首页 > 文库大全 > 精品范文库 > 13号文库

初一数学下册要点总结(合集五篇)

初一数学下册要点总结(合集五篇)



第一篇:初一数学下册要点总结

七年级下册要点总结

第一章 整式的运算

一、单项式、单项式的次数:

只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式

1、多项式、多项式的次数、项

几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:

整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:

1、同底数幂的乘法:a2、幂的乘方:

3、积的乘方:

4、同底数幂的除法:

六、零指数幂和负整数指数幂:

1、零指数幂:

2、负整数指数幂:

七、整式的乘除法:

1、单项式乘以单项式:

法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:

法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:

单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

5、多项式除以单项式:

多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

八、整式乘法公式:

1、平方差公式:

2、完全平方公式:

第二章平行线与相交线

一、余角和补角:

1、余角:

定义:如果两个角的和是直角,那么称这两个角互为余角。

性质:同角或等角的余角相等。

2、补角:

定义:如果两个角的和是平角,那么称这两个角互为补角。

性质:同角或等角的补角相等。

二、对顶角:

我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。

对顶角的性质:对顶角相等。

三、同位角、内错角、同旁内角:

直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

四、平行线的判定:

1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。

2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。

3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。

补充平行线的判定方法:

(1)平行于同一条直线的两直线平行。

(2)在同一平面内,垂直于同一条直线的两直线平行。

(3)平行线的定义。

五、平行线的性质:

(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

六、尺规作图:

1、作一条线段等于已知线段。

2、作一个角等于已知角。

第三章 生活中的数据

一、科学记数法:

一般地,一个绝对值较小的数可以表示成a10的形式,其中110,n是负整数。

二、近似数和有效数字:

1、近似数:

利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都

n

叫做这个近似数的有效数字。

三、形象统计图:

第四章 概率

一、事件发生的可能性;

人们通常用1(或100)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。

二、游戏是否公平:

游戏对双方公平是指双方获胜的可能性相同。

三、摸到红球的概率:

1、概率的意义

P(摸到红球=摸到红球可能出现的结果数 摸出一球可能出现的结果数

2、确定事件和不确定事件的概率:

(1)必然事件发生的概率为1记作P(必然事件)=

1(2)不可能事件发生的概率为0,P(不可能事件)=0

(3)如果A为不确定事件,那么0

3、概率的求法:

一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m个结果,那么事件A发生的概率为P(A)=

m n

第五章 三角形一、三角形及其有关概念

1、三角形:

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形的表示:

三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。

3、三角形的三边关系:

(1)三角形的两边之和大于第三边。

(2)三角形的两边之差小于第三边。

(3)作用:

①判断三条已知线段能否组成三角形

②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

4、三角形的内角的关系:

(1)三角形三个内角和等于180°。

(2)直角三角形的两个锐角互余。

5、三角形的稳定性:

三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

6、三角形的分类:

(1)三角形按边分类:

不等边三角形

三角形底和腰不相等的等腰三角形

等腰三角形

等边三角形

(2)三角形按角分类:

直角三角形(有一个角为直角的三角形)

三角形锐角三角形(三个角都是锐角的三角形)

斜三角形

钝角三角形(有一个角为钝角的三角形)

把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

7、三角形的三种重要线段:

(1)三角形的角平分线:

定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

性质:三角形的三条角平分线交于一点。交点在三角形的内部。

(2)三角形的中线:

定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形的三条中线交于一点,交点在三角形的内部。

(3)三角形的高线:

定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;

8、三角形的面积:

三角形的面积=1×底×高

2二、全等图形:

定义:能够完全重合的两个图形叫做全等图形。

性质:全等图形的形状和大小都相同。

三、全等三角形

1、全等三角形及有关概念:

能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、全等三角形的表示:

全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、全等三角形的性质:全等三角形的对应边相等,对应角相等。

4、三角形全等的判定:

(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)

(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)

(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

第六章 变量之间的关系

1、变量、自变量、因变量:

2、函数的三种表示法:

(1)关系式法

(2)列表法

(3)图像法

第七章 生活中的轴对称

一、轴对称

1、轴对称图形:

如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:

对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。

3、性质:

(1)对应点所连的线段被对称轴垂直平分。

(2)对应线段相等,对应角相等。

二、角平分线的性质:

角平分线上的点到这个角的两边的距离相等。

三、线段的垂直平分线(简称中垂线):

定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

四、等腰三角形

1、等腰三角形:有两条边相等的三角形叫做等腰三角形。

2、等腰三角形的性质:

(1)等腰三角形的两个底角相等

(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。

3、等腰三角形的判定:

(1)有两条边相等的三角形是等腰三角形。

(2)如果一个三角形有两个角相等,那么它们所对的边也相等

五、等边三角形:

1、等边三角形:三边都相等的三角形叫做等边三角形。

2、等边三角形的性质:

(1)具有等腰三角形的所有性质。

(2)等边三角形的各个角都相等,并且每个角都等于60°。

3、等边三角形的判定

(1)三边都相等的三角形是等边三角形。

(2):三个角都相等的三角形是等边三角形

(3):有一个角是60°的等腰三角形是等边三角形。

第二篇:初一数学下册知识点总结

初一数学下册知识点总结

本章重点:一元一次不等式的解法,本章难点:了解不等式的解集和不等式组的解集的确定,正确运用

不等式基本性质3。

本章关键:彻底弄清不等式和等式的基本性质的区别.

(1)不等式概念:用不等号(“≠”、“<”、“>”)表示的不等关系的式子叫做不等式

(2)不等式的基本性质,它是解不等式的理论依据.

(3)分清不等式的解集和解不等式是两个完全不同的概念.

(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心

(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集

(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成(8).利用数轴确定一元一次不等式组的解集

第六章:

1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.

2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.

3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.

本章的重点是:二元一次方程组的解法——代入法,加减法以及列一次方程组解简单的应用问题.

本章的难点是:

1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;

2.正确地找出应用题中的相等关系,列出一次方程组.

第七章

本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度. 本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用

1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.

2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.

3.乘法公式的推导过程,能灵活运用乘法公式进行计算.

4.熟练地运用运算律、运算法则进行运算,5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.

第八章:

1、认识事物的几种方法:观察与实验 归纳与类比 猜想与证明 生活中的说理 数学中的说理

2、定义、命题、公理、定理

3、简单几何图形中的推理

4、余角、补交、对顶角

5、平行线的判定

判定:一个公理两个定理。

公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)定理:内错角相等(数量关系)两直线平行(位置关系)

定理:同旁内角互补(数量关系)两直线平行(位置关系).

平行线的性质:

两直线平行,同位角相等

两直线平行,内错角相等

两直线平行,同旁内角互补

由图形的“位置关系”确定“数量关系”

第九章:

重点:因式分解的方法,难点:分析多项式的特点,选择适合的分解方法

1.因式分解的概念;

2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)

3.运用因式分解解决一些实际问题.(包括图形习题)

第十章:

重点是:用统计知识解决现实生活中的实际问题.

难点是:用统计知识解决实际问题.

1.统计初步的基本知识,平均数、中位数、众数等的计算、2.了解数据的收集与整理、绘画三种统计图.

3.应用统计知识解决实际问题能解决与统计相关的综合问题.

第三篇:初一数学下册期末知识点总结

初一数学下册期末知识点总结

知识点、概念总结

1.不等式:用符号lt;,gt;,le;,ge;表示大小关系的式子叫做不等式。

2.不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号gt;,lt;连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)ge;,le;连接的不等式称为非严格不等式,或称广义不等式。

3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。5.不等式解集的表示方法:

(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1le;2的解集是xle;3(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。6.解不等式可遵循的一些同解原理

(1)不等式F(x)lt;G(x)与不等式 G(x)gt;F(x)同解。(2)如果不等式F(x)lt;G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)lt;G(x)与不等式H(x)+F(x)(3)如果不等式F(x)lt;G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)gt;0,那么不等式F(x)lt;G(x)与不等式H(x)F(x)0,那么不等式F(x)lt;G(x)与不等式H(x)F(x)gt;H(x)G(x)同解。7.不等式的性质:

(1)如果xgt;y,那么yy;(对称性)(2)如果xgt;y,ygt;z;那么xgt;z;(传递性)(3)如果xgt;y,而z为任意实数或整式,那么x+zgt;y+z;(加法则)(4)如果xgt;y,zgt;0,那么xzgt;yz;如果xgt;y,zlt;0,那么xz(5)如果xgt;y,zgt;0,那么x÷zgt;y÷z;如果xgt;y,zlt;0,那么x÷z

(6)如果xgt;y,mgt;n,那么x+mgt;y+n(充分不必要条件)(7)如果xgt;ygt;0,mgt;ngt;0,那么xmgt;yn(8)如果xgt;ygt;0,那么x的n次幂gt;y的n次幂(n为正数)8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

9.解一元一次不等式的一般顺序:(1)去分母(运用不等式性质2、3)(2)去括号

(3)移项(运用不等式性质1)(4)合并同类项

(5)将未知数的系数化为1(运用不等式性质2、3)(6)有些时候需要在数轴上表示不等式的解集 10.一元一次不等式与一次函数的综合运用:

一般先求出函数表达式,再化简不等式求解。11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。12.解一元一次不等式组的步骤:(1)求出每个不等式的解集;(2)求出每个不等式的解集的公共部分;(一般利用数轴)(3)用代数符号语言来表示公共部分。(也可以说成是下结论)13.解不等式的诀窍

(1)大于大于取大的(大大大);例如:Xgt;-1,Xgt;2,不等式组的解集是Xgt;2(2)小于小于取小的(小小小);例如:Xlt;-4,Xlt;-6,不等式组的解集是Xlt;-6(3)大于小于交叉取中间;(4)无公共部分分开无解了;14.解不等式组的口诀(1)同大取大

例如,xgt;2,xgt;3,不等式组的解集是Xgt;3(2)同小取小

例如,xlt;2,xlt;3,不等式组的解集是Xlt;2(3)大小小大中间找

例如,xlt;2,xgt;1,不等式组的解集是1(4)大大小小不用找

例如,xlt;2,xgt;3,不等式组无解 15.应用不等式组解决实际问题的步骤(1)审清题意

(2)设未知数,•根据所设未知数列出不等式组(3)解不等式组

(4)由不等式组的解确立实际问题的解(5)作答 16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。

为大家推荐的初一数学下册期末知识点总结,大家仔细阅读了吗?更多参考复习资料尽在。

初一下学期数学期末考试知识点整理(北师大版)202_年七年级数学下册期末备考知识点

第四篇:202_初一数学下册教学计划

近代以来,特别是在实行学科课程的条件下,教学计划主要是学科的计划,或只是学科表。202_初一数学下册教学计划,我们来看看。

202_初一数学下册教学计划(一)

本学期我担任七年级(3)(4)两个班的数学教学工作,从班级学生的上期数学成绩上看,两班班级学生的数学基础很差,所以本学期的教学任务非常艰巨,但我仍有信心迎接这个新挑战。为了能更出色地完成教学任务,特制定计划

一、本学期教材分析

本学期的教学内容共计六章,第5章:相交线和平行线;第6章:实数;第7章:平面直角坐标系;第8章:xx方程组;第9章:不等式和不等式组;,第10章:数据的收集、整理与描述。

第5章:相交线和平行线 本章包括相交线、平行线及其判定、平行线的性质和平移共4节内容,前三节主要讨论平面内两条直线的位置关系,重点是垂直和平行关系,第4节是有关平移交换的内容。本章的重点是垂线的概念与平行线的判定和性质,而逐步深入地让班级学生学会说理,是本章的一个难点。

第6章 本章主要学习习近平方根与立方根以及实数的有关概念和运算。这一章是班级学生在初中学习过程中的一个里程碑,他们要从有理数进入到无理数的领域,认识上将从有理数扩展到实数的范围,让班级学生进一步深化对数的认识,扩大班级学生的数学视野与界限。

第7章:平面直角坐标系 本章包括平面直角坐标系、坐标方法的简单应用两节课的内容,主要内容为平面直角坐标系的有关概念、点与坐标(坐标为整数)的对应关系、用坐标表示地理位置和用坐标表示平移等内容。

第8章:xx方程组 本章的主要内容包括:利用xx方程组分析与解决实际问题,xx方程组及其相关概念,消元思想和代入法、加减法解xx方程组,三元一次方程组,三元一次方程组解法举例。其中,以方程组为工具分析问题、解决含有多个未知数的问题是重点,同时也是难点。实际问题始终贯穿全过程之中进行。消元思想——解方程组时“化多为少,由繁至简,各个击破,逐一解决”的基本策略,是产生具体解法的重要基础,而代入法和加减法则是落实消元思想的具体措施。先了解基本思想,然后在基本思想指导下寻求解决问题的具体办法,这是本章内容安排中的一个突出特点。

第9章:不等式与不等式组 本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及其解集的几何表示,利用一元一次不等式分析、解决实际问题。其中,以不等式(组)为工具分析问题、解决问题是重点;一元一次不等式(组)及其相关概念、不等式的性质是基础知识;掌握一元一次不等式(组)的解法及解集的几何表示是基本技能。本章重视数学与实际的关系,注意体现列不等式(组)中蕴涵的建模思想和解不等式(组)中蕴涵的化归思想。

第10章:数据的收集、整理与描述 本章是统计部分的第一章,内容包括:

1、利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;

2、利用统计图表(以直方图为重点)描述数据;

3、展现收集、整理、描述和分析数据得出结论的统计调查的基本过程。本章通过一些案例展开有关内容,在每一个案例中都展示了收集数据、整理数据、描述数据和分析数据得出结论的一般过程。其中重点在收集、整理与描述数据上,所涉及的分析数据比较简单,较复杂的内容将在后面的内容中进一步讨论。

二、确立本学期的教学目标及实施目标的具体做法

本学期的教学目标是七年级(下)的六章内容,力求班级学生掌握基础的同时提高他们的动手操的能力,概括的能力,类比猜想的能力和自主学习的能力。在初中的数学教学实践中,常常发现相当一部分班级学生一开始不适应中学教师的教法,出现消化不良的症状,究其原因,就班级学生方面主要有三点:一是学习态度不够端正;二是智能上存在差异;三是学习方法不科学。我以为施教之功,贵在引导,重在转化,妙在开窍。因此为防止过早出现两极分化,我准备具体从以下几方面入手

1、认真研读新课程标准,钻研教材,精选习题,精心备课,做好教案,上好新课。同时仔细批改作业,作好辅导,发现问题及时解决作认真总结成功与失败的经验和原因。

2、充分利用现代化教学设施制作教学道具,设置教学情境,结合日常生活,由浅入深,循序渐进。引导班级学生主动加入课堂学习和讨论,积极参与知识的探究与规律的总结。

3、营造民主、和谐、平等、自主的学习氛围,引导班级学生进行合作探究、交流和分享发现的快乐。从而体会到学习的乐趣,激发班级学生的学习热情。

4、精心设计探究主题,引导班级学生学会发散思维,培养班级学生创造性思维的能力,实现一题多解、举一反

三、触类旁通。

5、开展分层教学模式,成立互助学习小组,以优带良,以优促后。同时狠抓中等生,辅导后进生,实现共同进步。

三、个人教学进度安排

第1、2、3周 学习第五单元

第4、5、6周 学习第六单元

第7、8周 学习第七章

第9、10、11周 学习第八章

第12、13周 学习第九章

第14周 学习第十章

第15、16周 复习迎接期末考试。

202_初一数学下册教学计划(二)

一、指导思想

新学期里,本人将积极接受学校分配给自己的各项教育教学任务,以强烈的事业心和责任感投入工作。遵纪守法,遵守学校的规章制度,工作任劳任怨,及时更新教育观念,实施素质教育,全面提高教育质量,保持严谨的工作态度,工作兢兢业业,一丝不苟。热爱教育、热爱学校,尽职尽责、教书育人,注意培养班级学生具有良好的思想品德。认真备课上课,认真批改作业,不敷衍塞责,不传播有害班级学生身心健康的思想。

二、学情分析

8班和9班在素质上差距不大,纪律整体比较差、现在的学情与现实决定了并不是付出十分努力就一定有十分收获。但教师的责任与职业道德时刻提醒我,没有付出一定是没有收获的。作为新时代的教师,只有付出百倍的努力,苦干加巧干,才能对得起良心,对得起人民群众的期望。

三、素质教育

我注重推行素质教育,坚决把实施素质教育落实在行动上。关心爱护全体班级学生,尊重班级学生的人格,平等、公正对待班级学生。对班级学生严格要求,耐心教导,不讽刺、挖苦、歧视班级学生,不体罚或变相体罚班级学生,保护班级学生合法权益,促进班级学生全面、主动、健康发展。

导学案是老师讲课的依据,不仅写明教学要求和教学目的,也写清能力训练的内容、要求、目的及教学措施等,不仅体现教学大纲的要求,也保证将大纲要求落实到实处。这样做就能使素质教育在整个教育教学中成为一项必不可少的内容,避免了盲目性,随意性,增强了计划性。在编写教案时注意选择教育的方法和时机,达到既给班级学生传授知识,又开发班级学生思维能力,促进班级学生全面发展。在具体的教学过程中,结合所学内容,使班级学生学习数学知识的同时,也吸取其它方面的“营养”,开阔他们的视野,拓展他们的知识面,培养实事求是和刻苦学习的科学态度。

四、教研工作

我将积极参加教学研究工作,不断对教法进行探索和研究。谦虚谨慎、尊重同志,相互学习、相互帮助,维护其他教师在班级学生中的威信,关心集体,维护学校荣誉,共创文明校风。对于素质教育的理论,进行更加深入的学习。在平时的教学工作 中努力帮助后进生,采取各种措施使他们得到进步。

五、出勤

在工作中我一定要做到不迟到、不早退,听从领导分配,不挑肥拣瘦讲价钱,平时团结同志,尊老爱幼,做到互相关心,互相爱护。作为一名教师,我一定自觉遵守学校的各项规章制度,以教师八条师德标准严格要求自己,工作严肃认真,一丝不苟,决不应付了事,得过且过,以工作事业为重,把个人私心杂念置之度外,按时完成领导交给的各项任务。

六、本期数学的能力要求

1、基本技能:能够按照一定的程序与骤进行运算、作图或画图,进行简单的推理。

2、逻辑思维能力:会观察、比较、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会准确地阐述自己的思想和观点,形成良好的思维品质。

3、运算能力:不仅会根据法则、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件寻求合理、简捷的运算途径。

4、分析问题和解决问题的能力:能够解决实际问题,是指解决带有实际意义的和相关学科中的数学问题,以及解决生产和日常生活中的实际问题。在解决实际问题中,把实际问题抽象成数学问题,形成用数学的意识。

七、教学常规

我将积极从提高课堂教学效益的各个侧面探讨提高课堂教学效益的因素。我将积极学习,翻阅有关资料,对教育理论、目标教学、教学方法、学法指导、智力因素和非智力因素等进行再认识,提高用理论来指导实践的能力。积极实行目标教学,根据教材和学情确定每节课的重难点。平时备好课,上好课,向40分钟要质量。坚持周前备课,努力做到备课标、备教材、备班级学生、备教具,备教法学法。从知识能力两方面精心设计教案,并积极地使用各种电教器材,提高课堂教学效益,坚决杜绝课堂教学的盲目性和随意性,在课堂教学方面我力争课堂解决问题,在教学中抓关键,突重点,排疑点,讲求教法,渗透学法,既教书更育人,使班级学生的身心得到全面和谐的发展。

八、学期工作目标

通过本期教学,使班级学生形成一定的数学素质,能自觉运用数学知识解决生活中的数学问题,形成扎实的数学基本功,为今后继续学习数学打下良好的基础。培养一批数学尖子,能掌握科学的学习方法。不及格人数较少。形成良好学风。形成良好的数学学习习惯。形成融洽的师生关系。使班级学生在德、智、体各方面全面发展。

第五篇:初一数学下册知识点

初一数学下册知识点

第五章 相交线与平行线

5.1 相交线

观察与猜想 看图时的错觉

5.2平行线及其判定

5.3平行线的性质

信息技术应用 探索两条直线的位置关系数学活动

小结

复习题

5第六章平面直角坐标系

6.1平面直角坐标系

阅读与思考 用经纬度表示地理位置

6.2 坐标方法的简单应用

数学活动

小结

复习题6

第七章 三角形

7.1 与三角形有关的线段

信息技术应用 画图找规律

7.2 与三角形有关的角

阅读与思考 为什么要证明

7.3 多边形及其内角和

阅读与思考 多边形的三角剖分

7.4 课题学习镶嵌

数学活动

小结

复习题7

第八章 二元一次方程组

8.1 二元一次方程组

8.2 消元——二元一次方程组的解法

8.3 实际问题与二元一次方程组

阅读与思考 一次方程组的古今表示及解法

8.4 三元一次方程组解法举例

数学活动

小结

复习题8

第九章 不等式与不等式组

9.1 不等式

阅读与思考 用求差法比较大小

9.2 实际问题与一元一次不等式实验与探究 水位升高还是降低

9.3 一元一次不等式组

阅读与思考 利用不等关系分析比赛

数学活动

小结

复习题9

第十章 数据的收集、整理与描述

10.1 统计调查

实验探究 瓶子中有多少粒豆子

10.2 直方图

信息技术应用 利用计算机画统计图

10.3 课题学习从数据谈节水

数学活动

小结

复习题10

1由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组

不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。求不等式组的解集的过程叫做解不等式组。

解不解不等式的诀窍

大于大于取大的(大大大);

例如:X>-

1X>

2不等式组的解集是X>2

小于小于取小的(小小小);

例如:X<-

4X<-6

不等式组的解集是X<-6 过两点有且只有一条直线两点之间线段最短同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理 经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行

12两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补定理 三角形两边的和大于第三边推论 三角形两边的差小于第三边三角形内角和定理 三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等

22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等定理1 在角的平分线上的点到这个角的两边的距离相等

大于小于交叉取中间;

无公共部分分开无解了

初一数学

1.1 正数与负数 在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。与负

数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也

加上“+”)。

1.2 有理数 正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。整数和分

数统称有理数(rational number)。通常用一条直线上的点表示数,这条直线叫数轴(number axis)。数轴

三要素:原点、正方向、单位长度。在直线上任取一个点表示数0,这个点叫做原点(origin)。只有符

号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)数轴上表

示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。一个正数的绝对值是它本身;一个

负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法 有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加。2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互

为相反数的两个数相加得0。3.一个数同0相加,仍得这个数。有理数减法法则:减去一个数,等于

加这个数的相反数。

1.4 有理数的乘除法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何

数同0相乘,都得0。乘积是1的两个数互为倒数。有理数除法法则:除以一个不等于0的数,等于

乘这个数的倒数。两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a

叫做底数(base number),n叫做指数(exponent)。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数

字(significant digit)。

第二章 一元一次方程

2.1 从算式到方程 方程是含有未知数的等式。方程都只含有一个未知数(元)x,未知数x的指

数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。解方程就是求出使

方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。等式的性质: 1.等式两边加

(或减)同一个数(或式子),结果仍相等。2.等式两边乘同一个数,或除以同一个不为0的数,结

果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)把等式一边的某项变号后移到另一边,叫

做移项。第三章 图形认识初步

3.1 多姿多彩的图形 几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段 线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。连接

两点间的线段的长度,叫做这两点的距离。

3.3 角的度量 1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算 如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。等角(同角)的补角相等。等角(同角)的余角相等。

相关内容

热门阅读

最新更新

随机推荐