第一篇:命题与证明5
14.2 命题与证明
一、教学目标
(一)知识目标
1.了解证明以及证明的必要性.
2.能将一些文字命题转化为数学问题,并进行证明.
3.掌握证明的步骤,证明过程中使用规范性语言.
4.能用举反例的方法证明或判断简单的假命题.
(二)能力目标
1.培养学生规范的数学解题能力.
2.培养学生分析问题、解决问题的能力.
(三)情感目标
培养学生具有敢于质疑的意识,同时又有尊重客观事实的科学态度,培养学生勇于探索,创新,解疑的科学精神.
二、教学重点
将文字命题转化为数学问题,并进行证明;证明过程中规范性语言的使用.三、教学难点
将文字命题转化为数学问题,如何正确写出“已知”、“求证”.六、教学过程:
(一)引入
一个同学在画图时发现,三角形的三条边上的高的交点在三角形的内部,于是他得出结论:任何一个三角形的三条边上的高的交点都在三角形的内部.他的结论正确吗?
我们曾经计算过三角形、四边形、五边形、六边形等的内角和,得到这样一个结论:n边形的内角和等于(n-2)×180°.这个结论正确吗?是否有一个多边形的内角和不满足这个规律呢?
(二)新课
由上面的事例说明:通过特殊的事例或实践活动得到的结论可能正确,也可能不正确,因此,这样的结论需要进一步的证实.那么,怎样来证实呢?那就是证明.
根据题设、定义、公理以及定理等、经过逻辑推理来判断一个命题是否正确,这样的推理过程叫做证明.
下面,我们通过证明命题“两直线平行,同旁内角互补”来了解什么是证明.例1 证明:两直线平行,同旁内角互补.
分析:首先弄清命题的题设和结论,其次将命题的题设“两条平行直线被第三条直线所截”转化为数学的符号语言“已知:直线a∥b,直线c分别与直线a、b相交于点A、B”,再把结论“同旁内角互补”转化为数学的符号语言“求证:∠1+∠2=180°”,同时要画出图形.
图
1已知:如图1,直线a∥b,直线c分别与直线a、b相交于点A、B.求证:∠1+∠2=180°.
证明:略
由例1可知以下两点.
1.文字命题的证明要求:写出“已知”、“求证”、“证明”,并画出图形.
2.证明的一般过程:由题设(已知条件)出发,经过一步步的逻辑推理,最后推出结论(求证)的正确过程.
注意:证明过程的每一步推理都要有理有据,也就是根据定义、公理和定理.例2 求证:等腰三角形两腰上的中线相等.引导学生画出符合条件的图形,再试写出“已知”、“求证”,并进行证明.分析:首先画出符合条件的图形,再写出“已知”、“求证”,然后分析证明
思路,最后写出证明的过程;由题意分析,可以先证明含中线的某两个三角形全等,再证得中线相等.已知:如图2,在△ABC中,AB=AC,点E、F分别是AC、AB的中点.求证:BE=CF.
证明:略
例3 求证:有一条直角边及斜边上的高分别对应相等的两个直角三
角形全等.
分析:首先画出符合条件的图形,再写出“已知”、“求证”,然后分
析证明思路,最后写出证明的过程.
图 3
已知:如图3,在△ABC和△A′B′C′中,∠ACB=∠A′C′B′=90°,AC=
A′C′,CD⊥AB于D,C′D′⊥A′B′于D′,且CD=C′D′.
求证:Rt△ABC≌Rt△A′B′C′.
分析:(1)Rt△ABC与Rt△A′B′C′中已满足全等的什么条件?(AC=A′C′,∠ACB=∠A′C′B′=90°)
(2)还需补充什么条件两三角形全等?(BC=B′C′,或AB=A′B′,或∠B=∠B′,或∠A=∠A′)
(3)选择哪个条件?(∠A=∠A′)
(4)为什么?(已有条件AC=A′C′,CD=C′D′)
即先证明Rt△ACD≌Rt△A′C′D′,再证明Rt△ABC≌Rt△A′B′C′.请小组同学共同完成证明过程.(略)
文字命题证明的一般过程:
首先画出符合条件的图形,再写出“已知”、“求证”,然后分析证明思路,最后由题设(已知条件)出发,经过一步步的逻辑推理,写出结论(求证)的正确证明过程.
练习教材第96页练习第1题.
例4 试说明“两个锐角的和等于直角”是假命题.
分析:对假命题的证明,用举反例的方法证明.
举反例:就是要证明或判断一个命题是假命题,只要举出一个符合命题题设而不符合结论的例子即可.
解 设两个锐角都为30°,则两个锐角的和为60°,不等于90°,所以这个命题是假命题.
练习教材第96页练习第2题.
(三)小结
1.证明的一般步骤;
2.用举反例的方法证明或判断简单的假命题.
(四)作业
第二篇:§24.3命题与证明
.cn
§24.3 命题与证明
1.定义、命题与定理
试一试
观察图24.3.1中的图形,找出其中的平行四边形.
图
24.3.1要解决这个问题,首先要弄清楚怎样的图形才能称为平行四边形.你还记得 以前学过的知识吗?
“有两组对边分别平行的四边形叫做平行四边形”这句话说明了平行四边形 的含义以及区别于其他图形的特征.一般地,能明确指出概念含义或特征的句子,称为定义(definition).还可以举出如下的一些定义:
(1)有一个角是直角的三角形,叫做直角三角形.
(2)有六条边的多边形,叫做六边形.
(3)在同一平面内,两条不相交的直线叫做平行线.
定义必须是严密的.一般避免使用含糊不清的术语,比如“一些”、“大概”、“差不多”等不能在定义中出现.正确的定义能把被定义的事物或名词与其他的 事物或名词区别开来.
思 考
试判断下列句子是否正确.
(1)如果两个角是对顶角,那么这两个角相等;
(2)三角形的内角和是180°;
(3)同位角相等;
(4)平行四边形的对角线相等;
(5)菱形的对角线相互垂直.
根据已有的知识可以判断出句子(1)、(2)、(5)是正确的,句子(3)、(4)是错误的.像这样可以判断它是正确的或是错误的句子叫做命题(proposition).正确的命题称为真命题,错误的命题称为假命题.
在数学中,许多命题是由题设(或条件)和结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项.这种命题常可写成“如果„„那么„„”的形式.其中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.例-1-
如,在命题(1)中,“两个角是对顶角”是题设,“这两个角相等”是结论.例1 把命题“在一个三角形中,等角对等边”改写成“如果„„那么„„”的形式,并分别指出命题的题设与结论.
解这个命题可以写成:“如果在一个三角形中有两个角相等,那么这两个角所对的边也相等.” 这里的题设是“在一个三角形中有两个角相等”,结论是“这两个角所对的边也相等”.数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理(axiom).例如,我们通过探索,已经知道下列命题是正确的:
(1)一条直线截两条平行直线所得的同位角相等;
(2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线
平行;
(3)如果两个三角形的两边及其夹角(或两角及其夹边,或三边)分
别对应相等,那么这两个三角形全等;
(4)全等三角形的对应边、对应角分别相等.
我们把这些作为不需要证明的基本事实,即作为公理.
此外,我们把等式、不等式的有关性质以及等量代换(即在等式或不等式中,一个量用它的等量替代)都作为逻辑推理的依据.
有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理(theorem).
例如,运用公理“两角及其夹边分别对应相等的两个三角形全等”,可以得到定理:“两角及其一角的对边分别对应相等的两个三角形全等.”
定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的根据.
练习
1.找出右图中的锐角,并试着对“锐角”写出一个确切的定义
.2.把下列命题改写成“如果„„那么„„”的形式,并指出它的题设和结论.(1)全等三角形的对应边相等;
(2)平行四边形的地边相等.3.指出下列命题中的真命题和假命题.(1)同位角相等,两直线平行;
(2)多边形的内角和等于180°;
(3)如果两个三角形有三个角分别相等,那么这两个三角形全等.2.证明
思 考
一位同学在钻研数学题时发现:
2+1=3,2×3+1=7,2×3×5+1=31,2×3×5×7+1=211.
于是,他根据上面的结果并利用素数表得出结论: 从素数2开始,排在前 面的任意多个素数的乘积加1一定也是素数.他的结论正确吗?
如图24.3.2所示,一个同学在画图时发现: 三角形三条边的垂直平分线的 交点都在三角形的内部.于是他得出结论: 任何一个三角形三条边的垂直平分线的交点都在三角形的内部.他的结论正确吗?
图
24.3.2我们曾经通过计算四边形、五边形、六边形、七边形、八边形等的内角和,得到一个结论: n边形的内角和等于(n-2)×180°.这个结果可靠吗?是否有一个多边形的内角和不满足这一规律?
上面几个例子说明: 通过特殊的事例得到的结论可能正确,也可能不正确.因此,通过这种方式得到的结论,还需进一步加以证实.
根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明(proof).
前面的学习已经告诉我们: 一条直线截两条平行线所得的内错角相等.下面我们运用前面所提到的基本事实,即公理来证明这个结论.
例1 证明: 一条直线截两条平行直线所得的内错角
相等.
已知: 如图24.3.3,直线l1∥l2,直线l3分别和l1、l
2相交于点A、B.
求证: ∠1=∠3.
证明 因为l1∥l2(已知),所以∠1=∠2(两直线平行,同位角相等).
图
24.3.3 又∠2=∠3(对顶角相等),所以∠1=∠3(等量代换).
如果要证明或判断一个命题是假命题,那么我们只要举出一个符合命题题设而不符合结论的例子就可以了,这称为“举反例”.例如,要证明“一个锐角与一个钝角的和等于一个平角”是假命题,只需举一个反例,例如锐角等于30°,钝角等于120°,但它们的和就不等于180°,从而说明这个命题是假命题.
练习
1.根据下列命题,画出图形并写出“已知”、“求证”(不必证明);
(1)两条边及其中一边上的中线分别对应相等的两个三角形全等;
(2)在一个三角形中,如果一边上的中线等于这边的一半,那么这个三角
形是直角三角形.2.判断“同位角相等”是真命题还是假命是,并说明理由.在以往的学习中,我们已经知道下面的例题所表述的结论
是正确的,现在通过推理的方式给予证明.
例2 内错角相等,两直线平行.
已知:如图24.3.4,直线l3分别交l1、l2于点A、点B,∠
1=∠2.
求证: l1∥l2.
图
24.3.4证明 因为∠1=∠2(已知),∠1=∠3(对顶角相等),所以∠2=∠3(等量代换),所以l1∥l2(同位角相等,两直线平行).
例3 已知:如图24.3.5,AB和CD相交于点O,∠A=
∠B.
求证: ∠C=∠D.
证明 因为∠A=∠B(已知),所以AC∥BD(内错角相等,两直线平行). 图
24.3.5 所以∠C=∠D(两直线平行,内错角相等).
试一试请在下面题目证明中的括号内填入适当的理由.已知:如图24.3.6,AD=BC,CE∥DF,CE=DF.求证: ∠E=∠F.证明: 因为CE∥DF(),所以∠1=∠2().在△AFD和△BEC中,因为 图
24.3.6DF=CE(),∠1=∠2(),AD=BC(),所以△AFD≌△BEC(),所以∠E=∠F().
练习
1.已知:如图,直线AB、CD被EF、GH所截,∠1=∠2,求证:∠3=∠4.(第1题)
(第2题)
2.已知:如图,AB=AC, ∠BAO=∠CAO.求证:OB=OC.习题24.31.判断下列命题是真命题还是假命题,若是假命题,则举一个反例加以说明.(1)两个锐角的和等于直角;
(2)两条直线被第三条直线所截,同位角相等;
(3)有两条边和一个角分别对应相等的两个三角形全等.2.把下列命题改成“如果„„那么„„”的形式.(1)三角形全等,对应边相等;
(2)菱形的对角线相互垂直;
(3)三个内角都等于60°的三角形是等边三角形.3.证明:平等四边形的两组对边分别相等.(提示:连结AC)
(第3题)(第4题)
4.如图,OA=OB,PA=PB,试证明:OP平分∠AOB.5.证明:矩形的两条对角线长相等.(第5题)(第6题)
6.如图,已知:DC=AB,AD=BC,点E、F在AC上,AE=CF.试找出图中所有的全等三角形,并用有关全等三角形的基本事实加以证明.
第三篇:初二数学教案:命题与证明
初二数学教案:命题与证明
第二十四章 证明与命题(一)复习
一、教学目标:
1、了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。
2、会在简单情况下判断一个命题的真假。理解反例的作用,知道利用反例可证明一个命题是错误的。、了解证明的 含义,理解证明的必要性,体会证明的过程要步步有据。
4、会根据一些基本事实证明简单命题。
5、通过实例,体会反证法的含义。了解反证法的基本步骤。
6、初步会综合运用命题、证明以及相关知识解决简单的实际问题。
二、本章知识结构框架图:
三、教 学过程:
(一)知识回顾
1、一 般地,对某一件事情作出正确或不正确的判断的句子叫做命题。
命题分为真命题与假命题。
2、说明一个命题是假命题,通常只用找出一个反例,但要说明一个命题是真命题,就必须用推理的方法,而不能光凭一个例子。
(二)说一说
1.指出下列句子,哪些是命题,哪些不是命题?
(1)有两个角和夹边对应相等的三角形是全等的三角形;
(2)有两条边对应相等的两个三角形全等;
(3)作A的平分线;
(4)若a=b 则 a2= b2
(5)同位角相等 吗?
2.说出一个已学过 定理:
说出一个已学过公理:
3、下列把命题改写成如果,那么的形式。并判断下列命题的真假.(1)不相等的角不可能是对顶角.(2)垂直于同一条直线的两直线平行;
(3)两个无理数的乘积一定是无理数.(三)练一练 1.用反例证明下列命题是假命题:
(1)若x(5-x)=0,则x=0;
(2)等腰三角形一边上的中线就是这条边上的高;
(3)相等的角是内错角;
(4)若x2,则分式 有意义.(四)例题分析
例1求证:全等三角形对应角的平分线相等.证明命题的一般步骤:
(1)根据题意,画出图形;
(2)用符号语言写出已 知和求证
(3)分析证明思路;(4)写出证明过程;
例2已知:如图,△ABC中,C=2B,BAD=DAC.求 证:AB=AC+CD
还有其他方法吗? A A E
B D C B D C
(第三题)(第二题)
例3已知 :如图D,E分别是BC,AB上的一点,BC、BD的长度之比为3:1, △ECD的面积是△ABC的面积的一半.求证: BE=3AE[来源:学|科|网]
例
4、已知:如图,直线AB,CD,EF在同一平面内,且AB ∥ EF,CD ∥ EF,[来源:学科网]
求证:AB ∥ CD。
证明:假设AB∥CD,那么AB与CD一定相交于一点P
∵AB ∥ EF,CD ∥ EF(已知)
过点P有两条直线AB,CD都与直线EF平行。
这与经过直线外一点,有一条而且只有一条直线和这条直线平行矛盾。[来源:学科网]
AB ∥ CD不能成立。
AB ∥ CD
反证法的一般步骤:[来源:学科网]
1.反设(否定结论);
2.归谬(利用已知条件和反设,进行推理,得出与已学过的公理、定理、定义或与已知条件矛盾);
3.写出结论(肯定原命题成立)。
练习:
如图,已知:AB=AE,BC=DE,AFCD于F.求证:CF=DF.(五)小结:
(六)作业布置:练习一份
B= E,
第四篇:13.2 命题与证明2
13.2 命题与证明
小结:证明几何命题的表述格式
①按题意画出图形;
②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论; ③在“证明”中写出推理过程。(3)练习:P78课内练习1、2
三、例题教学
P78例题4
例、已知:如图,AC与BD相交于点O,AO=CO,BO=DO。求证: AB∥CD(证明略)
ODC
四、练习巩固
ABP80 练习1、2
五、小结
(1)证明的含义
(2)真命题证明的步骤和格式
(3)思考、探索:假命题的判断如何说理、证明?
第五篇:命题与证明导学案
命题与证明(2)
学习目标:
1、会区分定理,公理和命题。
2、了解证明的含义,体验证明的必要性。
重点:证明的含义和表述格式。
难点:按照规定格式表述证明的过程。
一、独学(课本77~78页)
1、所有推理的原始共同出发点是_________________________________。
2、几何推理中,把那些从长期实践中总结出来的,不需要再作证明的____________叫做公理。(举例证明)
3、有些命题。它们的正确性已经过推理得到证实,并被选定作为判定其它命题真假的依据,这样的命题叫做_____________,推理的过程叫做_________________。
二、对学(要探究出因与果,会填写理由,会使用“∵”“∴”)
例1:已知直线c与直线a、b相交,且12,求证ab。
=180,OE平分AOB,OF平分BOC,求证例2:已知,如图AOBBOC
OEOF.注:
1、做题时要写“证明”二字,不能写“解”。
2、结对双方要共同探究各步的因果关系,一定要写出每一步的理由(即根据题目使用“∵”“∴”)。
3、对文字说明题,一定要根据题意写出“已知”、“求证”和“画出图形”最后给出证明。
三、群学(组内交流展示)
1、课本78页练习(1)(2).2、第79~80页练习(1)(2).四、拓展练习.证明:如图ABCD,DF平分CDB,BE平分ABD,求证:12。
五、小结收获.六、作业:第83页第5题(1)(2)。