首页 > 文库大全 > 精品范文库 > 13号文库

极限平均值的证明

极限平均值的证明



第一篇:极限平均值的证明

1、设limanA,证明:limna1a2anA。nn

证明:因为limanA,所以对任意的0,存在N0,当nN时,有 n

|anA|,于是

|a1a2anaa2aNaN1anA||1A| nn

a1a2aNaN1annA| n

a1a2aNNAaan(nN)A||N1| nn

a1a2aNNA1|[|aN1A||anA|] nn|||

|a1a2aNNAnN| nn

因为lim|a1a2aNNA|0(注意分子为常数),所以存在N1N,当nn

aa2aNNAnN1时,有|1|,于是当nN1时,有 n

aa2aNNAnNa1a2anA||1|2,nnn|

有极限的定义有lima1a2anA。nn

n

2、设limanA且an0,A0,证明:lim12nA。n

证明:因为a1a2ana1a2an,n

a1a2ann111aa2an1111,a1a2anna1a2ana1a2an,n所以111a1a2an

111aa2an1111lim,又因为lim,利用第1题结论,有lim1

nnananAAnn

所以limn

111a1a2annA,同理lima1a2anlimanA,由夹逼定理nnn得

lima1a2anA。n

3、设an0,且liman1A,证明:limanA。nnan证明:limanlimnnaaa1a2nlimnA。1a1an1nan1

第二篇:平均值不等式归纳法证明

平均值不等式的证明

湖南省张家界市永定区永定小学覃文周整理

1、设ai(i=1,2,…,n)为正数,求证:(a1+a2+…+an)

等号当且仅当a1=a2=…=an时成立。证明:由1na1a2an…(1)a1a2210得:a1a2a1a2。即当n=2时(1)式成立。2

假设当n=k时(1)式成立,即(a1+a2+…+ak)

1令(a1+a2+…+ak+ak1)=a,于是有: k11ka1a2ak。则当n=k+1时 a=1111[a1+a2+…+ak+ak1+(k-1)a]=[a1+a2+…+ak)+ak1+(k-1)a)] 2k2kk

1(2

2ka1a2ak+12kk1ak1ak1k1)2k1a1a2akak1a aaaaaa

2即 ak1a1a2akak1 k1(a1+a+…+a1k+ak1)ka1a2akak1

即当n=k+1时(1)式成立。

对任意自然数n,(1)式成立。由证明过程不难得知等号成立的充分必要条件是a1=a2=…=an。

第三篇:极限证明

极限证明

1.设f(x)在(,)上无穷次可微,且f(x)(xn)(n),求证当kn1时,x,limf(k)(x)0. x

2.设f(x)0sinntdt,求证:当n为奇数时,f(x)是以2为周期的周期函数;当n为

偶数时f(x)是一线性函数与一以2为周期的周期函数之和. x

f(n)(x)0.{xn}3.设f(x)在(,)上无穷次可微;f(0)f(0)0xlim求证:n1,

n,0xnxn1,使f(n)(xn)0.

sin(f(x))1.求证limf(x)存在. 4.设f(x)在(a,)上连续,且xlimx

5.设a0,x12a,xn12xn,n1,2,证明权限limnxn存在并求极限值。

6.设xn0,n1,2,.证明:若limxn1x,则limxnx.nxnn

7.用肯定语气叙述:limxfx.8.a11,an11,求证:ai有极限存在。an

1tx9.设函数f定义在a,b上,如果对每点xa,b,极限limft存在且有限(当xa或b时,为单侧极限)。证明:函数f在a,b上有界。

10.设limnana,证明:lima12a2nana.n2n

211.叙述数列an发散的定义,并证明数列cosn发散。

12.证明:若

afxdx收敛且limxfx,则0.11an收敛。,n1,2,.求证:22an1an13.a0,b0.a1a,a2b,an22

n

14.证明公式k11k2nCn,其中C是与n无关的常数,limnn0.15.设fx在[a,)上可微且有界。证明存在一个数列xn[a,),使得limnxn且limnf'xn0.16.设fu具有连续的导函数,且limuf'uA0,Dx,y|x2y2R2,x,y0



R0.I

1证明:limufu;2求IRf'x2y2dxdy;3求limR2

R

D

R

17.设fx于[a,)可导,且f'xc0c为常数,证明:

1limxfx;2fx于[a,)必有最小值。

18.设limnana,limnbnb,其中b0,用N语言证明lim

ana.nbbn

Snx19.设函数列Snx的每一项Snx都在x0连续,U是以x0为中心的某个开区间,在Ux0内闭一致收敛于Sx,又limnSnx0,证明:limSx.xx0

20.叙述并证明limxfx存在且有限的充分必要条件柯西收敛原理

a

23.设

f(x)= 0.证明xlimf(x)dx收敛,且f(x)在a,上一致连续,

24.设a1>0,an1=an+,证明=1 nan25.设fx在a的某领域内有定义且有界,对于充分小的h,Mh与mh分别表示fx在ah,ah上的上、下确界,又设hn是一趋于0的递减数列,证明:

1)limnMhn与limnmhn都存在;

2)limn0MhlimnMhn,limn0mhlimnmhn;

3)fx在xa处连续的充要条件是llimnMhnimnmhn26设xn满足:|xn1xn||qn||xnxn1|,|qn|r1|,证明xn收敛。

27.设ana,用定义证明:limnana

28.设x10,xn1

31xn,(n1,2,),证明limxn存在并求出来。

n3xn



29.用“语言”证明lim30.设f(x)

(x2)(x1)

0

x1x3

x2,数列xn由如下递推公式定义:x01,xn1f(xn),(n0,x1

n

1,2,),求证:limxn2。

31.设fn(x)cosxcos2xcosnx,求证:

(A)对任意自然数n,方程fn(x)1在[0,/3)内有且仅有一个正根;

(B)设xn[0,1/3)是fn(x)1的根,则limxn/3。

n

32.设函数f(t)在(a,b)连续,若有数列xna,yna(xn,yn(a,b))使

Limf(xn)A(n)及Limf(yn)B(n),则对A,B之间的任意数,可找到数列xna,使得Limf(zn)

33.设函数f在[a,b]上连续,且

f0,记fvnf(avn),n

exp{

ba,试证明:n

1b

lnf(x)dx}(n)并利用上述等式证明下aba

2

2

ln(12rcosxr2)dx2lnr(r1)

f(b)f(a)

K

ba

34.设f‘(0)K,试证明lim

a0b0

35.设f(x)连续,(x)0f(xt)dt,且lim

x0

论'(x)在x0处的连续性。

f(x),求'(x),并讨A(常数)

x

36. 给出Riemann积分af(x)dx的定义,并确定实数s的范围使下列极限收敛

i1

lim()s。nni0n

x322,xy02

37.定义函数fxxy2.证明fx在0,0处连续但不可微。

0,xy0

n1

b

38.设f是0,上有界连续函数,并设r1,r2,是任意给定的无穷正实数列,试证存在无穷正实数列x1,x2,,使得:limnfxnrnfxn0.39.设函数fx在x0连续,且limx0

f2xfxA,求证:f'0存在且等于A.x

1n

40.无穷数列an,bn满足limnana,limnbnb,证明:limaibn1-iab.nni1

41.设f是0,上具有二阶连续导数的正函数,且f'x0,f''有界,则limtf't0

42.用分析定义证明limt1

x31

 x292

43.证明下列各题

1设an0,1,n1,2,,试证明级数2nann1ann收敛;

n1

2设an为单调递减的正项数列,级数n2000an收敛,试证明limn2001an0;

n

n1

3设fx在x0附近有定义,试证明权限limx0fx存在的充要条件是:对任何趋于0的数列xn,yn都有limnfxnfyn0.144.设an为单调递减数列的正项数列,级数anln1an0收敛,试证明limnnn1

a1。45.设an0,n=1,2,ana0,(n),证 limn

n

46.设f为上实值函数,且f(1)=1,f(x)=〔1,+〕

limf(x)存在且小于1+。

x+4,证明x1)2

x2+f(x)

47.已知数列{an}收敛于a,且

aaaSn,用定义证明{Sn}也收敛于a

n

48.若fx在0,上可微,lim

n

f(x)

0,求证0,内存在一个单

xx

调数列{n},使得limn且limf(n)0

n

xesinxcosx,x0

49.设fx2,确定常数a,b,c,使得f''x在,处处存在。

axbxc,x0

第四篇:函数极限证明

函数极限证明

记g(x)=lim^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/M<=f1(x)注意到f2的极限小于等于a,那么存在N2,当x>N2时,0<=f2(x)同理,存在Ni,当x>Ni时,0<=fi(x)取N=max{N1,N2...Nm};

那么当x>N,有

(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n所以a/M<=^(1/n)

第五篇:极限的证明

极限的证明

利用极限存在准则证明:

(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;

(2)证明数列{Xn},其中a>0,Xo>0,Xn=/2,n=1,2,…收敛,并求其极限。

1)用夹逼准则:

x大于1时,lnx>0,x^2>0,故lnx/x^2>0

且lnx1),lnx/x^2<(x-1)/x^2.而(x-1)/x^2极限为0

故(Inx/x^2)的极限为0

2)用单调有界数列收敛:

分三种情况,x0=√a时,显然极限为√a

x0>√a时,Xn-X(n-1)=/2<0,单调递减

且Xn=/2>√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=/2.解得A=√a

同理可求x0<√a时,极限亦为√a

综上,数列极限存在,且为√

(一)时函数的极限:

以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)

几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……

(二)时函数的极限:

由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=

为使需有为使需有于是,倘限制,就有

例7验证例8验证(类似有(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:

Th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有

=§2函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)

註:若在Th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:

6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限:

(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)

例2例3註:关于的有理分式当时的极限.例4

例5例6例7

相关内容

热门阅读

最新更新

随机推荐