胞相互作用的部位
㈡胃蛋白酶水解片段
水解部位:铰链区二硫键所连接的两条重链的近C端→1个F(ab’)2,小片段pFc’
1个F(ab’)2,可结合抗原,可发生凝集、沉淀反应,避免了Fc段抗原性可能引起的副作用
第二节
免疫球蛋白的异质性
一、免疫球蛋白的类型
㈠类
重链不同
㈡亚类
重链的抗原性及二硫键数目、位置不同
㈢型
轻链不同
㈣亚型
轻链C区N端AA不同
二、外源因素所致的异质性——Ig的多样性
含有多种不同抗原表位的抗原刺激机体免疫系统,导致免疫细胞的活化,产生多种不同特异性的抗体
三、内源因素所致的异质性——Ig的血清型
㈠同种型
种属型标志,存在于C区
㈡同种异型
个体型标志,存在于C区
㈢独特型
存在于V区,是每个Ig分子所特有的抗原特异性标志
第三节
免疫球蛋白的功能
一、可变区(IgV)功能
1.识别并特异性结合抗原:特异性识别和结合抗原是Ig的基本功能。
Ig结合抗原表位的个数称为抗原结合价,单体Ig
为双价,分泌型Ig
A为4价,五聚体IgM理论上为10价,但实际一般为5价。
2.中和作用:抗体与细菌抗原或病毒结合后,具有中和毒素、阻断病原微生物入侵和清除病原微生物等免疫防御功能。
二、恒定区(IgC)功能
1.激活补体
抗体(IgG1、IgG2、IgG3和IgM)与抗原结合后,可通过经典途径激活补体系统,产生多种效应功能;聚合的IgA、IgE和IgG4可通过旁路途径激活补体系统。
2.结合Fc段受体
IgA、IgE和IgG的Fc段可与多种细胞表面的相应Fc受体结合,产生一系列生物学功能。
(1)
调理作用(opsonization)IgG的Fc段与巨噬细胞、中性粒细胞表面的IgG
Fc受体结合,促进吞噬细胞对抗原的吞噬。
(2)
抗体依赖的细胞介导的细胞毒作用(antibody-dependent
cell-mediated
cytotoxicity,ADCC)具有杀伤活性的细胞通过其表面表达的Fc受体识别包被于靶抗原(细菌或肿瘤细胞)上的抗体的Fc段,通过释放介质直接杀伤靶细胞。自然杀伤细胞(NK细胞)是介导的ADCC的主要细胞。
(3)
介导I型超敏反应:IgE的Fc段与嗜碱性粒细胞、肥大细胞表面IgE
Fc受体结合,参与I型超敏反应的发生。
3.穿过胎盘和黏膜
在人类,IgG是惟一能通过胎盘到达胎儿体内的免疫球蛋白,从而形成婴儿的天然免疫;IgA可通过呼吸道和消化道粘膜,是局部免疫的重要因素。
第四节
各类免疫球蛋白的特性与功能
一、IgG
重链为γ链,血清中以单体形式存在,占血清Ig总量的75~80%,半寿期20~23天。人IgG有4个亚类:IgG1、IgG2、IgG3和IgG4,是再次免疫应答产生的、体内主要的抗感染抗体。能通过胎盘,可激活补体,通过Fc受体结合细胞发挥ADCC和调理作用。IgG与SPA结合的特性可用于抗体纯化及免疫诊断。
二、IgM
重链为μ链,血清中以五聚体形式存在,五个单体通过J链和二硫键联接而成,是分子量最大的Ig,故又称为巨球蛋白(macroglobulin)。IgM无铰链区。IgM占血清Ig的5~10%左右,半寿期10天。也是体内主要的抗感染抗体,感染早期首先出现的抗体是IgM,IgM激活补体的能力远远大于IgG。IgM也是B细胞表面抗原受体的主要成分。
三、IgA
重链为α链,血清中以单体形式存在,分泌液中以二聚体形式存在,称分泌型IgA(secretory
IgA,SIgA)。SIgA由两个单体、一个J链和一个分泌片组成。血清中IgA占血清Ig总量的10~15%,半寿期为6天。SIgA可通过黏膜,主要存在于唾液、泪液、乳汁(尤其是初乳)及呼吸道、消化道、泌尿道的分泌液中和黏膜表面,在机体黏膜局部抗感染免疫中发挥重要作用。
四、IgE
重链为ε链,在血清中以单体形式存在。IgE无铰链区。血清中含量极微,半寿期2.5天。IgE与肥大细胞、嗜碱性粒细胞极易结合,主要参与I型超敏反应及抗某些寄生虫感染。
五、IgD
重链为δ链,分子形式为单体。IgD在血清中含量很低,半寿期3天。对IgD的生物学功能了解甚少,可能和某些超敏反应、自身免疫疾病有关,尚未证实IgD有抗感染作用。和IgM一样,IgD是B细胞表面抗原受体的成分,现认为IgD和B细胞的分化、成熟有关。
第五节
人工制备抗体
一个B细胞克隆识别其特异性抗原表位而被激活后,只产生一种特异性抗体。
1.多克隆抗体(polyclonal
antibody):天然抗原往往具有多种表位,刺激机体产生的抗体中包含针对多种不同抗原表位的Ig,系由多个B细胞克隆产生的抗体混合物,故称为多克隆抗体。多克隆抗体来源广泛但特异性不高。
2.单克隆抗体(monoclonal
antibodies,mAb):由一个B细胞克隆产生的识别单一抗原表位的同源抗体,称为单克隆抗体。mAb一般通过杂交瘤技术制备,具有结构高度均一、抗原结合部位和同种型相同、纯度高、特异性强和效价高等特点。
第五章
补体系统
第一节
补体概述
补体系统包括30余种成分,广泛存在于血清、组织液、细胞膜表面,是一个具有精密调控机制的蛋白质反应系统。血浆中补体成分在被激活前无生物学活性
㈠补体系统的组成⒈补体固有成分
⒉补体调节蛋白
⒊补体受体
㈡补体的命名
经典、终末途径按其发现顺序命名;旁路途经成分分别称为BPHID因子
有酶活性的补体分子,均在其上以横线表示;裂解片段后缀以英文小写字母
㈢补体的生物合成90%血浆补体成分由肝脏组成第二节
补体激活
一、经典途径
1.参与成分:包括C1(C1q、C1r、C1s)、C4、C2、C3。
2.激活物
激活物为AgAb免疫复合物(IC),Ab为IgM、IgG1、IgG2或IgG3。每个C1须同时与两个以上Ig
分子的Fc
段结合。
3.活化过程
(1)抗原抗体结合后,抗体构型改变,暴露Fc
段中补体结合部位,C1q
可主动识别其补体结合位点,启动经典途径。当一分子C1q
中两个以上的球形头部与免疫复合物(IC)中IgM
或IgG
Fc
段结合后,C1q的构象发生改变,C1r
活化,并激活C1s的丝氨酸蛋白酶活性;
(2)C1s
依次裂解C4、C2,产生C4b+C4a
和C2a
+C2b,C2a
与C4b
结合成C4b2a
复合物(C3转化酶);
(3)C3转化酶将C3裂解成C3b+C3a,C3b
与C4b2a
结合形成C4b2a3b
复合物(C5转化酶)。
二、旁路途径
1.参与成分:C3、B因子、D因子和P因子。
2.激活物:某些细菌、内毒素、酵母多糖等以及凝集的IgA和IgG4等,上述物质实际上是为补体激活提供保护性环境和接触表面。
3.活化过程:各种因素产生的C3b结合于激活物表面,再与B因子结合产生C3bB,在D因子作用下产生C3bBb(旁路C3转化酶)。C3bBb与多份C3b结合形成C3bBb3b(旁路C5转化酶),后者裂解C5,引起共同的末端效应。旁路途径可以识别自己与非己,具有放大效应。
三、MBL途径(甘露糖结合凝集素)激活途径
1.参与成分:包括MBL、MASP-1、MASP-2、C4、C2、C3。
2.激活物:含N氨基半乳糖或甘露糖基的病原体。
3.活化过程:MBL识别和结合细菌N氨基半乳糖或甘露糖基等糖结构后,通过构象改变激活与之相连的MASP。MASP-2具有类似活化的C1s的活性,可水解C4和C2,产生经典途径C3转化酶C4b2a,其后反应过程同经典途径。MASP-1直接裂解C3生成C3b,形成旁路途径C3转化酶C3bBb。
四、补体活化的共同终末过程
三条途径产生的C5转化酶,均可裂解C5,引发共同终末效应。
C5转化酶作用于C5,产生C5b和C5a,C5b结合在细胞表面,依次与C6、C7结合形成C5b67复合物,插入细胞膜中,再与C8结合形成C5b678,后者可牢固附着于细胞表面。
C5b678再与多分子C9结合C5b6789n,即MAC(攻膜复合物),导致细胞崩解。
经典途径
旁路途径
MBL途径
激活物
IgG1-3或IgM与抗原
细菌内毒素、酵母多糖、形成的免疫复合物
凝聚的IgA、IgG4
MBL与病原体结合起始分子
C1q
C3
C2、C4
C3转化酶
C4b2b
C3bBb
C4b2bC
C5转化酶
C4b2b3b
C3bnBb、C3bBb3b
C4b2b3b
作用
参与特异性体液免疫,在感染晚期发挥作用
参与非特异性免疫,在感染早期发挥作用
参与非特异性免疫,在感染早期发挥作用
第三节
补体系统的调节
①控制补体活化的启动
②补体活性片段发生自发性衰变
③血浆和细胞膜表面存在多种补体调节蛋白,通过控制级联酶促反应过程中酶活性和MAC组装等关键步骤而发挥调节作用
第四节
补体的生物学意义
一、补体的生物功能
⒈溶菌、溶解病毒和细胞的细胞毒作用
MAC溶解红细胞、血小板和有核细胞;参与宿主抗细菌、抗病毒防御机制
⒉调理作用
调节吞噬作用是机体抵御全身性细菌、真菌感染的主要机制之一
⒊免疫黏附
是机体清除循环免疫复合物的重要机制
⒋炎症介质作用
①C3a、C5a为过敏毒素,介导局部炎症反应
②C5a对中性粒细胞等有强趋化作用
二、补体的病理生理学意义
⒈机体抗感染防御的主要机制
⒉参与适应性免疫反应
⒊补体系统与血液中其他级联反应系统的相互作用
第六章
细胞因子
细胞因子:是有免疫原、丝裂原或其他因子刺激细胞所产生的低分子量可溶性蛋白质,为生物信息分子,具有调节固有免疫和适应性免疫应答,促进造血,以及刺激细胞活化、增殖和分化等功能
第一节
细胞因子的共同特点
①多为小分子多肽
②在较低浓度下既有生物学活性
③通过结合细胞表面高亲和力受体发挥生物学效应
④以自分泌、旁分泌或内分泌形式发挥作用
⑤具有多效性、重叠性、拮抗性或协同性
第二节
细胞因子的分类
1.白细胞介素:IL-2通过自分泌作用促进TC;IL-4为Th2型细胞因子;IL-6促炎因子;IL-12促进体细胞增殖分化
2.干扰素家族:最早发现,因具有干扰病毒的感染和复制的功能得名
3.肿瘤坏死因子超家族:能使肿瘤发生出血、坏死的细胞因子。分为TNF-α和淋巴毒素
4.集落刺激因子
指能刺激多能造血干细胞和不同发育分化阶段的造血祖细胞增殖、分化的细胞因子有:GM-CSF,M-CSF,G-CSF,EPO,SCF,TPO
5.趋化因子家族
6.其他细胞因子
如TGF-β,VEGF,EGF,FGF
第三节
细胞因子的生物学活性
一、调节固有免疫应答
二、调节适应性免疫应答
⒈B细胞:IL4,5,6,13,肿瘤坏死因子超家族的BAFF等可促进B细胞的活化、增殖和分化为抗体产生细胞
⒉T细胞:IL-2,7,18等活化T细胞促进其增殖
Th1→IL12,IFN-γ;Th2→IL-4
三、刺激造血
骨髓和胸腺造血微环境中产生的细胞因子尤其是集落刺激因子对调控血细胞增殖分化有重要作用
四、促进凋亡,直接杀伤靶细胞
TNF-α,LT-α可直接杀伤肿瘤细胞或病毒感染细胞;活化T细胞表达的Fas配体结合靶细胞的Fas,诱导其凋亡
五、促进创伤的修复
TGF-β,VEGF,FGF,EGF
第四节
细胞因子受体
一、细胞因子受体的分类
1.免疫球蛋白超家族受体
2.Ⅰ类细胞因子受体家族
3.Ⅱ类细胞因子受体家族
4.肿瘤坏死因子受体超家族
5.趋化因子家族受体
二、可溶型细胞因子受体和细胞因子受体拮抗剂
许多细胞因子的受体除跨膜蛋白形式外,还存在着分泌游离的形式,即可溶性细胞因子受体。可作为细胞因子的运载体,也可与相应的膜受体竞争配体而起抑制作用。可溶性细胞因子受体与某些疾病发生有关。
第七章
白细胞分化抗原和黏附分子
第一节
人白细胞分化抗原
一、人白细胞分化抗原的概念
白细胞分化抗原:指造血干细胞在分化成熟为不同谱系、各个谱系分化不同阶段,以及成熟细胞活化过程中,出现或消失的细胞表面分子。它们大多是穿膜的蛋白或糖蛋白,具有重要的生理功能。在免疫应答过程中,它们参与抗原的识别,细胞间相互作用,细胞的活化、增殖、分化和效应。
注意概念:虽然名字是白细胞分化抗原,但实际上包含所有血细胞的表面分子
CD的概念:应用以单克隆抗体鉴定为主的聚类分析法,可将分化抗原归为分化群(cluster
of
differentiation),简称为
CD。分化抗原以
CD加序号命名。
第二节
黏附分子
黏附分子:是众多介导细胞间或细胞与细胞外基质间互相接触和结合的分子的统称。
粘附分子以配体-
受体配对的方式发挥作用,导致细胞与细胞间、细胞与基质间或细胞-
基质-
细胞之间的粘附,并参与细胞间的识别、细胞的活化和信号转导、细胞的增殖与分化、细胞的伸展与移动,是免疫应答、炎症发生、凝血、肿瘤转移、创伤愈合等一系列重要生理和病理过程的分子基础。
一、分类
1.整合素家族:主要介导细胞与细胞外基质的粘附,以及白细胞与血管内皮细胞粘附。都是由αβ两条链经非共价键组成的异源二聚体
2.选择素家族:成员L-选择素、P-选择素、E-选择素,选择素识别的是一些寡糖集团,选择素在白细胞与内皮细胞黏附、炎症发生、淋巴细胞归巢中发挥重要作用。
二、黏附分子的功能
1.免疫细胞识别中的辅助受体和协同刺激或抑制信号
辅助受体和协同刺激信号
指免疫细胞在接受抗原刺激的同时,还必须有辅助受体提供辅助活化信号才能被激活
2.炎症过程中白细胞与血管内皮细胞黏附
3.淋巴细胞归巢
是淋巴细胞的定向迁移,包括淋巴细胞再循环和白细胞向炎症部位迁移
分子基础:淋巴细胞归巢受体(表达在淋巴细胞上的黏附分子),血管地址素(表达在内皮细胞上的黏附分子)
第八章
主要组织相容性复合体及其编码分子
主要组织相容性复合体(major
histocompatibility
complex,MHC)是一组紧密连锁的基因群,其编码的产物称MHC分子,生物学功能是提呈抗原肽,调控免疫应答,在特异性免疫应答中起重要作用。人的MHC称为HLA基因(复合体),其产物称为
HLA分子或HLA抗原。
第一节
MHC结构及其多基因特性
MHC结构复杂,显示多基因性、多态性
多基因性:指复合体由多个紧密相邻的基因座位所组成,编码产物具有相同或相似的功能
多态性:指一个基因座位上存在多个等位基因
一、经典的MHCⅠⅡ类基因
经典HLAⅠ类基因集中在远离着丝点的一端,按序包括BCA三个座位
经典HLAⅡ类基因在复合体中靠近着丝点,结构复杂,顺序由DP、DQ、DR三个压区组成二、ⅠⅡ类基因的表达产物——HLA分子
HLA抗原类别
分子结构
肽结合结构域
表达特点
组织分布
功能
HLA
I类(A,B,C)
α链45kD
Α1+α2
共显性
所有有核细胞表面
识别和提呈内源性抗原肽,与辅助受体CD8结合,对CTL的识别起限制作用
HLA
II类(DR,DQ,DP)
α链35kD
β链28kD
Α1+β1
共显性
APC,活化的T细胞
识别和提呈外源性抗原肽,与辅助受体CD4结合,对Th的识别起限制作用
第二节
MHC的多态性
一、多态性的基本概念
多态性:指一个基因座位上存在多个等位基因,是一个群体概念,指群体中不同个体在等位基因拥有状态上存在差异
HLA等位基因及其产物结构上存在的差异亦即多态性,主要表现在构成抗原结合槽的氨基酸残基在组成和序列上不同
二、连锁不平衡和单体型
连锁不平衡:指分属两个或两个以上基因座位的等位基因,同时出现在一条染色体上的几率高于随机出现的频率
单体型:指染色体上MHC不同座位等位基因的特定组合MHC多态性从基因的储备上,造就了不同个体对病原体的反应性和易感性不同。这一现象的群体效应,赋予物种极大的应变能力。
第三节
MHC分子和抗原肽的相互作用
MHCⅠⅡ类分子接纳抗原肽的结构,是位于该分子远膜端的抗原结合槽,Ⅰ类分子凹槽两端封闭
Ⅱ两端开放
一、抗原肽和HLA分子相互作用的分子基础
能与HLA结合的抗原都带有两个或两个以上与MHC分子凹槽相结合的特定部位,称为锚定位,该位置的氨基酸残基称为锚定残基
二、抗原肽和MHC分子相互作用的特点
①特定MHC分子可凭借所需要的共用基序选择性地结合抗原肽,有一定的专一性
②一种类型的MHC分子可以识别一群带有特定共同基序的肽段,由此构成包容性
第四节
MHC的生物学功能
一、提呈抗原、参与适应性免疫应答
(1)
提呈抗原供T
细胞识别,启动特异性免疫应答。MHCI
类分子提呈内源性抗原肽供CD8+T细胞识别;MHCII
类分子提呈外源性抗原肽供CD4+T细胞识别。
(2)
介导T
细胞在胸腺中的分化、成熟。
(3)
疾病易感性个体的主要决定者。
(4)
调控机体免疫功能
2.参与固有免疫应答
MHC免疫功能相关基因参与对非特异性免疫应答的调控
(1)
补体基因——参与补体反应和免疫性疾病的发生。
(2)
非经典Ⅰ类基因——调控NK细胞活性
(3)
炎症相关基因——调控炎症反应
第九章
B淋巴细胞
B细胞由哺乳动物骨髓或鸟类法氏囊中的淋巴样干细胞分化而来,成熟B细胞主要定居于外周淋巴器官的淋巴小结内,不仅能通过产生抗体发挥特异性体液功能,也是重要的抗原提呈细胞
第一节
B细胞的分化发育
骨髓中髓质基质细胞表达的细胞因子和黏附分子是诱导B细胞发育成熟的必要条件,在中枢免疫器官中分化发育中主要事件是:功能性BCR的表达、自身免疫耐受的形成一、BCR的基因结构及其重排
BCR是表达于B细胞表面的免疫球蛋白,即膜型免疫球蛋白,B细胞通过BCR识别抗原,接受抗原刺激,启动体液免疫应答。
⒈BCR的胚系基因结构
人重链基因由编码可变区的V、D、J片段以及编码恒定区的C片段组成,轻链只有V、J
⒉BCR的基因重排及其机制
V区基因的重组是通过重组酶作用实现的,重链在先
Ig的胚系基因是以被分隔开的基因片段的形式成簇存在的,只有通过基因重排形成VDJ(重链)或VJ(轻链)连接后,再与C基因片段连接,才能编码完整的Ig多肽链,进一步加工,组装成有功能的BCR
⒊等位基因排斥和同种型排斥
等位基因排斥:B细胞中位于一对染色体上的轻链或重链基因,其中只有一条染色体上的基因得到表达,先重排成功的基因抑制了同源染色体上另一等位基因的重排
同种型排斥:κ轻链和λ轻链之间的排斥,κ轻链基因的表达成功即抑制λ轻链基因的表达
二、抗原识别受体多样性产生的机制
⒈组合造成的多样性
⒉连接造成的多样性
⒊体细胞高频突变造成的多样性
已成熟B细胞已完成V基因重排,而且发生在抗原刺激外周淋巴器官生发中心的B细胞,主要发生为点突变
三、B细胞在中枢免疫器官中的分化发育
第一阶段发生在骨髓:骨髓中的pro-B细胞重链V-D-J重排,即转化为pre-B细胞,进而发育为μ+的不成熟B细胞;进一步发育为μ+δ
+的成熟B细胞。B细胞分化的非抗原依赖期,进行阴性选择。
第二阶段发生在外周免疫器官:接受抗原刺激后,B细胞可发生类型转换,最终分化为浆细胞。B细胞分化的抗原依赖期,进行阳性选择。
在骨髓中发育的未成熟B细胞通过上述的克隆清除、受体编辑和失能等机制形成了对自身抗原的中枢免疫耐受。
骨髓中未发育成熟的B细胞,表面表达mIgM,此时的mIgM若与骨髓中的自身抗原结合,不仅不能活化B细胞,反而会导致该细胞凋亡,形成克隆清除;一些识别自身抗原的未成熟B细胞可以通过受体编辑,改变其BCR特异性
未成熟B细胞与自身抗原的结合在某些情况下可引起mIgM表达的下调,这类细胞虽然可以进入外周淋巴细胞,但对抗原刺激不产生应答,称为无能或失能
第二节
B细胞的表面分子及其作用
一、B细胞抗原受体复合物
由识别和结合抗原的mIg和传递抗原刺激信号的Igα/Igβ(CD79a/CD79b)异源二聚体组成⒈mIg
是B细胞的特征性表面标志,单体形式存在,需要其他分子辅助完成BCR结合抗原后信号的传递
⒉Igα/Igβ
均是免疫球蛋白超家族的成员,胞质区有免疫受体酪氨酸活化基序(ITAM),通过募集下游信号分子,转导特异性抗原与BCR结合所产生的信号
二、B细胞共受体(辅助受体)
B细胞表面的CD19、21、81非共价相联,形成B细胞特异性的多分子活化共受体,提高B细胞对抗原刺激的敏感性
三、协同刺激分子
第二信号主要由Th细胞和B细胞表面的协同刺激分子间的相互作用产生
⒈CD40
属肿瘤坏死因子超家族,组成性地表达于成熟B细胞,其配体(CD154)表达于活化T细胞
⒉CD80、86
静息B细胞不表达或低表达,活化B细胞表达增强
⒊其他黏附分子
四、其他表面分子
CD20、22、32
第三节
B细胞的亚群
根据是否表达CD5分子,B细胞可分为CD5+B-1细胞和CD5-B-2细胞两个亚群
一、B-1细胞
定居于腹膜腔、胸膜腔、肠道固有层,合成低亲和力IgM能和多种不同的抗原表位结合,表现多反应性,属固有免疫细胞,可自发分泌天然抗体
二、B-2细胞
主要定居于淋巴器官,参与体液免疫的主要细胞
性质
B-1细胞
B-2细胞
CD5分子表达
+
更新的方式
自我更新
由骨髓产生
自发性Ig的产生
高
低
针对的抗原
碳水化合物类
蛋白质类
分泌的Ig类别
IgM>>IgG
IgG>IgM
特异性
多反应性
单特异性
体细胞高频突变
低/无
高
免疫记忆
少/无
有
第四节
B细胞的功能
一、产生抗体介导体液免疫应答
⒈中和作用
某些针对病原体的抗体,可阻断病原体与靶细胞的结合,抗体的这种作用称为中和作用
⒉调理作用
抗体与病原体表面结合,其Fc段又可与吞噬细胞表面的Fc受体结合,将病原体带至吞噬细胞处,使之易被吞噬,抗体的这种作用称为调理作用
⒊参与补体的溶细胞或溶菌作用
⒋ADCC
二、提呈可溶性抗原
B
细胞可藉BCR
结合可溶性抗原,对其加工、处理后,以抗原肽-MHC分子复合物的形式提呈给T
细胞。
第十章
T淋巴细胞
第一节
T细胞的分化发育
一、T细胞在胸腺中的发育
场所:胸腺
由胸腺基质细胞、细胞外基质和细胞因子组成的胸腺微环境是T细胞发育分化的必要条件
根据CD3以及辅助受体CD4、8的表达,胸腺中的T细胞可分为双阴性(DN)、双阳性(DP)、单阳(SP)性三个阶段
最核心事件:获得功能性TCR的表达、自身MHC限制、自身免疫耐受的形成⒈TCR的发育
基因重排同B细胞
⒉T细胞发育过程中的阳性选择
部位:
胸腺皮质,主要由胸腺上皮细胞发挥选择作用。
在胸腺皮质中,CD4
CD8+双阳性T细胞,其TCR
能与胸腺基质细胞表面的MHCⅠ/
Ⅱ类分子-
抗原肽结合,且具适当亲和力的DP细胞分化为单阳性(SP)T细胞,其中与Ⅰ类分子结合的DP细胞分化为CD8+T细胞(SP);与Ⅱ类分子结合的DP细胞分化为CD4+T细胞(SP);而不能与
MHC-抗原肽结合或亲和力过高的DP细胞则发生凋亡遭克隆清除。此过程也称为胸腺的阳性选择。
意义:阳性选择淘汰了不能与自身MHC分子结合的T细胞,使继续发育的SP细胞的TCR只能与自身MHC-Ⅰ或MHC-Ⅱ类分子结合,这就使T细胞获得了自身MHC限制性。
⒊T细胞发育过程中的阴性选择
部位:胸腺皮髓交界处、髓质,经历阳性选择的SP
细胞在胸腺的皮髓质交界处及髓质区还须经历阴性选择:凡是能识别自身抗原-MHC
复合物、且具有高亲和力的SP细胞发生凋亡遭克隆清除,其实质是清除自身反应性
T
细胞,即阴性选择。
意义:阴性选择淘汰了识别自身抗原的T细胞,使继续发育的T细胞获得了自身抗原的耐受性。具有两种性能的成熟T细胞离开胸腺,进入血液并移居到外周淋巴组织。
第二节
T细胞的表面分子及其作用
一、TCR-CD3复合物
TCR为T细胞表面的特征性标志,以非共价键与CD3分子结合,形成TCR-CD3复合物
⒈TCR的结构和功能
TCR只能特异性识别抗原提呈细胞或靶细胞表面的抗原肽-MHC分子复合物(pMHC),且识别有双重特异性,即既要识别抗原肽的表位,又要识别自身MHC分子的多态性部分
TCR分为TCRαβ、TCRγδ两类
⒉CD3分子的结构和功能
CD3有五种肽链γδεζη
CD3分子的功能是:转导TCR识别抗原所产生的活化(第一)信号。
二、CD4分子和CD8分子(T细胞的辅助受体)
功能:1、辅助TCR识别抗原2、参与T细胞活化(第一)信号的转导。
CD4-与MHCⅡ类分子β链的β2结构域结合;CD8-与MHCⅠ类分子重链的α3结构域结合三、协同刺激分子
位于T细胞膜上的各种膜分子,通过与APC或靶细胞上的配基结合,提供T细胞活化的第二信号
第一信号由TCR识别抗原产生,经CD3分子将信号转导至细胞内,作用是使T细胞克隆被抗原活化后产生的适应性免疫应答具有严格的特异性
⒈CD28
是协同刺激分子B7的受体。B7分子包括B7-1(CD80)和B7-2(CD86),主要表达于专职APC。CD28分子与B7分子结合产生的协同刺激信号在T细胞活化中发挥重要作用,诱导T细胞表达抗细胞凋亡蛋白,刺激T细胞合成IL-2及其他细胞因子,并促进T细胞的增殖和分化。
⒉CTLA-4(CD152)
表达于已活化的T细胞上,CTLA4
-CD80/86结合,使已活化T细胞产生抑制信号。CTLA-4分子的胞浆区有I/VxYxxL基序(免疫受体酪氨酸抑制基序ITIM)。可抑制T细胞活化信号的转导。
⒊ICOS
⒋PD-1
⒎LFA-1和ICAM-1
⒌CD2又称绵羊红细胞受体
人的CD2分子表达在95%成熟T细胞、50-70%胸腺细胞以及部分NK细胞
⒍CD40配体
主要表达于活化的CD4+T细胞,其受体CD40表达于专职APC(B细胞,巨噬细胞、树突状细胞)
第三节
T细胞的亚群
一、T
细胞按表面标志,功能不同分为不同亚群。
1.初始T
细胞:未经抗原刺激的成熟T
细胞,表达CD45RA
和CD62L。
2.效应T
细胞:表达高亲和力IL-2R,CD44和CD45RO,介导免疫效应。
3.记忆T
细胞:表达CD45RO,CD44,介导再次免疫应答。
二、αβT
细胞和γδ
T
细胞
1.γδ
T
细胞:γδ
T
细胞占T
细胞总数的5%以下,大多为CD4-CD8-,主要分布于皮肤,黏膜。γδ
T
细胞识别CD1
分子提呈的脂类或糖脂抗原,在抗微生物感染中起重要作用。
2.αβT
细胞:αβT
细胞占T
细胞总数95%
以上,识别由MHC分子提呈的蛋白质抗原,具有MHC限制性,是介导细胞免疫及免疫调节的主要细胞。
三、CD4+T细胞和CD8+T细胞
CD4
+T细胞识别由MHCⅡ类分子提呈的外源性抗原肽,活化后分化为Th细胞
CD8
T细胞识别由MHCⅠ类分子提呈的内源性抗原肽,活化后分化的效应细胞为Tc
(CTL)细胞,可特异性杀伤靶细胞,是细胞免疫的主要效应细胞。
四、Th、CTL、Treg细胞
1.Th细胞
初始CD4+T细胞可分化为Th1、2、17三类,前两者在细胞、体液免疫应答中发挥重要作用,后者通过分泌IL-17参与固有免疫和某些炎症的发生
2.CTL(Tc)细胞
通常指表达TCR
ab
CD8+CTL细胞,根据分泌的细胞因子的不同进一步分为Tc1、2
3.调节性T细胞(Treg)
(1)自然调节性T细胞nTreg
直接从胸腺中分化而来,表型为CD4+CD25+Foxp3+
(2)适应性调节性T细胞,又称诱导性调节性T细胞(iTreg),一般在外周由抗原及其他因素诱导产生,主要来自初始CD4+T细胞,有Tr1和Th3两种亚群
(3)其他调节性T细胞
第十一章
抗原提呈细胞与抗原的处理及提呈
第一节
抗原提呈细胞的种类与特点
抗原提呈细胞(antigen-presenting
cells,APC):能够摄取、处理(加工)抗原并将抗原信息提呈给
T
淋巴细胞的一类细胞称为抗原提呈细胞。通常所说的APC,指树突状细胞(DC)、单核-
巨噬细胞(Mo/
Mφ)
和B
淋巴细胞。
专职APC:DC、B细胞、巨噬细胞
一、树突状细胞(Dendritic
cell,DC)
能够显著刺激初始TC增殖,是机体适应性TC免疫应答的始动者,是连接固有、适应性免疫的桥梁
㈠类型与特点
⒈根据来源的分类
髓系DC、淋巴系DC,前者为经典、常规意义上的DC,主要参与免疫应答的诱导和启动;后者指浆细胞样DC,活化后释放I型干扰素,参与抗病毒免疫应答,也可参与自身免疫性疾病的发生发展
⒉根据分化成熟状态的分类
未成熟
DC
:大多数髓系DC离开骨髓后以未成熟状态存在,具有强的抗原摄取、加工处理能力,但表面
MHC
Ⅱ类分子、共刺激分子和黏附分子的表达水平低,故提呈抗原刺激初始T
细胞能力很低。
成熟
DC:
DC
摄取抗原和受某些刺激后逐渐成熟,并向引流淋巴组织迁移。成熟过程中,MHC分子(特别是Ⅱ类分子)、共刺激分子和黏附分子表达显著提高,能够提呈抗原刺激初始T
细胞。
⒊根据组织分布的分类
①淋巴样组织中的DC
并指状
滤泡样DC(FDC):位于淋巴滤泡内,不表达MHC
Ⅱ类分子,主要作用是携带抗原抗体补体复合物供B
细胞识别。
②非淋巴样组织中的DC
间质性DC
朗格汉斯细胞(LC):分布于表皮和黏膜上皮部位,具有强的抗原摄取和处理能力
③体液中的DC
存在于输入淋巴管和淋巴液中的隐蔽细胞和血液DC
㈡功能
⒈抗原提呈与免疫激活功能
⒉免疫调节作用
⒊免疫耐受的维持与诱导
二、单核巨噬细胞
单核细胞来源于骨髓前体细胞,经血液移行至全身组织,分化成巨噬细胞。参与免疫防御和炎症反应。正常情况下多数表达MHC-I
分子,也有MHC-II分子和协同刺激分子水平较低。抗原加工能力强,提呈能力弱。在IFN-γ等作用下,发挥专职APC的作用。
三、B淋巴细胞
能将蛋白抗原提呈给辅助性T细胞。
可通过膜表面Ig将低浓度的抗原浓集并使抗原内化,发挥提呈作用。
第二节
抗原的处理和提呈
APC将胞质内自身产生的或者摄取入细胞的抗原分子降解并加工处理成一定大小的多肽片段,使之与MHC分子结合,以抗原肽-MHC复合物的形式表达于APC表面,此过程统称为抗原加工或处理
在APC与T细胞接触的过程中,表达于APC表面的抗原肽-MHC复合物被T细胞识别,从而将抗原信息提呈给T细胞,此过程称为抗原提呈,是指APC表面的抗原肽与MHC分子结合的复合物与T细胞表面的TCR结合为TCR-抗原肽-MHC三元体,从而活化T细胞的全过程,CD4、CD8也发挥重要作用
根据来源不同,将抗原分为两类:外源性抗原、内源性抗原,前者来源于APC之外,后者在靶细胞内合成根据抗原的性质和来源不同,APC通过四种途径进行抗原的加工、处理、提呈:
MHCⅠ类分子途径(内源性抗原提呈途径)
MHCⅡ类分子途径(外源性抗原提呈途径)
非经典的抗原提呈途径(MHC分子对抗原的交叉提呈)
脂类抗原的CD1分子提呈途径
㈠MHCⅠ类分子途径
内源性蛋白抗原被蛋白酶体降解→与抗原加工相关转运体(TAP)结合,并由TAP选择性地将抗原肽转运至ER→与ER内组装的MHCⅠ类分子结合形成抗原肽-MHCⅠ类分子复合物→经高尔基体转运至细胞膜→CD8+T细胞识别→完成抗原提呈过程
㈡MHCⅡ类分子途径
外源性抗原被APC识别摄取→胞内形成内体→内体转运至溶酶体或与溶酶体融合→抗原随后被降解为多肽而转运至MⅡC中→(MHCⅡ类分子在ER中合成并与Ii链结合形成复合物→经高尔基体转运至MⅡC)→Ii链被降解而将CLIP残留于MHCⅡ类分子的抗原多肽结合槽中→在HLA-DM的作用下抗原结合多肽结合槽的CLIP被待提呈的抗原肽所置换,形成稳定的抗原肽-MHCⅡ类分子复合物→转运到APC膜表面→将抗原肽提呈给CD4+T细胞
MHCⅠ类分子途径
MHCⅡ类分子途径
抗原来源
内源性抗原
外源性抗原
抗原降解的胞内位置
胞质蛋白酶体
内体、溶酶体
抗原与MHC分子结合部位
内质网
溶酶体及内体中MⅡC
提呈抗原多肽的MHC分子
MHCⅠ类分子
MHCⅡ类分子
伴侣分子
TAP、钙联素
Ii链、钙联素
处理和提呈抗原的细胞
所有有核细胞
专职性抗原提呈细胞
识别和应答细胞
CD8+T细胞(主要是CTL)
CD4+T细胞(主要是Th)
㈢非经典的抗原提呈途径(MHC分子对抗原的交叉提呈)
又称交叉致敏,指抗原提呈细胞能将外源性抗原摄取、加工、处理,并通过MHCⅠ类分子途径提呈给CD8+T细胞(CTL)
㈣脂类抗原的CD1分子提呈途径
脂类抗原可与表达于抗原提呈细胞表面的CD1分子结合而被提呈,主要通过CD1分子地再循环过程,没有明显的抗原的加工处理
第十二章
T淋巴细胞介导的细胞免疫应答
点击:283次
|
回复:0次
|
发布时间:2012-11-09
22:03:43
三个阶段:①T细胞特异性识别抗原阶段②T细胞活化、增殖、分化阶段③效应T细胞的产生及效应阶段
第一节
T细胞对抗原的识别
抗原识别:初始T细胞膜表面抗原识别的受体TCR与APC表面的抗原肽-MHC分子复合物特异结合的过程称抗原识别
MHC限制性:TCR在特异性识别APC所提呈的抗原多肽的过程中,必须同时识别与抗原多肽形成复合物的MHC分子,这种特性成为MHC限制性
一、APC向T细胞提呈抗原的过程
(蛋白质抗原)
外源性:APC/MHCⅡ类分子→CD4+Th细胞
内源性:APC/靶细胞/MHCⅠ类分子→CD8+T细胞(CTL)
二、APC与T细胞的相互作用
淋巴结副皮质区
1.T
细胞与APC
非特异结合T
细胞上的LFA-1
和CD2
分别与APC
表面的ICAM-1、LFA-3
结合,使得TCR
与MHC-肽接近。如TCR
不能识别MHC-肽,T
细胞与APC
分离。
2.T
细胞与APC
特异性结合如TCR
能识别MHC-肽,则两个细胞发生特异性结合,细胞膜形成免疫突触,增强TCR
与MHC-肽结合的亲和力,促进T
细胞信号转导分子的相互作用,信号通路的激活,促进T
细胞活化。
双识别:识别自身的MHC分子,特异识别抗原
第二节
T细胞的活化、增殖和分化
一、T细胞活化涉及的分子
细胞因子促进T细胞充分活化
1.第一信号
来自其TCR与pMHC的特异性结合,即T细胞对抗原的识别
2.第二信号
来自协同刺激分子,即APC表达的协同刺激分子与T细胞表面的相应受体或配体相互作用介导的信号
二、T细胞活化的信号转导途径
PLC-γ活化途径;MAP激酶活化途径
TCR
胞内部分较短,要借助CD3、CD4/8、CD28等分子将刺激信号传到细胞内部,致转录因子活化,转位到核内,活化相关基因。这一过程称为信号转导
1、受体交联
抗原-抗原受体结合,使TCR的构像及位置发生改变,CD3、CD4/CD8分子的尾部聚集在一起,即发生受体交联,激活胞内的信号蛋白和酶。
2、PTK活化
受体交联首先激活膜上的蛋白酪氨酸激酶(PTK),如:Fyn(P59)--CD3的ζ
链Lck(P56)--CD4/CD8,PTK
活化促使带有酪氨酸的ITAM蛋白发生磷酸化而活化,胞浆中的ZAP-70的SH2附着于ITAM而活化
三、T细胞活化信号涉及的靶基因
IL-2基因的转录调节可作为T细胞活化期间细胞因子转录调节的重要代表
编码T细胞效应分子基因包括细胞因子基因、细胞因子受体基因、黏附分子基因、MHC等
四、抗原特异性T细胞克隆性增殖和分化
IL-2是促进活化后T细胞增殖的最重要的细胞因子:IL-2R表达:
静止T细胞:中等亲和力受体,βγ
活化T细胞:高亲和力受体,αβγ
IL-2选择性地促进经抗原活化的T细胞增殖。
第三节
T细胞的效应功能
一、Th细胞的效应功能
1.Th细胞的效应
(1)
Th1
细胞的生物学活性:
1)
通过分泌细胞因子和表达CD40L
诱生、募集和激活Mφ,消灭胞内寄生菌;诱导Mφ高表达
B7和MHCⅡ类分子,促进抗原的加工和提呈。
2)
促进
CTL
活化增殖。也促进Th细胞和
NK细胞的活化增殖,辅助B
细胞产生调理性抗体
3)
活化中性粒细胞,促进杀伤病原体。
(2)
Th2
细胞的生物学活性:
1)
辅助体液免疫应答
促进B
细胞活化、增殖和分化为浆细胞,产生抗体。
2)
参与I型超敏反应和抗寄生虫免疫。
(3)
Th17细胞的生物学活性:
分泌
IL-17,刺激上皮细胞、内皮细胞、成纤维细胞和巨噬细胞分泌多种细胞因子等,促进固有免疫,参与炎症反应、感染性疾病和自身免疫病的发生。
二、CTL细胞的效应功能
主要杀伤胞内寄生病原体的宿主细胞、肿瘤细胞等,可高效、特异性杀伤靶细胞,而并不损伤正常组织。杀靶机制:
⒈效-靶细胞结合⒉CTL的极化
⒊致死性攻击
主要两种途径杀伤靶细胞⑴穿孔素/颗粒酶途径⑵Fas/FasL途径
三、记忆性T细胞
T
细胞增殖后一部分分化成记忆细胞,其表型为CD45RO+,有较长的寿命。记忆细胞对特异性抗原有记忆能力,再次遇到
抗原后能迅速活化、增殖、分化为效应细胞,产生更迅速、更强、更有效的应答。
第十三章
B淋巴细胞介导的体液免疫应答
外来抗原进入机体后诱导抗原特异性B细胞活化、增殖,并最终分化为浆细胞,产生特异性抗体,存在于体液中,发挥重要的免疫效应作用,此过程称为特异性体液免疫应答
第一节
B细胞对TD抗原的免疫应答
一、B细胞对TD抗原的识别特点
①不仅能识别蛋白质抗原,还能识别多肽、核酸、多糖类、脂类、小分子化合物②可特异性识别完整抗原的天然构象或识别抗原降解所暴露的表位的空间构象③识别抗原无需经APC的加工处理,无MHC限制性
二、B细胞活化需要的信号
(1)第一信号
1.第一活化信号经由Ig/αIgβ传导入胞内
BCR被多价抗原交联后,ITAM模体中酪氨酸磷酸化,募集并活化Syk,活化细胞内信号转导的级联反应,经PKC、MAPK、钙调蛋白三条途径激活转录因子,参与并调控B细胞激活、增殖相互基因的表达
2.B细胞活化中共受体的作用
成熟B细胞表面,CD19、21、81非共价键结合成共受体复合物,提高敏感性
(2)第二信号
主要由黏附分子对的相互作用所提供,最重要的是CD40/CD40L
(3)TB细胞相互作用与B细胞免疫应答
一方面,B细胞可作为抗原提呈细胞活化T细胞,另一方面活化的T细胞可以提供B细胞活化的第二信号,并分泌多种IL-4等细胞因子协助B细胞的进一步分化
三、B细胞增殖和终末分化
需Th细胞的辅助,发生于外周淋巴器官的T细胞区和生发中心
四、B细胞在生发中心的分化成熟
在外周淋巴器官的T细胞区激活的部分B细胞进入初级淋巴小结,分裂增殖,形成生发中心,分裂增殖的B细胞称为生发中心母细胞,母细胞分裂增殖产生的子代细胞体积小,称为生发中心细胞
生发中心分为两个区域:明区、暗区,前者FDC(滤泡树突状细胞)较多,后者生发中心母细胞紧密聚集
DC的树突表面高表达CD21分子,抗原-抗体复合物通过C3d与CD21分子结合,附着在FDC树突上,或结合于FDC树突上的Fc受体,聚集在一起,呈串珠状,称串珠样小体
生发中心四个事件
(1)体细胞高频突变和Ig亲和力成熟 生发中心母C的轻链和重链V基因,可发生高频率的点突变,称体细胞高频突变
(2)Ig的类别转换
可变区相同而Ig类别变化的过程称Ig的类别转换,或称同种型转换,遗传学基础是同一V区基因与不同重链C基因的重排
(3)浆细胞的形成 浆细胞是B细胞分化的终末细胞,除了少量线粒体,内含大量粗面内质网,分泌抗体,BCR表达少
(4)记忆B细胞的产生
特异性表面标志:CD27,不产生抗体,再次遇同一抗原可迅速活化大量产生特异Ig
第二节
B细胞对TI抗原的免疫应答
某些抗原,如细菌多糖、多聚蛋白质及脂多糖等属TI抗原,能激活初始B细胞而无需Th细胞的辅助
㈠B细胞对TI-1抗原发生的应答
TI-1抗原又称B细胞丝裂原,成熟或不成熟的B细胞均可被TI-1抗原激活,诱导产生低亲和力的IgM,无记忆性
㈡B细胞对TI-2抗原发生的应答
TI-2仅能激活成熟B细胞,主要是B-1细胞
TI-2抗原通过高度重复的抗原表位使B细胞的mIg广泛交联而被激活,(但过度交联使成熟B细胞产生耐受)可直接激活B-1细胞,T细胞分泌的细胞因子可明显增强此类B细胞的免疫应答,并发生抗体类型转换,可产生IgM
IgG
第三节
体液免疫应答抗体产生的一般规律
特定抗原初次刺激机体所引发的应答称为初次应答;初次应答中形成的记忆淋巴细胞再次接触相同抗原刺激后,可迅速、高效、持久的应答,即再次应答或回忆应答
㈠初次应答
特点为潜伏期长,抗体水平低,亲和力低,抗体升高所需时间长,抗体主要为IgM
㈡再次应答
①潜伏期短②抗体浓度增加快③抗体维持时间长④诱发再次应答所需抗原剂量小⑤再次应答产生高亲和力抗体IgG
再次应答的强弱取决于两次抗原刺激的间隔长短,过长或过短反应均弱
第十四章
固有免疫系统及其应答
固有免疫,亦称非特异性免疫,是长期进化形成的防御机制,包括屏障结构、固有免疫细胞、体液中的抗菌物质
第一节
组织屏障及其作用
一、皮肤黏膜及其附属成分的屏障作用
⒈物理屏障
⒉化学屏障
⒊微生物屏障
二、体内屏障
⒈血-脑屏障
⒉血-胎屏障
第二节
固有免疫细胞
主要包括吞噬细胞(中性粒细胞和单个核吞噬细胞)、树突状细胞、NK细胞、NK T细胞、γδT细胞、B1细胞、肥大细胞、嗜碱性粒细胞、嗜酸性粒细胞等。
一、吞噬细胞
1.中性粒细胞
有很强的趋化作用、吞噬功能,病原体在局部引发感染时,可迅速穿越血管内皮进入感染部位进行杀伤
2.单核吞噬细胞
包括血液中的单核细胞和组织器官中的巨噬细胞,可做变形运动,对玻璃和塑料表面有很强黏附能力,借此在体外培养时可与淋巴细胞分离
巨噬细胞特点
①寿命长,可在组织中生存数月
②形态大,呈多样性
③表达MHCⅠ或Ⅱ类分子
④对玻璃塑料可吸附
3.巨噬细胞表面受体及其配体
(1)巨噬细胞表面受体及其识别的配体
(a)模式识别受体(PRR)
指单核巨噬细胞和DC等固有免疫细胞表面或细胞器室膜上,能够识别病原体某些共有特定分子结构的受体。包括甘露糖受体、清道夫受体(可识别磷脂酰丝氨酸,即凋亡细胞重要表面标志)、Toll样受体(分两类,表达于细胞膜上的和细胞器膜上的),(b)病原相关模式分子(PAMP)
即PRR识别结合的配体,是病原体及其产物所共有的、某些高度保守的特定分子结构
(c)调理性受体
巨噬细胞表面参与调理作用的受体,包括IgG
Fc受体和补体受体
(d)细胞因子受体 包括趋化因子受体MCP-1R、MIP-1α/βR等,在相应趋化因子作用下,可募集至感染和炎症部位;IFN-γ等细胞因子受体,通过与相应细胞因子结合而使巨噬细胞活化。
4.巨噬细胞的生物学功能
①清除、杀伤病原体
巨噬细胞借助表面的PRR和调理性受体,摄取抗原性异物,杀伤病原体
⑴氧依赖性途径 主要效应分子是反应性氧中间物和反应性氮中间物
⑵氧非依赖性途径 无需氧分子参与的杀菌作用,包括酸性环境、溶菌酶、防御素
⑶消化和清除
溶酶体起作用
②参与和促进炎症反应
通过分泌趋化因子、促炎症细胞因子等发挥作用
③杀伤靶细胞
④加工、提呈抗原
⑤免疫调节
二、树突状细胞
能诱导初始T细胞活化,是重要的免疫调节细胞,广泛分布于脑以外的全身组织和脏器。
据来源分为:髓样DC和淋巴样DC。是专职抗原提呈细胞,未成熟
DC
摄取、加工处理抗原能力强,提呈抗原能力弱;成熟DC
摄取、加工处理抗原能力弱,提呈抗原能力强。
成熟DC分两个亚群:①髓样树突状细胞(mDC)②浆细胞样树突状细胞(pDC)
三、自然杀伤细胞
来源于骨髓淋巴干细胞,发育成熟需要骨髓的微环境。主要分布于外周血和脾。
无需抗原预先激活即可杀伤肿瘤及病毒感染细胞。在抗体存在的情况下,也可通过细胞表面的Ig
G
FcR杀伤与IgG结合的肿瘤细胞或病毒感染细胞,这种作用为抗体依赖性细胞介导的细胞毒作用(ADCC)
㈠NK细胞杀伤作用的机制
⒈穿孔素/颗粒酶途径
⒉Fas/FasL途径
⒊TNF-α/TNFR-I途径
㈡NK细胞活性的调节
按照NKC受体识别的配体性质不同,分为识别HLAⅠ类分子和非的HLAⅠ类分子调节性受体
按照受体功能分,有两类受体:
杀伤细胞活化受体——与靶细胞表面相应配体结合后,可激发NK细胞产生杀伤作用
杀伤细胞抑制受体——与靶细胞表面相应配体结合后,可抑制NK细胞产生杀伤作用
⒈识别HLAⅠ类样分子的活化性受体
杀伤细胞免疫球蛋白样受体;杀伤细胞凝集素样受体
⒉识别非HLAⅠ类样分子的活化性受体
NKG2D;自然细胞毒性受体(是NKC特有标志,也是其活化性受体)
四、NK
T细胞
指能同时组成性表达CD56和TCR-CD3复合受体的T细胞
五、γδT细胞
六、B1细胞
七、其他固有免疫细胞
⒈肥大细胞
⒉嗜碱性粒细胞
⒊嗜酸性粒细胞
第三节
固有体液免疫分子及其主要作用
主要包括补体系统、急性期蛋白、细胞因子、抗菌肽、具有抗菌作用的酶类物质
第四节
固有免疫应答
固有免疫应答
指体内固有免疫细胞和分子,识别、结合病原体及其产物或其他抗原性异物,被迅速活化,并产生相应生物学效应,从而将病原体等抗原性异物杀伤、清除的过程
一、固有免疫应答作用时相
⒈瞬间~阶段
①屏障作用②巨噬细胞的作用③补体激活④中性粒细胞的作用
0-4h
⒉早期~阶段
①巨噬细胞募集②巨噬细胞活化③B-1细胞活化④NK细胞、NK
T细胞、γδT细胞活化
4-96h
⒊适应性免疫应答诱导阶段
96h后,诱导T细胞活化
二、固有免疫应答特点
非特异性识别;未经克隆扩增即可迅速产生免疫效应
三、固有免疫应答与适应性免疫应答的关系
⒈启动适应性免疫应答
⒉影响适应性免疫应答的类型
⒊协助适应性免疫应答产物发挥免疫效应
固有免疫应答
适应性免疫应答
主要参与的细胞
黏膜上皮细胞,吞噬细胞,树突状细胞,NK细胞,NK
T细胞,γのT细胞,B-1细胞
αβ
T细胞,B-2细胞
主要参与的分子
补体,细胞因子,抗菌蛋白,酶类物质
特异性抗体,细胞因子
作用时相
即刻
96小时
96小时后启动
识别受体
模式识别受体
较少多样性
特异性抗原识别受体,胚系基因重排编码,具有高度多样性
识别特点
直接识别病原体某些共有高度保守的分子结构,具有多反应性
识别APC提呈的抗原肽-MHC分子复合物或B细胞表位,具有高度特异性
作用特点
未经克隆扩增和分化,迅速产生免疫作用,免疫免疫记忆功能
经克隆扩增和分化,成为效应细胞后发挥免疫作用,有免疫记忆功能
维持时间
维持时间较短
维持时间较长
第十五章
免疫耐受
对抗原特异应答的T、B细胞,在抗原刺激下,不能被激活,不能产生特异免疫效应及或特异性抗体,从而不能执行免疫应答的现象,称免疫耐受
诱导免疫耐受的抗原称耐受原
第一节
免疫耐受的形成及表现
一、胚胎期及新生期接触抗原所致的免疫耐受
⒈胚胎期嵌合体形成中的耐受
:接触同种异型抗原所致免疫耐受
⒉在胚胎期人工诱导的免疫耐受:
胚胎发育期,不成熟自身免疫应答细胞接触自身抗原后,发生克隆清除,形成对自身抗原的耐受
二、后天接触抗原导致的免疫耐受
㈠抗原因素
⒈抗原剂量
抗原剂量过高或过低引起的免疫耐受,称为低带及高带耐受
⒉抗原类型及剂型
单体易激活耐受,多聚体易产生应答
⒊抗原免疫途径
静脉注射及口服易致全身耐受
⒋抗原持续存在⒌抗原表位特点
能诱导Treg细胞活化的抗原表位,称为耐受原表位
⒍抗原变异
㈡机体方面的因素
受客观环境因素影响
第二节
免疫耐受机制
中枢耐受
指在胚胎期及出生后T、B细胞发育过程中,遇自身抗原所形成的耐受
外周耐受
指成熟T、B细胞,遇内源性或外源性抗原,不产生正免疫应答,而显示免疫耐受
一、中枢耐受
T细胞及B细胞分别在胸腺及骨髓微环境中发育,此间进行阴性选择,启动细胞凋亡,致克隆消除,减少出生后自身免疫病的发生。
诱导中枢耐受的抗原:
1)体内各组织细胞普遍存在的抗原
2)组织特异性抗原:如部分内分泌相关蛋白,胰岛素、甲状腺球蛋白可表达于胸腺髓质上皮细胞。
二、外周耐受
1.克隆清除及免疫忽视
克隆清除
指体内某些组织特异性抗原浓度很高,且外周存在对其有高亲和力的T细胞克隆,一旦与抗原接触后,可经APC提呈,但因这些未经活化的APC表达较少的协同刺激分子,不能产生第二信号,致使此类被自身抗原活化的T细胞发生凋亡,而被克隆清除。
免疫忽视
指体内某些组织特异性抗原浓度低,或外周存在的T细胞克隆对其亲和力低,虽由活化的APC提呈,因缺乏第一信号,不足以活化T细胞,表现为自身组织特异性抗原与自身应答性T细胞克隆并存状态,在正常情况下不引起自身免疫病,称为免疫忽视。
2.克隆无能及不活化
绝大多数组织特异性抗原浓度太低,不足以活化相应的T细胞。当抗原浓度适宜,自身反应性T细胞与组织细胞MHC-I—自身Ag复合物接触,产生第一信号,但无第二信号,细胞不能充分活化,导致细胞克隆处于无能或不活化状态。
3.免疫调节细胞的作用
调节性T细胞(Treg):CD4+CD25+Foxp3+,具有负调节作用,通过细胞间的直接作用,抑制CD8+、CD4+T细胞的应答。
后天诱导Treg细胞和其他类型T细胞,通过分泌IL-10、TGF-β,抑制DC的成熟,抑制Th1、CTL的功能。
4.细胞因子的作用
5.信号转导障碍与免疫耐受
蛋白酪氨酸磷酸酶、ITIM基序等分子是负信号调控分子,如果这些负调控分子表达不足或缺陷,会破坏免疫耐受,致自身免疫病。
6.免疫隔离部位的抗原在生理条件下不致免疫应答
脑及眼的前房部位为特殊部位,抑制同种异型抗原的组织,不诱导应答,移植物不被排斥,为免疫隔离部位
原因:①生理屏障②抑制性细胞因子③PD-1的负调控作用
第三节
免疫耐受与临床医学
一、建立免疫耐受
⒈口服免疫原
⒉静脉注射抗原
⒊移植骨髓及胸腺
⒋转染基因
⒌脱敏治疗
抑制IgE产生
⒍防止感染
⒎诱导产生具有特异拮抗作用的调节性细胞 小鼠EAE是实验性自身免疫性脊髓炎
⒏自身抗原肽拮抗剂的使用
二、打破免疫耐受
⒈免疫原及免疫应答分子用于肿瘤免疫治疗
⒉抗免疫抑制分子及调节性T细胞用于肿瘤免疫治疗
⒊细胞因子及其抗体的合理使用
⒋多重抗感染措施,防止病原体产生抗原拮抗分子
第十六章
免疫调节
第一节
免疫调节是免疫系统本身具有的能力
免疫调节是机体对免疫应答过程做出的生理性反馈
⒈感知与调节
可以由免疫系统自行实施
⒉应答与调节
主要是负反馈调节,调节和应答各司其职
⒊调节与干预 干预为人为介入,包括对正常免疫应答途径实施干预、对免疫调节途径进行变革
⒋调节与疾病
第二节
固有免疫应答的调节
一、炎症因子分泌的反馈调节
Toll样受体(TLR)与病原相关模式分子(PAMP)结合后,通过NF-kB和MAP激酶相关信号途径,引起多种促炎症因子基因的激活,通过炎症反应清除病原体感染。然而,过量出现的炎症介质可能导致局部和全身性疾病,为此,免疫系统必需启动相应的机制,对TLR介导的炎症应答实施调节。
效应期:维持适当的反应强度;耐受期:无反应性
二、SOCS蛋白调控细胞因子的分泌
SOCS:
细胞因子信号转导抑制蛋白
细胞因子一旦与受体结合,受体分子间的聚合作用使与之相联的Jak激酶因相互磷酸化而激活,招募带有SH2结构域的STAT并使其磷酸化。细胞因子得以发挥其生物学功能。
三、补体调节蛋白对补体效应的调节
补体活化途径的调控,保证了补体在启用调理作用、炎症反应和介导细胞毒性清除病原体的同时,不致无节制地大量消耗,也可避免补体对自身组织和细胞的损伤。
第三节
抑制性受体介导的免疫调节
一、免疫细胞激活信号转导的调控
1.信号转导中两类功能相反的分子
PTK为蛋白酪氨酸激酶;PTP为蛋白酪氨酸磷酸酶。
受体分子胞内段上特定的氨基酸基序:
ITAM和ITIM
2.免疫细胞活化中两类功能相反的免疫受体
激活性免疫受体®带有ITAM®招募PTK®一般启动激活信号的转导;
抑制性免疫受体®带有ITIM®招募PTP®一般终止激活信号的转导。
两类受体的表达在时相上会有差别,即PTP的招募和激活往往在免疫细胞行使功能活化之后。
二、各种免疫细胞的抑制性受体及其反馈调节
1.共信号分子对T细胞增殖的反馈调节
CTLA-4,配体是B7;PD-1,配体是B7家族的PD-L1/L2。
一般在T细胞获得双重激活信号后约24小时诱导性表达,而CD28组成性地先表达。
2.B细胞通过FcgRII-B受体实施对特异性体液应答的反馈调节
配体:IgG
Fc段,其活化需与BCR交联。
激活成分:抗抗体,或抗原抗体复合物。
FcrR
II-B受体的胞浆段有ITIM基序,可引发抑制性信号,终止B细胞的分化和分泌抗体。抗BCR抗体必需是BCR或相应抗体分子大量出现,越过免疫系统感知的阈值,将被视作为一种新出现的、以特定独特型为表位的自身抗原,并产生相应的抗BCR
IgG抗体。
3.杀伤细胞抑制性受体调节NK细胞活性
(1)杀伤细胞Ig样受体(KIR):配体是HLAⅠ类分子和非经典的HLA-G分子;
(2)杀伤细胞凝集素样受体(KLR):配体是非经典Ⅰ类分子HLA-E提呈的肽段;
(3)免疫球蛋白样转录体(ILT),配体为HLAⅠ类分子的近膜端结构域(a3结构域)。
4.其他免疫细胞的调节性受体
第四节
调节性T细胞参与免疫调节
一、自然调节T细胞
表型:CD4+CD25+foxp3+
二、适应性调节T细胞
又称诱导性调节T细胞(iTreg)一般在外周由抗原及多种因素激发而产生,可以来自初始T细胞,也可从自然调节性T细胞分化而来。适应性调节T细胞的分化和功能发挥必需有特定细胞因子的参与。
Tr1和Th3是两类重要的适应性调节T细胞。
特
点
自然调节性T细胞
适应性调节T细胞
诱导部位
胸腺
外周CD25表达
+
+
+
-/+
转录因子Foxp3
+
+
+
+
抗原特异性
自身抗原(胸腺中)
组织特异性抗原和外来抗原
发挥效应作用的机制
细胞接触为主
分泌细胞因子为主
功能
抑制自身反应性T细胞介导的病理性应答
抑制自身损伤性炎症反应、阻遏
病原体和移植物引起
举例
CD4+
CD25+
T细胞
CD4+的Tr1和Th3
三、Th1和Th2的免疫调节作用
Th1分泌IFN-γ
Th2分泌IL-4
第五节
抗独特型淋巴细胞克隆对特异性免疫应答的调节
一、抗独特型抗体和独特型网络
1.抗体分子的抗原表位(同种型、同种异型、独特型)
同种型:有两重含义,一是指物种内抗体类别的差异;二是指同类抗体结构的种间差异。显然,由抗体分子同种型诱导产生抗抗体,必需通过种间免疫。
同种异型:同一物种个体间针对同种异型的抗抗体有可能在同种异体输血中出现。
独特型:是指TCR、BCR或Ig的V区具有的独特的氨基酸顺序和空间构型。
2.独特型网络与抗原内影象
抗独特型抗体有两种:针对支架部分的称Ab2α型,针对抗原结合部位的称Ab2β型。
抗原内影像:抗独特型抗体中的Ab2b,因其结构和抗原表位相似,并能与抗原竞争性地和Ab1结合,因而b型的抗独特型抗体被称为体内的抗原内影像
3.独特型网络调控的实质是淋巴细胞克隆在BCR或TCR间引发的相互作用
关键成分是
表达特定BCR的B细胞克隆及随后发生的克隆扩增
二、以独特型为核心的两种调控格局
1.通过第二抗体增强机体对抗原的特异性应答
2.通过第二抗体抑制机体对抗原的特异性应答
第五节
其他形式的免疫调节
一、活化诱导的细胞死亡对效应功能的反馈调节
1、活化诱导的细胞死亡的机制及免疫调节:
已激活的T细胞,发挥效应后可以自行发生凋亡,这一现象为激活诱导的细胞死亡(AICD)主要由Fas和FasL介导
2.AICD的失效引发临床疾病
Fas或FasL基因发生突变后,使反馈调节失效。人类的常见疾病为自身免疫性淋巴细胞增生综合症
二、免疫-内分泌-神经系统的相互作用和调
第十七章
超敏反应
超敏反应(hypersensitivity)是指机体受到某些抗原刺激时,出现生理功能紊乱或组织细胞损伤的异常适应性免疫应答。超敏反应又常被称为变态反应。前三型均由体液免疫介导,可经抗体被动转移;第IV型由细胞免疫介导。
型别
参加成分
发生机制
临床常见病
特异性免疫物质
非特异性辅助物质
Ⅰ型速发型过敏反应
IgE
IgG4
肥大细胞
嗜碱性粒细胞
嗜酸性粒细胞
1.抗原刺激机体产生IgE,IgE结合于肥大细胞或嗜碱性粒细胞表面
2.抗原再次进入机体,与细胞表面IgE结合3.靶细胞活化,释放生物介质
4.介质作用于效应器官,导致平滑肌痉挛,小血管扩张,毛细血管通透性增加,腺体分泌增加
1.过敏性休克
2.支气管哮喘
3.过敏性鼻炎
4.过敏性胃肠炎
5.荨麻疹
Ⅱ型细胞毒型细胞溶解型
IgG
IgM
补体系统
吞噬细胞
NK细胞
1.抗体与细胞本身或粘附在细胞表面的抗原结合,或抗原抗体复合物吸附在细胞表面
2.激活补体,溶解靶细胞
3.调理Mφ,吞噬靶细胞
4.激活杀伤细胞,杀伤靶细胞
1.异型输血反应
2.新生儿溶血性症
3.免疫性血细胞减少症
4.甲状腺机能亢进
Ⅲ型免疫复合物型血管炎型
IgG
IgM
补体系统
中性粒细胞
嗜碱性粒细胞
血小板
1.中等大小可溶性IC沉积于血管基底膜、关节滑膜等处
2.激活补体
3.吸引中性粒细胞,释放溶酶体酶
4.引起血管炎及血管周围炎
1.血清病
2.感染后肾小球肾炎
3.系统性红癍狼疮
4.类风湿性关节炎
5.过敏性肺泡炎
Ⅳ型迟发型细胞介导型
致敏T细胞
淋巴因子
巨噬细胞
1.抗原刺激T细胞致敏。
2.致敏T细胞再次与抗原相遇,产生免疫效应
3.TH
1释放淋巴因子,引起炎症反应
4.Tc直接杀伤靶细胞
1.传染性超敏反应
2.接触性皮炎
3.移植排斥反应
第十八章
自身免疫性疾病
免疫自身稳定
是指机体的免疫系统对自身的组织细胞成分处于免疫耐受状态不发生免疫应答。
第一节
概述
自身免疫:机体免疫系统对自身成分发生免疫应答的能力,通常对机体不造成损伤。
自身免疫病:因机体免疫系统对自身成分发生免疫应答而导致的疾病状态
自身免疫性疾病的特点
1)患者体内可检测到针对自身抗原的自身抗体和/或自身反应性T淋巴细胞
2)自身抗体和/或自身反应性T淋巴细胞介导对自身细胞或自身成分的适应性免疫应答,造成损伤或功能障碍;
3)病情的转归与自身免疫反应强度密切相关;4)易反复发作,慢性迁延。
自身免疫性疾病的分类
1.器官特异性自身免疫病(患者的病变一般局限于某一特定的器官)
(1)针对自身抗原的自身抗体或淋巴细胞损伤靶器官或腺体细胞。
(2)某些自身抗体可通过对靶器官或腺体的正常功能过度刺激或抑制.代表疾病:桥本氏甲状腺炎、毒性弥漫性甲状腺肿、胰岛素依赖的糖尿病
2.全身性自身免疫病
由针对多种器官和组织靶抗原的自身免疫反应引起,患者的病变可见于多种器官和组织。代表疾病:系统性红斑狼疮
第二节
自身免疫性疾病的免疫损伤机制及典型疾病
发病原因:自身抗体和/或自身反应性T淋巴细胞介导的免疫应答。
发病机制:由自身抗体/自身反应性T淋巴细胞,或二者共同引起的针对自身抗原的超敏反应性疾病,其发病机理和超敏反应的发病机理相同。
一、自身抗体引起的自身免疫性疾病
自身抗体包括:
细胞膜或膜吸咐成分自身抗体
细胞表面受体自身抗体(1)激动型抗受体自身抗体(2)阻断型抗受体自身抗体
细胞外成分自身抗体(细胞外基质成份)
1.自身抗体引起的细胞破坏性自身免疫性疾病:自身抗体与细胞表面抗原结合后引起的损伤机制:a.补体依赖的细胞毒作用(CDC)、b.补体和抗体的调理作用、c.ADCC、d.嗜中性粒细胞的破坏细胞作用。常见疾病有自身免疫性溶血性贫血、血小板减少性紫癜、血型不合引起的输血反应。
2.细胞表面受体自身抗体引起的自身免疫性疾病:抗体与细胞表面受体结合,过度刺激器官功能(如Graves病),或阻断受体与配体结合,抑制器官功能(如重症肌无力)。
3.细胞外成分自身抗体引起的自身免疫性疾病:如肺出血肾炎综合征,系由抗基底膜Ⅳ胶原自身抗体启动的免疫应答,导致肾炎和肺部出血。
4.自身抗体-免疫复合物引起的自身免疫性疾病:如SLE,因免疫复合物沉积在各种组织的小血管壁,激活补体引起细胞损伤;核抗原物质释出又导致产
生更多的自身抗体,进一步加剧损伤。
二、自身反应性T淋巴细胞介导的自身免疫性疾病
⒈胰岛素依赖型糖尿病:CTLà胰岛的β细胞
--使胰岛素分泌严重不足
⒉实验性变态反应性脑脊髓膜炎(EAE)
存在:髓鞘碱性蛋白(MBP)特异的Th1
⒊人多发性硬化病(MS)存在:髓鞘碱性蛋白(MBP)特异的Th1
⒋多发性硬化症(中枢神经系统的疾病)
三、自身抗体、自身反应性淋巴细胞均可导致发病
重症肌无力(MG)(抗乙酰胆碱受体自身反应性T细胞)
类风湿关节炎:(抗关节滑膜抗原的自身反应性淋巴细胞)
第三节
自身免疫性疾病发生的相关因素
一、抗原方面的因素
1.免疫隔离部位抗原的释放
免疫隔离部位
2.自身抗原发生改变:由生物、物理、化学以及药物等因素引起。
3.分子模拟
有些微生物与人的细胞或细胞外成分有相同或类似的抗原表位,在感染人体后激发的针对微生物抗原的免疫应答,也能攻击含有相同或类似表位的人体细胞或细胞外成分,这种现象被称为分子模拟。
二、免疫系统方面的因素
1.MHCⅡ类分子的异常表达
:
只在APC表达。胰岛素依赖糖尿病β胰岛细胞高表达MHCII。
2.免疫忽视的打破:免疫忽视
是指免疫系统对低水平抗原或低亲和力抗原不发生免疫应答的现象。
3.调节性T细胞的功能失常:发挥免疫抑制。
4.活化诱导的C死亡发生障碍:激活的效应性淋巴C在行使效应功能后死亡的现象称为活化诱导的细胞死亡(AICD)。
5.淋巴细胞的多克隆激活:
6.表位扩展:免疫系统针对一个优势表位发生免疫应答后,可能对隐蔽表位相继发生免疫应答,这种现象被称为表位扩展。
三、遗传方面的因素
1.HLA等位基因的基因型和人类自身免疫性疾病的易感性相关
2.与自身免疫性疾病发生相关的其他基因
3.性别与某些自身免疫性疾病的发生相关
第四节
自身免疫性疾病的防治原则
1.预防和控制微生物感染:采用疫苗和抗菌素控制,尤其长期感染。
2.应用免疫抑制剂:环孢菌素A和FK506。特异性抑制T细胞功能,如抑制IL-2产生。
3.应用细胞因子及其受体的抗体或阻断剂:
第三篇:医学免疫学大题总结
医学免疫学大题总结
问答题。
1.免疫系统组成与功能。
免疫系统是执行免疫功能的组织系统,包括:(1)免疫器官:由中枢免疫器官(骨髓、胸腺)和外周免疫器官(脾脏、淋巴结和黏膜免疫系统)组成;(2)免疫细胞:主要有T淋巴细胞、B淋巴细胞、中性粒细胞、单核-巨噬细胞、自然杀伤细胞、树突状细胞等;(3)免疫分子:如抗体、补体、细胞因子和免疫细胞表面的多种膜分子,可发挥三种功能:(1)免疫防御:即抗感染免疫,机体针对病原微生物及其毒素的免疫清除作用,保护机体免受病原微生物的侵袭;(2)免疫自稳:机体可及时清除体内衰老或损伤的体细胞,对自身成分处于耐受,以维系机体内环境的相对稳定;(3)免疫监视:机体免疫系统可识别和清除畸形和突变细胞的功能。在某些情况下,免疫过强或低下也能产生对机体有害的结果,如引发超敏反应、自身免疫病、肿瘤、病毒持续感染等。
2.简述内源性抗原的加工、处理、提呈过程。
答:完整的内源性抗原在胞浆中,在LMP的作用下降解成多肽片段,然后多肽片段经TAP1/TAP2选择,转运到内质网,在内质网中与 MHC Ⅰ类分子双向选择结合成最高亲和力的抗原肽/MHC分子复合物,该复合物由高尔基体转运到细胞表面,供CD8+ T 细胞识别。3.抗体的生物学活性。(1)IgV区的功能主要是特异性识别、结合抗原。(2)IgC区的功能a.激活补体;b.细胞亲嗜性:调理作用(IgG与细菌等颗粒性抗原结合,通过IgFc段与吞噬细胞表面相应IgGFc受体结合,促进吞噬细胞对颗粒抗原的吞噬;抗体依赖的细胞介导的细胞毒作用(ADCC,IgG与肿瘤细胞、病毒感染细胞表面结合,通过IgFc段与具有胞毒作用的效应细胞表面相应IgGFc受体结合,从而触发效应细胞对靶细胞的杀伤作用,称为ADCC);介导I II III型超敏反应。(3)各类免疫球蛋白的特性和功能。IgG:是抗感染的主要抗体;是唯一能通过胎盘屏障的抗体,在新生儿抗感染免疫中起重要作用;可与吞噬细胞和NK细胞表面的Fc受体结合,发挥调理作用和ADCC效应;(2)IgM:为五聚体,分子量最大;激活补体能力最强;是初次体液免疫应答中最早出现的抗体,可用于感染的早期诊断;(3)IgA:分泌型IgA(SIgA)为二聚体,主要存在于呼吸道、消化道、泌尿生殖道黏膜表面和乳汁中,在黏膜免疫中发挥主要作用;(4)IgD:是B细胞发育分化成熟的标志;(5)IgE:正常人血清中含量最少,具有很强的亲细胞性,与肥大细胞、嗜碱性粒细胞等具有高度亲和力,可介导Ⅰ型超敏反应的发生。
4.简述决定抗原免疫原性的因素。
答:第一是抗原的异物性,一般来讲,异物性越强,免疫原性越强; 第二是抗原的理化性质,包括化学性质、分子量、结构复杂性、分子构象与易接近性、物理状态等因素。一般而言,蛋白质是良好的免疫原,分子量越大,含有的芳香族氨基酸越多,结构越复杂,其免疫原性越强。第三是宿主的遗传因素、年龄、性别与健康状态。第四是抗原进入机体的剂量、途径、次数以及佐剂都明显影响抗原的免疫原性,免疫途径以皮内最佳,皮下次之。
5.体液免疫应答中再次应答与初次应答的不同之处是什么?
答:再次应答与初次应答不同之处为:
⑴ 潜伏期短,大约为初次应答潜伏期时间的一半;⑵ 抗体浓度增加快;⑶ 到达平台期快,平台高,时间长;⑷ 下降期持久;⑸ 用较少量抗原刺激即可诱发二次应答;⑹ 二次应答中产生的抗体主要为IgG,而初次应答中主要产生IgM;⑺ 抗体的亲和力高,且较均一。
6.TD抗原与TI抗原特性比较。
(1)T细胞辅助:需要/不需要;(2)抗体类型:IgG/IgM;(3)免疫应答的类型:体液,细胞/体液;(4)免疫记忆:有/无;(5)表位性质:T、B细胞表位/B细胞表位;(6)化学性质:蛋白质/多糖或脂多糖;(7)结构特点:结构复杂,半抗原-载体结构/结构简单,重复的半抗原结构;7.免疫球蛋白的基本结构和功能。
结构:(1)基本结构:Ig是由两条相同的重链与轻链通过二硫键连接而成的四肽链分子;Ig分子N端、轻链1/2和重链1/4或1/5处,氨基酸组成和排列次序多变,所以称为可变区(V区),可特异性结合抗原。V区中,某些局部区域的氨基酸组成与排列具有更高变化程度,故称此部位为高变区,其构建了抗体分子和抗原分子发生特异性结合的关键部位;而可变区中其他部分的氨基酸组成变化较小,即为骨架区,他不与抗原分子结合。但对维持高变区的空间构型起重要作用。在Ig分子C端,其氨基酸的组成和排列比较恒定,称为恒定区(C区)。C区虽不直接与抗原表位结合,但可介导Ig的多种生物学功能。(2)水解片段:木瓜蛋白酶可将免疫球蛋白水解为2个完全相同的抗原结合片段(Fab)和1个可结晶片段(Fc)。
功能:(1)特异性识别结合抗原:可变区(V区)内的超变区可特异性识别、结合病原体或细菌毒素,可阻断病原体的入侵或中和毒素的毒性作用;(2)激活补体:IgG或IgM与相应抗原特异性结合后,可激活补体经典途径,形成膜攻击复合体(MAC),溶解破坏靶细胞;③调理作用:IgG与细菌等颗粒性抗原结合后,通过其Fc段与吞噬细胞(巨噬细胞或中性粒细胞)表面的Fc受体结合,促进吞噬作用;④抗体依赖性细胞介导的细胞毒作用(ADCC效应):IgG(Fab段)与肿瘤细胞或病毒感染细胞表面的抗原(表位)特异性结合后,再通过其Fc段与具有细胞毒作用的效应细胞(巨噬细胞、NK细胞或中性粒细胞)表面的Fc受体结合,增强或触发对靶细胞的杀伤作用;⑤穿过胎盘屏障和黏膜:人类IgG是唯一能从母体转运到胎儿体内的免疫球蛋白,对新生儿抗感染具有重要意义。分泌型IgA(SIgA)可通过分泌片介导穿越呼吸道、消化道等黏膜上皮细胞,到达黏膜表面发挥局部抗感染免疫作用。8.五类免疫球蛋白的特性与功能。
(1)IgG:是抗感染的主要抗体;是唯一能通过胎盘屏障的抗体,在新生儿抗感染免疫中起重要作用;可与吞噬细胞和NK细胞表面的Fc受体结合,发挥调理作用和ADCC效应;(2)IgM:为五聚体,分子量最大;激活补体能力最强;是初次体液免疫应答中最早出现的抗体,可用于感染的早期诊断;(3)IgA:分泌型IgA(SIgA)为二聚体,主要存在于呼吸道、消化道、泌尿生殖道黏膜表面和乳汁中,在黏膜免疫中发挥主要作用;(4)IgD:是B细胞发育分化成熟的标志;(5)IgE:正常人血清中含量最少,具有很强的亲细胞性,与肥大细胞、嗜碱性粒细胞等具有高度亲和力,可介导Ⅰ型超敏反应的发生。9.补体系统的三个激活途径。
补体经典途径的激活过程:⑴ 识别阶段:抗原与抗体(IgM、IgG)结合形成免疫复合物,激活C1。C1是由C1q、C1r、C1s组成的多聚体复合物。当两个以上的C1q头部被抗体结合固定后,其构象发生改变,依次激活C1r、C1s,并裂解为大小片段。⑵ 激活阶段:活化的C1s依次酶解C4、C2,形成C 复合物,即C3转化酶,后者进一步酶解C3并形成C,即C5转化酶。⑶ 效应阶段:C5与C5转化酶中的C3b结合,并被裂解成C5a和C5b,前者释放入液相,后者仍结合于细胞表面,并可依次与C6、C7、C8、C9结合,形成C5b-9,即MAC。MAC可胞膜上形成小孔,使得小的可溶性分子、离子以及水分子可自由透过胞膜,但蛋白质之类的大分子却难以从胞浆中逸出,最终导致胞内渗透压降低,细胞溶解。
补体旁路途径的激活过程:不依赖于抗体,以革兰阴性菌脂多糖、肽聚糖、酵母多糖等为主要激活物,在B、D、P因子的参与下,使补体固有成分以C3-C5~C9顺序发生级联酶促反应,最后形成膜攻击复合物(MAC),溶解破坏靶细胞。
MBL途径:MBL与细菌表面甘露糖残基结合,再与丝氨酸蛋白酶结合,形成MBL相关的丝氨酸蛋白酶(MASP-
1、2)。MASP与活化的C1q具有同样的生物学活性,可水解C4和C2分子,继而形成C3转化酶,其后过程与经典途径相同。活化的C1s依次酶解C4、C2,形成C 复合物,即C3转化酶,后者进一步酶解C3并形成C,即C5转化酶。C5与C5转化酶中的C3b结合,并被裂解成C5a和C5b,前者释放入液相,后者仍结合于细胞表面,并可依次与C6、C7、C8、C9结合,形成C5b-9,即MAC。MAC可胞膜上形成小孔,使得小的可溶性分子、离子以及水分子可自由透过胞膜,但蛋白质之类的大分子却难以从胞浆中逸出,最终导致胞内渗透压降低,细胞溶解。10.补体的生物学作用。
补体旁路途径在感染早期发挥作用,经典途径在感染中、晚期发挥作用。(1)溶解靶细胞:膜攻击复合物可溶解破坏细菌细胞、肿瘤细胞和病毒感染细胞;(2)调理作用:C3b、C4b、iC3b与细菌或其他颗粒性抗原结合后,可被具有相应受体的吞噬细胞识别结合,增强吞噬细胞的吞噬作用;(3)引起炎症反应:C3a、C5a具有趋化作用;能刺激肥大细胞释放组胺等,介导炎症反应的发生;(4)免疫复合物清除作用:免疫复合物可借助C3b与红细胞表面的补体受体结合,并通过血液运送至肝脏清除;(5)免疫调节作用。C3b参加捕捉,固定Ag到易被APC处理、提呈;C3b的裂解产物与B细胞表面CR2结合,参与B细胞的活化;C3b与B细胞表面CR1结合到B细胞增殖分化为浆细胞。
11.简述补体参与宿主早期抗感染免疫的方式。
第一,溶解细胞、细菌和病毒。通过三条途径激活补体,形成攻膜复合体,从而导致靶细胞的溶解。
第二,调理作用,补体激活过程中产生的C3b、C4b、iC3b能促进吞噬细胞的吞噬功能。
第三,引起炎症反应。补体激活过程中产生了具有炎症作用的活性片断,其中,C3a C5a具有过敏毒素作用,C3a C5a C567具有趋化作用 12.细胞因子的共同特点及其主要生物学作用。
理化性质:细胞因子是分泌到细胞外的小分子量蛋白或多肽,约8~80kD。高效性:pmol水平即可显示明显的生物学效应;局部性:以自分泌和旁分泌形式发挥效应。主要作用于产生细胞本身和邻近的细胞;短暂性:半衰期短,合成过程受到严密调控;复杂性:多样性;重叠性;双向性;网络性;抑制性调节。
主要生物学作用:(1)参与炎症反应:IL-
1、IL-6和TNF-α等为促炎细胞因子,可直接作用于下丘脑体温调节中枢,引起发热;IL-8可募集中性粒细胞进入感染部位,参与炎症反应;(2)抗病毒、抗肿瘤作用:IFN能诱导产生抗病毒蛋白,具有广谱的抗病毒作用。TNF可直接作用于肿瘤细胞,通过凋亡机制产生杀瘤作用。IFN-γ、TNF和IL-12等可激活巨噬细胞,增强抗病毒和抗肿瘤作用;(3)刺激造血功能:各种集落刺激因子刺激造血干细胞,增殖分化为白细胞、红细胞和血小板;(4)参与和调节免疫应答:IL-2、4、5、6等可促进B细胞活化、增殖、分化为浆细胞并产生抗体;IL-
2、IL-12和IFN-γ可促进T细胞活化、增殖、分化为效应T细胞。
13.HLA-Ⅰ类与Ⅱ类分子的基本结构及生物学功能:
(1)HLA抗原的分子结构:HLA-Ⅰ类分子由1条重链(α
1、α
2、α3)和1条轻链(β)组成,可与内源性抗原肽(8~12aa)结合。HLA-Ⅱ类分子由1条重链(α
1、α2)和1条轻链(β
1、β2)组成,可与外源性抗原肽(12~17aa)结合;(2)HLA分子的生物学功能:①抗原加工和提呈作用:在抗原提呈细胞(APC)内,HLA-Ⅰ类和Ⅱ类分子分别与內源性和外源性抗原肽结合,形成抗原肽-HLA分子复合体,转运至APC膜表面,分别供CD8+T细胞和CD4+T细胞识别结合,启动特异性免疫应答;②制约免疫细胞间的相互作用—MHC限制性:T细胞的TCR在识别APC提呈的抗原肽的同时,还须识别与抗原肽结合的MHC分子,称之为MHC限制性。其中,CD8+T细胞只能识别抗原肽-MHC-Ⅰ类分子复合物,CD4+T细胞只能识别抗原肽-MHC-Ⅱ类分子复合物;③引发移植排斥反应:在器官移植时,HLA-Ⅰ类和Ⅱ类抗原作为同种异型抗原,可刺激机体产生特异性效应T细胞(CTL)和相应抗体,通过细胞毒等杀伤作用使供体组织细胞破坏,引发移植排斥反应。
14.T细胞的重要表面标志、亚群及其生物学功能: 表面标志:(1)TCR:不能直接识别结合抗原肽,只能识别结合APC膜表面的抗原肽-MHC分子复合物;(2)TCR辅助受体:CD4、CD8等。CD4是识别结合MHC-Ⅱ类分子;CD8是识别结合MHC-Ⅰ类分子;(3)共刺激分子:①CD28分子:可与APC表面的共刺激分子B7-1/B7-2(CD80/CD86)互补结合并相互作用,为初始T细胞的活化提供第二信号;②CD40L:可与B细胞表面CD40分子相互作用,为B细胞的活化提供第二信号。
亚群:T细胞的分类依据:(1)TCR肽链组成:①αβT细胞:执行特异性免疫应答;②γδT细胞:执行非特异性免疫应答。(2)是否接受过抗原刺激或接受抗原刺激后的分化情况:①初始T细胞(Th0细胞);②效应T细胞(如CTL);③记忆性T细胞:再次与相应抗原相遇后,迅速分化成熟为效应T细胞,产生免疫效应。(3)表面分子与功能:①CD4+T细胞:不能直接识别结合天然抗原分子,只能识别APC表面的抗原肽-MHCⅡ类分子复合物。CD4+Th1分泌Th1参与细胞免疫应答,可介导炎症反应和迟发型超敏反应,具有抗病毒和胞内菌感染的作用;CD4+Th2细胞分泌Th2刺激B细胞增殖分化为浆细胞并产生抗体,参与体液免疫应答;②CD8+T细胞:可分化为细胞毒性T细胞(CTL)。CTL只能识别结合APC或靶细胞表面MHC-Ⅰ类分子提呈的抗原肽,杀伤肿瘤细胞和病毒感染细胞,作用机制:释放穿孔素和颗粒酶,使靶细胞溶解破坏或发生凋亡;高表达FasL和TNF-α,诱导靶细胞凋亡。15.效应T细胞的主要生物学作用。(1)CTL:可通过释放穿孔素、颗粒酶和高表达FasL,导致靶细胞溶解破坏或发生凋亡,主要杀死胞内菌、病毒感染细胞和肿瘤细胞;(2)CD4+Th1细胞:可释放IL-
2、IFN-γ、TNF-α/β等细胞因子,在局部组织产生以淋巴细胞和单核吞噬细胞浸润为主的慢性炎症反应或迟发型超敏反应。其中,IFN-γ可活化巨噬细胞,杀死可逃避抗体和CTL攻击的胞内病原体;(3)记忆性T细胞:T细胞接受抗原刺激后,在增殖分化过程中停止分化而成为记忆T细胞。当其再次遇到相应抗原后,可迅速增殖分化成熟为效应T细胞,发挥强烈、持久的免疫应答。
16.B细胞的重要表面标志及其功能。
表面标志:(1)B细胞抗原受体(BCR):是B细胞表面特异性识别抗原的受体,也是所有T细胞的特征性表面标志,其化学本质是膜表面免疫球蛋白。与TCR不同的是,BCR可直接识别结合抗原分子表面的构象或线性表位;(2)BCR辅助受体:CD19-CD21-CD81复合物是BCR辅助受体;(3)共刺激分子:CD40分子,可与活化的CD4+Th2细胞表面的CD40L互补结合,产生共刺激信号,即B细胞活化的第二信号。
亚类:B1细胞(CD5+)产生以IgM为主的低亲和力抗体;无抗体类别转换;无免疫记忆;无再次应答;对TI2抗原及某些自身抗原应答。B2细胞(CD5-)可产生高亲和力抗体;有抗体类别转换、免疫记忆和再次应答;有抗原提呈和免疫调节功能。17.B细胞的主要生物学功能。
(1)合成分泌抗体,产生体液免疫效应:B细胞接受抗原刺激后,在活化的CD4+Th2细胞辅助下,活化、增殖、分化为浆细胞,产生抗体,发挥免疫效应;(2)提呈抗原、启动特异性体液免疫应答:B细胞是专职抗原提呈细胞,可通过BCR直接识别结合和摄取抗原,并加工处理成抗原肽,以抗原肽-MHC-Ⅱ类分子复合物的形式转运到细胞表面,供CD4+Th2细胞识别,从而启动特异性体液免疫应答;(3)免疫调节作用:产生IL-
1、IL-6等细胞因子。18.固有免疫应答的特点。
(1)无特异性:固有免疫细胞不表达特异性抗原识别受体,对“非己”异物的识别缺乏特异性,即对多种病原微生物或其产物均可应答。固有免疫细胞可通过表面模式识别受体(PRR)直接识别结合病原微生物的病原相关分子模式(PAMP),即区分“自己”与“非己”成分。PRR主要包括Toll样受体、甘露糖受体和清道夫受体等。PAMP是指病原微生物表面共有的高度保守的特定分子结构,主要包括革兰阴性菌的脂多糖、革兰阳性菌的磷壁酸和肽聚糖、细菌和真菌的甘露糖、细菌非甲基化DNACpG序列、病毒单链RNA、病毒双链RNA等;(2)作用迅速;(3)无记忆性。
19.免疫应答的类型。
(1)固有免疫:亦称天然免疫或非特异性免疫,是种群长期进化过程中逐渐形成,是机体抵御病原体侵袭的第一道防线;(2)适应性免疫:亦称获得性免疫或特异性免疫,为个体接触特定抗原而产生,仅针对该特定抗原而发生反应,是机体抵御病原体侵袭的第二道防线。20.免疫耐受的形成机制。
(1)固有免疫耐受:①缺乏识别自身抗原的受体:吞噬细胞表面缺乏识别宿主正常细胞的受体,使自身抗原处于被忽视的状态;②正常细胞表面存在抑制性受体:NK细胞表面存在杀伤细胞抑制受体(KIR),可识别正常细胞表面的MHC-Ⅰ类分子,活化并传递抑制性信号到细胞内,因而不破坏正常自身细胞;(2)适应性免疫耐受:①中枢免疫耐受:未成熟的T、B淋巴细胞在中枢免疫器官(骨髓和胸腺)内发育成熟过程中,能识别自身抗原的细胞克隆被清除或处于无反应性状态;②外周免疫耐受:其机制尚未完全阐明。T细胞克隆失能是外周免疫耐受的重要机制。T细胞的活化需要双信号(第一信号:TCR-抗原肽-MHC分子;第二信号:CD28/B7)。在缺乏第一信号(如自身细胞不表达MHC-Ⅱ类分子)或第二信号(如正常组织表达水平低)时,IL-2合成受阻,导致T细胞不被活化,而处于无能状态,产生免疫耐受。
21.何谓免疫调节,免疫调节异常可能发生。
免疫调节是指在免疫应答过程中,各种免疫细胞与免疫分子相互促进和抑制,形成正、负作用的网络形式,并在遗传基因的控制下,完成免疫系统对抗原的识别和应答。免疫调节异常可导致免疫应答过强或过弱,过强会导致自身免疫病或超敏反应,过弱会发生免疫缺陷。22.NK细胞的主要生物学功能。
无需抗原预先致敏,NK细胞可直接杀伤某些肿瘤细胞和病毒感染细胞,而对宿主正常细胞无杀伤作用。在抗体存在时,可通过ADCC作用,非特异定向识别杀伤与IgG类抗体特异性结合的靶细胞。杀伤机制主要有:(1)穿孔素/颗粒酶途径;(2)Fas与FasL途径;(3)TNF-α与TNF受体途径。
23.青霉素引起的过敏性休克属于哪一型超敏反应?简述青霉素引起的过敏性休克发病机制?
答:青霉素引起的过敏性休克属于Ⅰ型超敏反应。发病机制为: 青霉素本身无免疫原性,但其降解产物可与体内组织蛋白共价结合形成完全抗原,可刺激机体产生特异性IgE抗体,使肥大细胞和嗜碱性粒细胞致敏。当机体再次接触青霉素时,其降解产物与组织蛋白的复合物可通过交联结合靶细胞表面特异性IgE分子而触发过敏反应,重者可发生过敏性休克甚至死亡。24.四型超敏反应:
Ⅰ型超敏反应的发生机制:(1)概念:主要由IgE介导,以生理功能紊乱为主的速发型超敏反应。具有以下特点:(1)发生快、消退快;(2)以生理功能紊乱为主,无明显的组织损伤;(3)具有明显的个体差异和遗传倾向。发生过程:①致敏阶段:变应原刺激诱导B细胞增殖分化为浆细胞,产生IgE类抗体。IgE以其Fc段与肥大细胞/嗜碱性粒细胞的Fc受体结合,使机体处于致敏状态;②激发阶段:相同变应原再次进入机体后,与致敏肥大细胞/嗜碱性粒细胞表面的IgE特异性结合,使之脱颗粒反应,释放生物活性介质;③效应阶段:生物活性介质作用于效应组织和器官,产生以毛细血管扩张、通透性增加、支气管平滑肌痉挛、腺体分泌增加为主的生物学效应,引起局部或全身过敏反应。常见疾病及防治原则:(1)常见疾病:①过敏性休克:药物过敏性休克、血清过敏性休克;②呼吸道过敏反应:过敏性鼻炎、过敏性哮喘;③消化道过敏反应:过敏性胃肠炎;④皮肤过敏反应:荨麻疹、特应性皮炎(湿疹)、血管性水肿;
(2)防治原则:①变应原皮肤试验;②脱敏治疗;③药物治疗。Ⅱ型超敏反应:(1)概念:是由抗体(IgG或IgM)与靶细胞表面的相应抗原结合后,在补体、巨噬细胞、NK细胞等参与下,引起以细胞溶解或组织损伤为主的免疫病理反应;
(2)发生机制:①参与成分:A、靶细胞表面抗原:靶细胞固有抗原:包括同种异型抗原(如ABO和Rh血型抗原、HLA抗原)、自身抗原(如微生物感染所致)和异嗜性抗原;外来抗原或半抗原:药物、微生物等吸附在细胞膜上成为复合抗原;B、参与的抗体:ABO血型为天然抗体IgM,其他抗原以IgG为主;②靶细胞损伤的机制:A、补体介导的细胞溶解;B、调理吞噬作用;C、ADCC效应;
(3)常见疾病:输血反应、新生儿溶血症、自身免疫性溶血性贫血、药物过敏性贫血、链球菌感染后肾小球肾炎、甲状腺功能亢进等。Ⅲ型超敏反应:(1)概念:是由免疫复合物沉积于毛细血管基底膜等组织,通过激活补体,并在血小板、肥大细胞、中性粒细胞等的参与下,引起以充血水肿、局部坏死和中性粒细胞浸润为特征的炎症反应和组织损伤;
(2)发生机制:①免疫复合物的形成与沉积:A、抗原:游离存在的可溶性抗原;B、抗体:IgG、IgM、IgA;C、中等大小的抗原抗体(免疫)复合物:存在于血循环中,可沉积于血管基底膜、肾小球基底膜、关节滑囊膜;②组织损伤机制:免疫复合物激活补体,产生C3a、C5a等过敏毒素和趋化因子,使肥大细胞和嗜碱性粒细胞释放组胺等炎性介质,增加毛细血管的通透性,引起充血和水肿;同时吸引中性粒细胞聚集至免疫复合物沉积部位引起组织损伤。中性粒细胞、血小板;(3)常见疾病:血清病、链球菌感染后肾小球肾炎、类风湿性关节炎、系统性红斑狼疮。
Ⅳ型超敏反应:(1)概念:又称迟发型超敏反应,是由效应(致敏)T细胞再次接触相同抗原后,引起以单核-巨噬细胞和淋巴细胞浸润和组织损伤为主的炎症反应;
(2)特点:①反应发生迟缓(48~72h);②抗体和补体不参与反应;③以单个核细胞浸润为主的炎症;
(3)发生机制:①效应T细胞的产生:抗原(主要是胞内寄生菌、病毒感染细胞、肿瘤抗原、移植抗原、化学物质等)经APC加工处理成抗原肽,并提呈给T细胞,T细胞活化、增殖、分化为效应T细胞,即CD4+Th1细胞、CD8+CTL和记忆性T细胞。该过程为致敏阶段,约需10~14d;②效应T细胞引起炎症反应和细胞毒作用:CD4+Th1细胞可释放IL-
2、IFN-γ、TNF-β、GM-CSF等细胞因子,在局部组织产生以淋巴细胞和单核-巨噬细胞浸润为主的炎症反应;CTL与靶细胞表面相应抗原结合后,可通过释放穿孔素、颗粒酶和高表达FasL和TNF-α,导致靶细胞溶解破坏或发生凋亡;
(4)常见疾病:传染性迟发型超敏反应、接触性皮炎、移植排斥反应。
25.自身免疫病的共同特点。
自身免疫过程通常通过盖尔及库姆斯二氏分型的Ⅲ型变态反应导致组织损伤。自身组织(自身抗原)先刺激免疫系统导致自身抗体产生,此两者结合成免疫复合物,再引起组织损伤。自身免疫也可通过Ⅳ型变态反应机理,直接因淋巴细胞的激活而发生。关于自身免疫过程发生的机理,有多种学说:
①禁忌细胞系学说。身体中出现突变淋巴细胞,并由于某种刺激而增殖活跃起来。由于这种突变淋巴细胞系抗原结构上的异常,使它将正常的自身组织认为异体,发生免疫反应而导致组织损伤。
②隐蔽抗原学说。在胚胎的发育过程中,只有曾受淋巴网状系统检验的组织才被识别为自身组织,受到保护。有些器官和组织,例如中枢神经系统、甲状腺、晶体、精子等,在胚胎期没有被免疫系统识别,因此不受保护,一旦因为感染、外伤等原因,这些组织的自身抗原释放入血液或淋巴液,就可刺激产生自身抗体,造成组织损伤。③自身变异学说。正常组织受物理、化学或生物性刺激而发生变异,被免疫系统识别为非自身组织而受到排斥。
④免疫清除功能障碍学说。由于免疫缺陷,不能有效地清除突变的淋巴细胞或抗原,导致自身免疫过程。
⑤交叉反应抗体学说。由于机体的某些组织成分与外界抗原具有相似的抗原性,当机体清除外界抗原时,同时损伤了这些具有相似抗原性的自身组织。
26.获得性免疫缺陷综合征(AIDS)的特征性免疫学异常及其机制。病原体:HIV 免疫学异常:由于CD4分子是HIV受体,AIDS特征性免疫学异常是CD4+细胞数量减少和功能下降。CD4+细胞包括CD4+T细胞、巨噬细胞和树突状细胞。
发生机制:免疫细胞表面是CD4分子是HIV外膜糖蛋白的主要受体,故病毒主要侵犯宿主CD4+T细胞和表达CD4分子的单核/巨噬细胞、DC和神经胶质细胞。HIV入侵靶细胞有赖于靶细胞表面某些辅助受体(CXCR4和CCR5)参与,其机制为:HIV外膜gp120与靶细胞表面CD4分子结合,同时与靶细胞表面CXCR4和CCR5结合,继而fp41插入细胞膜,使病毒包膜与靶细胞膜融合,病毒得以入侵。临床特点:急性期,无症状潜伏期,症状期,AIDS期(机会感染、恶性肿瘤、神经系统异常)
诊断:主要依据病原体的生物学。CD4/CD8比例倒置。27.列举4种具有杀伤作用的免疫细胞,比较其特点(膜分子、分布、杀伤特点等)。
答:
1、CD8+ CTL 是一种效应性T细胞,以CD8为主,分布在外周血,能特异性直接破坏靶细胞。
2、NK 自然杀伤细胞,以CD16 CD56为特征性分子,不需要抗原致敏可直接杀伤靶细胞,无特异性,是机体抗肿瘤免疫的第一道防线,主要分布在外周血和外周淋巴器官。
3、巨噬细胞: 广泛分布在各组织中,表达模式识别受体和调理性受体,非特异,可以通过吞噬、ADCC或者分泌某些细胞因子杀伤靶细胞。抗感染,抗肿瘤。
4、NKT: 具有NK1.1分子 和 TCR-CD3复合物,主要分布在骨髓、肝和胸腺。多数为DN细胞。TCR 缺乏多样性,主要识别不同靶细胞表面CD1分子提呈的共有脂类和糖脂类抗原,属于固有免疫细胞。通过凋亡和坏死破坏靶细胞。
第四篇:医学免疫学名词解释
医学免疫学和微生物学名词解释
1. 免疫球蛋白:是指具有抗体活性或化学结构与抗体相似的球蛋白。
2. 病毒体:结构完整并具有感染性的病毒颗粒。
3. 菌毛:是许多革兰阴性菌与少数革兰阳性菌的菌体上具有比鞭毛细、短而直、数量多的丝状物。
4. 质粒:是细菌染色体外的遗传物质,为双股环状DNA。
5. 抗原:是指能与T细胞抗原受体和B细胞抗原受体特异性结合,导致T/B淋巴细胞活化产生正免疫应答,即诱导抗体和/或效应T细胞产生,并能与之特异性结合,产生免疫效应或反应的物质。
6. 毒血症:产外毒素的致病菌侵入机体后,在局部组织生长繁殖,释放外毒素进入血液,到达特定靶器官组织细胞,引起特殊的毒性症状。
7. Dane颗粒:是用发现者名字命名的乙肝病毒体,是Dane通过电镜观察乙肝病毒感染者血清所见到的直径42nm、具有双层衣壳的完整乙肝
病毒颗粒。
8. 细胞因子:是指由多种细胞,特别是免疫细胞产生的一类具有多种生物学活性的小分子多肽或糖蛋白。
9. 正常菌群:在正常情况下,这些微生物对人类是有益无害的故称之为正常微生物群,命名为正常菌群。
10.免疫:是指机体免疫系统识别“自己”和“非己”,对自身成分产生天然免疫耐受,对非己异物产生排除作用的一种生理反应。
11.非胸腺依赖性抗原:又称TI抗原,由单一重复B细胞表位组成,刺激B细胞产生抗体无需Th细胞辅助。
12.消毒:是指杀灭或清除传播媒介上的致病微生物,使之达到无害化的处理。
13.真菌:是一类具有细胞壁,无叶绿素,以寄生或腐生方式生存,少数为单细胞,多数为多细胞,大小差别很大,既能进行无性繁殖,也能
进行有性繁殖的真核细胞型微生物。
14.脓毒血症:化脓性细菌侵入血液后在其中大量繁殖,并通过血液扩散到其他组织器官,产生新的化脓性病灶。
15.荚膜:某些细菌在生长繁殖时,可分泌一些粘液性物质包绕在细胞壁外围,当粘液性物质牢固与细胞壁结合,厚度大于0.2um,边界明显光
镜下可见时,称之为荚膜。
16.抗体:是B细胞识别抗原后增殖分化为浆细胞所产生的一类能与相应抗原特异性结合的球蛋白。
17.支原体:是一类缺乏细胞壁,呈多形态性,可通过滤菌器,能在无生命培养基中生长繁殖的最小的原核细胞型微生物。
18.侵袭力:突破宿主机体的免疫防御机制,并在宿主生理环境中定居、生长繁殖和扩散能力。
19.超敏反应:是指机体的免疫系统在对抗原发生免疫效应时所发生的一种以机体生理功能紊乱或组织细胞损伤为主的特异性免疫应答。
20.核衣壳:由核心和衣壳组成的结构。
21.抗原决定簇:是指抗原分子中决定特异性的特殊化学基团。
22.人工自动免疫:是用疫苗或类毒素等抗原性物质免疫机体,使之产生特异性免疫应答,从而对相应病原体感染产生抵抗作用的措施,也称
为预防接种。
25.败血症:致病菌侵入血液,并在其中大量生长繁殖,并通血液扩散到其他组织器官,产生新的化脓性病灶。
26.TD抗原:又称胸腺依赖性抗原,既有T细胞表位,又有B细胞表位,刺激B细胞产生抗体需要Th细胞辅助。
26.抗原提呈细胞(APC):泛指具有摄取、加工处理抗原,并将抗原肽提呈给T/B淋巴细胞的一类免疫细胞,可分为专职抗原提呈细胞和非专
职抗原提呈细胞两大类。
27.微生物:是一大类肉眼不能直接观察到,必须借助显微镜放大几百倍乃至几万倍后方能看到的微小生物的总称。
28.免疫学:是生命科学的一个重要组成部分,是研究机体免疫系统的组织结构和生理功能的一门学科。
29.抗原决定基:是指抗原分子中决定抗原特异性的特殊化学基团,又称表位。
30.补体:是由人或脊椎动物血清与组织液中的一组不耐热可溶性蛋白和表达于细胞表面的一组膜蛋白所组成。
31.MHC:主要组织相容性复合体,MHA的基因是一组紧密连锁的基因群,称为主要组织相容性复合体。
32.HLA:人类白细胞抗原,人的MHA因首先在白细胞表面发现,故称为人类白细胞质抗原。
33.T细胞:T淋巴细胞是来自骨髓的始祖T细胞,在胸腺环境作用下,分化发育成熟的淋巴细胞,故称胸腺依赖性淋巴细胞,简称T淋巴细胞或T细胞。
34.B细胞:B淋巴细胞是由哺乳动物骨髓或禽类法氏囊中始祖B细胞分化成熟而来,故称骨髓/法氏囊依赖性淋巴细胞,简称B淋巴细胞或B细胞。
35.适应性免疫应答又称特异性免疫应答:是指体内抗原物异性T/B淋巴细胞接受抗原刺激后,自身活化、增殖、分化为效应细胞,产生一系列生物学效应的全过程。
36.ADCC效应:IgG类抗体与肿瘤或病毒感染细胞表面相应抗原表位特异性结合后,可通过其Fc段与NK细胞表面相应的低亲和力IgGFc受体即FcγRIII(CD16)结合,增强或触发NK细胞对靶细胞的杀伤破坏作用,即为抗体依赖性细胞介导的细胞毒作用,简称ADCC效应。
37.人工被动免疫:是给机体注射含特异性抗体的免疫血清或细胞因子等免疫效应分子,以治疗或紧急预防传染性疾病的措施。
38.血清学试验:采用含有已知特异性抗体的免疫血清,不仅可对分离培养出的未知纯种细菌进行鉴定,亦可区分同一菌种的不同群和型。
39.类毒素:外毒素经0.3%~0.4%甲醛溶液处理后,丧失其毒性作用,仍保留原有免疫原性,即为类毒素。
40.免疫细胞:指所有参加免疫应答或与免疫应答有关的细胞及其前体细胞。
41.有丝分裂原:指能够非特异多克隆刺激T/B淋巴细胞发生有丝分裂的物质。
42.造血干细胞:主要来源于骨髓,具有自我更新和分化两种潜能,在造血组织微环境中,可增殖分化为各种功能不同的血细胞。
43.单核巨噬细胞:包括血液中的单核细胞和组织器官中的巨噬细胞。
44.树突状细胞DC:广泛分布于脑以外的全身组织和脏器,数量较少,仅占人外周血单个核细胞的1%,因其具有许多分枝突起故名。
45.NK细胞:自然杀伤细胞来源于骨髓淋巴样干细胞,其发育成熟依赖于骨髓和胸腺微环境。主要分布于外周血和脾脏。
46.白细胞介素IL:主要由白细胞产生的,能介导白细胞间或白细胞与其他细胞间相互作用的细胞因子。
47.无菌操作:是指在无菌状态下的操作,即防止微生物进入人体或其他物品的操作方法。
48.菌血症:病原菌由局部侵入血流,但未在血液中繁殖,仅通过血液播散到合适的组织器官中进一步繁殖。如伤寒杆菌感染早期可引起菌血症。
49..隐性感染:当机体抗感染的免疫力较强,或侵入体内的病原菌数量较少,毒力较低时,则虽有病原菌感染,但不出现明显的临床症状,并可刺激机体产生特异性免疫。如脑膜炎球菌、甲型肝炎病毒等的感染,以隐性感染为主。
50.不完全吞噬:吞噬细胞吞噬某些病原菌后,不能将其消化降解,使病原菌反而受到保护,并随吞噬细胞的游走在体内扩散。如结核杆菌因具有硫酸脑苷酯,可抵抗吞噬,因此在特异性免疫产生之前,吞噬细胞对其的吞噬常常为不完全吞噬。
第五篇:医学免疫学心得
第三届医学免疫学自主研讨PPT汇报
心得体会
——***级临床一班 *** ***号
众所周知,医学免疫学这门学科对我们西医临床的学生来说是非常重要的,即使它在中医院校是一门考查课。但是,我们认识到了它在我们今后的医学学习、卫生事业的发展中起到承前启后的作用,为此,我们每个人都把医学免疫学当作考试课认真的学习。大家上课认真听讲,做笔记。
随着时代的进步,社会对人才需求的要求不断提高,对复合型人才的需求不断增大,教育模式也在不断改进,学习方式不断丰富。上课期间,周老师通过多媒体、板书教学模式,结合提问、互动等多种鼓励方式,激励大家学习,效果显著。最值得一提的是本届医学免疫学自主研讨PPT汇报活动。
我个人对艾滋病比较感兴趣,因为我们利辛县某些地区艾滋病比较严重,虽然学的是医学,但是对艾滋病并没有真正了解,所以就想借此机会深入地认识、学习艾滋病。我们那一组没有进入决赛,结合其他同学的PPT汇报及老师的点评,我总结出了以下几点: 1.PPT要做的好看,简洁,有新颖感 2.汇报内容要充实,全面,连贯得体 3.讲解时声音要洪亮,衣冠得体,举止落落大方,注意与老师、观众肢体语言的交流
4.做事要细心,自信,懂得交流、沟通,合作共赢 通过本次PPT汇报活动,让我得到了许多,不仅是知识上的,更是精神上的。希望以后医学免疫学的教学方式更加丰富多彩,成果更加着著。同时其他学科也可以借鉴本次活动的经验,拓展教学方法,不断改进教学模式,激发同学们的学习热情,为祖国医药卫生事业培养更多的优秀人才。