第一篇:六年级列方程解决问题1第三周大全
第五讲列方程解决问题
【学法指导】
同学们在解答数学问题时,经常遇到一些数量关系较复杂的,或较隐蔽的逆向问题。【例题二】
某站运来西红柿和黄瓜共重1660千克,已知运来的西红柿的重量比黄瓜的重量的3倍少60千克,菜站运来的西红柿和黄瓜各多少千克? 用算术方法解答比较困难,如果用方程解就简便得多。它可以进一步培养我们分析问题和解决问题的能力,抽象思维能力,列方程解应用题一般分为五步:
(一)审题;(弄清已知数和未知数以及它们之间的关系)
(二)解设,用字母表示未知数;(通常用“x”表示)
(三)根据等量关系列出方程;
(四)解方程求出未知数的值;
(五)验算并答题。
【例题一】
姐姐邮票的张数是弟弟的3倍,姐姐给弟弟6张邮票,两人邮票的张数就相等。姐、弟原来各有多少张邮票?
【练习一】
1.甲、乙两个仓库存有化肥,甲仓库存有50吨,乙仓库存有62吨。每次从甲仓库运出5吨,同时从乙仓库运出8吨,运了多少次后,两个仓库所存化肥的吨数相等?
2.今年父亲48岁,儿子12岁。几年前父亲的年龄是儿子年龄的5倍?几年后父亲的年龄是儿子年龄的2倍?
【练习二】
1.鸡兔同笼,鸡和兔的数量相同,两种动物的腿加起来共有72条。鸡和兔各有多少只?
2.松鼠妈妈采松子,晴天每天可以采20个,雨天每天只能采12个,它一连几天采了112个松子,平均每天采14个。问这几天当中有几天是雨天?
【例题三】
买两张新课桌和3只方凳要付210元钱,现买同样的课桌3张和方凳2只要付280元。买一张课桌和一只方凳用多少钱?
【练习三】
1.两个火车站相距425千米,甲、乙两列火车同时从两站相对开出,经过2.5小时相遇。
2.两个整数相除,商5,余数是3,已知被除数、除数、商、余数的和是59,求被除数和除数。甲车每小时行90千米,乙车每小时行多少千米?
2.甲桶的油是乙桶的4倍,如果从甲桶取出15千克倒入乙桶,那么两桶油的重量相等。两桶油原来各有油多少千克?
【例题四】
两个整数相除,商17,余数是8,已知被除数、除数、商、余数的和是501,求被除数和除数。
【练习四】
1.两数的差是702,商是10,两个数各是多少?
【例题五】
一养殖专业户,养的鸡和兔共100只,正好250只脚,鸡兔各有多少只?
【练习五】
1.哥哥与弟弟三年后的年龄之和是27岁,今年弟弟的岁数只有哥哥的一半。哥哥今年多少岁?
2.某单位向西北地区捐赠寒衣若干,每户5件,还余99件;每户增加2件,仍余33件,每户应分多少件可以不余?
第二篇:列方程解决问题教学设计
列方程解决问题教学设计
思茅第五小学 孙会芝
一、教学内容:
义务教育课程标准实验教科书(人教版)五年级上册第四单元简易方程第61页例4及练习十一第10题。
二、教材分析
这部分内容是在学生学习并理解了方程的意义以及会用等式的基本性质解方程,初步体验了用方程解决现实问题的基础上进行教学的,是今后进一步学习代数知识的基础。
教材以节约用水为题材,先提出问题,让学生思考,再给出条件,这样有利于培养学生从问题出发去寻找所需条件的分析能力。有了前一节例3的学习基础,因此教材直接介绍列方程的解法。
三、学情分析
由于在以往的学习中都是列算式解决问题的,未知数始终作为一个“目标”不参与列式运算,只能用已知数和运算符号组成算式,只是在例3中刚刚接触到列方程解决问题,因此学生对列方程解决问题还不太熟练,对一些数量关系也比较模糊,由此,学生在学习中会有一定困难,教学时要从分析数量关系入手,让学生充分理解题意的基础上再列方程解决问题。
四、教学目标:
1、结合具体的问题情景,理解和掌握列方程解决问题的步骤和方法,培养学生列方程解决实际问题的能力,增强学生数学应用意识。
2、通过对浪费水资源的调查、了解,使学生感受到“节约用水”的现实性和迫切性,并利用课堂所学知识指导生活,学会在实际生活中节约利用能源,减少资源浪费。
3、树立一定的环保意识和社会责任感,并积极参与身边力所能及的环保活动。
五、教学重点:理解和掌握列方程解决问题的步骤和方法。
六、教学难点:分析数量关系,建立等量关系式。
七、课前准备:
每个大组用一只水桶在滴水的水龙头下接水半小时,并记录好接到的水的重量。
八、教学过程:
1、谈话激趣,引出问题
师:水是人类生存和生活的基础,是世界任何一个国家或民族生存的前提,没有水,不用说发展,就是这个国家或民族的生存也将存在问题。有关的专家曾经预言,20年里全世界将会有三分之二的人口将处于严重缺水状态。我国的长江也因近几年的开发和利用,水位远远低于以往水平。我国的黄河也因缺水,个别河段曾出现断流的现象。作为一个小主人我们该如何面对这些情况呢?
(设计意图:让学生从资料和数据中知道水资源的重要性,感受“节约用水”的现实性和迫切性,初步树立节约能源的意识。)
学生有可能说:水是生命之源,我们要节约用水,为我们的明天留下宝贵的水资源。
师:对,节约用水,合理利用水资源是迫在眉睫的一件大事。首先,请同学们把课前调查、了解到的情况汇报一下。(各大组同学汇报课前调查的水龙头漏水情况,教师用表格的形式板书)
师(指着表格):同学们仔细看一看,一个滴水的水龙头半小时漏掉了这么多水,那么,你知道这样的一个水龙头一分钟要浪费多少水吗?
2、结合情景,探索新知
师:老师也在课前做了调查,得到的结果是(板书例4):一个滴水的水龙头半小时漏掉了1.8㎏水。你能算出这个水龙头每分钟浪费多少水吗?
(1)学生读题,收集信息:滴水时间:半小时;半小时滴水量:1.8㎏。问题是算出这个水龙头每分钟浪费多少水。
(2)解读信息:滴水时间半小时也就是30分钟,1.8㎏就是30分钟的滴水总量。
(3)整合信息,列出方程:师问:每分钟滴水量、30分钟与半小时滴水总量之间有什么等量关系?
学生通过思考得出:每分钟的滴水量×滴水时间(30分钟)=30分钟的滴水总量。
师:根据上面的等量关系式,说一说哪些量是已知的,哪些量是未知的?你认为应该怎么办?
生:滴水时间和30分钟的滴水总量是已知的,每分钟的滴水量是未知的。应该把每分钟的滴水量设为X。
板书:解:设这个水龙头每分钟浪费X㎏水。30 X = 1.8(4)解决问题:学生独立解答。X = 1.8 30 X ÷ 30 = 1.8 ÷ 30 X = 0.06 答:这个水龙头每分钟浪费0.06千克水。
3、引导学生归纳小结,总结方法
师问:通过对这一问题的解决,你知道列方程解决问题的特点是什么吗?
师引导学生归纳:用字母表示未知数,根据题目中数量之间的相等关系,列出一个含有未知数的等式(即方程),再解答。
那么,列方程解决问题的一般步骤是什么?
师生共同归纳:①收集信息,找出已知条件和问题;②解读并整合信息,找出题中数量之间的相等关系,并用X表示未知数,列出方程;③解方程;④检验,写出答语。
4、挖掘资源,渗透节约能源教育
师:同学们,一个滴水的水龙头每分钟就要浪费这么多的水,按这样计算,一个关不紧的水龙头每天要漏掉86.4千克的水,一个月(按30天计算)要漏掉2592千克(也就是2.592吨),一年大约就要漏掉31吨水。这些写在我们身边的惊人的数字,应该引起我们足够的重视,如果我们在平时的生活中自觉的节约用水,用水时水龙头 4 不要开得过大,用后关好水龙头。甚至学会一水多用(即重复利用),如:用洗米水洗菜、洗碗、浇花,用洗衣服的水擦地板、冲厕所等,养成节约用水的好习惯,那么我们一年节约下来的水也将是一个惊人的数字。让我们行动起来,从现在做起,从我做起,为祖国建设做一点自己力所能及的贡献。
5、巩固练习,学以致用
完成练习十一(即教材第64页第10题):
每平方米阔叶林每天能制造75g氧气,是每平方米草地每天制造氧气地5倍。每平方米草地每天能制造多少克氧气?
学生认真读题,收集信息,解读和整合信息,然后交流收集、解读和整合信息的情况,集体交流、讨论,确定解题方法,建立等量关系式,列出方程并独立解答。
解:设每平方米草地每天能制造X克氧气。5 X = 75 5 X÷5 = 75÷5 X = 15 答:每平方米草地每天能制造15克氧气。
6、结合实际,增强环保意识
师:从上题中,你们想到了什么?
学生有可能会想到植绿、护绿,教师借机进行环保教育。师:从这道题中我们知道了原来树木和草地不仅可以美化环境,5 还可以制造氧气,其实,植物能稀释、分解、吸收和固定大气中的有毒有害物质,改善我们的生活环境。因此,我们要从小事做起,爱护我们身边的一草一木,让我们生活的环境更加美好!
7、本课小结
师:这节课你有什么收获?和大家交流一下。
第三篇:列方程解决问题教学反思解决问题
列方程解决问题教学反思一
上周学习了列方程解决问题。列方程解决实际问题,是现在教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学得轻松、灵活、有效,很好地提高了课堂教学的效率。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。
列方程解决问题教学反思二
在教学中,发现部分学生不能正确用等式来表示等量关系,说明学生对数量关系的理解还是很表面化的,思维还不够活跃。作业中,少数学生格式还是会出现问题。因此,课后应对这些学生进行辅导。
在教学中,重点要训练学生根据题目找数量关系,要想到最容易理解的数量关系,如果数量关系想起来差不多的情况下,就要让学生根据数量关系列方程,比较所列的方程中,怎样的方程解起来最方便,从而找到最优的解法。可以借助练习二第7题达到这样的教学目标。第6页的思考题可以进一步挖掘深化,让学生理解体会到在环形跑道上同向而行,两人第一次相遇就是多跑一圈,第二次相遇就是多跑两圈------如果是背向而行,两人第一次相遇就是合跑一圈,第二次相遇就是合跑2圈------在教学时,可以画图帮助学生理解。
本课时主要通过练习二第6-11题及思考题的练习帮助学生进一步掌握分析数量关系、正确列方程解决实际问题的方法。在完成练习二第6题的解方程后补充了两道类似例2的实际问题,再次帮助学生理清解题思路,并让学生尝试用方程和算术方法来解答,讲评时我引导学生将这两种方法进行比较,感受类似这类问题用方程来解答比较便于思考。二是本课时教材上提供的第8题其实和第7题的数量关系是相同的,所以我将第8题再增加一个问题:如果两艘轮船同时从同一个码头同向而行,那么几小时后两船相距150千米?让学生结合画图分析出这里两船相距的路程也就是乙船比甲船x小时多行的千米数,解答时要根据乙船x小时行的路程减去甲船x小时行的路程等于两船相距的150千米来列方程。三是教材上提供的思考题难度不大,补充两个问题,适当拓展,供学有余力的学生进一步提高。
列方程解决问题教学反思三
今天的课与第一天十分相似,因此在教学方法上也采用了类似的方法。先在预习中初步解决解方程的问题,利用四年级的字母表示数的知识把含有相同字母的式子化简,解决了这一问题,学生很快也能解决例2中类似的方程。
教学例2时,学生不难画出线段图。主要的就是引导好学生的设的方法:两个未知量,应先考虑设哪个量为x----一倍量,即陆地面积为x亿平方千米,进而引导:如果用x表示陆地面积,那么可以怎样表示水面面积?同时我也把设水面面积为x,那么陆地面积为x÷3,计算起来比较麻烦,从而明确为什么把一倍量设为x 更加科学。
对于这些逆向思维的应用题,不必讨论算术方法,应以正向思维的等量关系用方程解法的进行解答.包括用算术方法来代替检验的想法也没有必要.检验还是用代入原题条件中的方法最好。
例题是和倍问题让学生画了线段图不难理解,接下来的练一练是个差倍问题, 从练习过程来看,有些学生找相等关系式很是困难,我觉得也有必要让学生画图理解.或者在例题教学之后,把例题进行变式,变化为差倍问题,借助原线段图的变化先进行尝试解答,并对两题进行比较,然后再练习练一练,我想效果会好得多.此外,本节课我认为应有两次比较: 一次是例2与例1的比较.主要比较同样含有倍数关系的关键句,在解题中的不
同;另一次是例2与练一练的比较,主要比较两题的不同点.弄清两题的实际联系.及解题思路的共同之处.
第四篇:浅谈列方程解决问题的教学策略
浅谈列方程解决问题的教学策略
高镇中心小学
王兴伟
【摘要】:列方程解应用题是数学教学中的重点,出现的情况各不相同,培养学生思维策略很重要,思维的策略性是指根据自己掌握的知识经验和思维水平解决问题,在头脑中形成相应的策略和方案,使之在解决问题中发挥作用。
【关键词】:解决问题
等量关系
列方程
策略 【正文】:
从算术到代数,是学生认识现实世界数量关系过程中的一个飞跃,也是小学生学习数学的一个转折点。用方程解决问题是小学阶段数学教学的一个重要环节,也是教学中的重点和难点。列方程解决问题改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的迁移、结合思维方法正确解决此类的实际问题。
列方程解决问题包含三个部分:陈述部分、关系部分和提问部分。陈述部分是指表述题目所涉及的一些背景信息和已知量的语句;关系部分是指表述题中所涉及的一些量之间的数量关系的语句;提问部分是指表述题目所需求的未知量的语句。列方程解决问题,关键是理清题中涉及的数量关系,并把这种数量关系转化为等量关系,从而列出方程。
列方程解决问题对培养学生思维策略性尤为重要,思维的策略性,就是指对于所要解决的问题,根据自己掌握的知识经验和思维水平,在头脑中形成相应的策略和方案,使之在解决问题的过程中发挥作用。
实际上,任何题都包含或多或少的曲折,迂回情节,因此解决问题时往往采取迂回策略求得问题的解决。选择什么方案解答这些题,既与思维的策略性有关,也与思维的灵活性有关,它显示出学生能否从不同角度,不同方向,不同方面,运用多种方法解决问题。本文结合我的教学实践谈谈列方程解决问题要扫除的障碍和要培养的几种能力。
首先方程解决问题要扫除以下障碍:
1、扫除用字母表示数的障碍
用字母表示数是代数的一个基本特点,也是列方程解决问题的基础。学生从具体的量(四个人、三枝笔)过渡到抽象的数(4、3)是认识上的一次飞跃,由于每个数都是确定的,因此学生易于掌握,但从确定的数过渡到用字母表示数,更是认识上的一次飞跃,由于字母表示的数具有不确定性,有时可以是任意数,有时有一定的范围,在特定场合下又有其特定的意义。这种不确定性对于小学生来说是比较抽象的,再者受到确定的数表示数量关系的思维定势的影响。因此,用字母表示数就成为学生列方程解决问题的一个初始障碍。
2、代数式构建的障碍
方程的建立就是把两个相等的代数式用等号连接起来。因此,正确、熟练地构建代数式是列方程的基础,这就需要在感知问题中的情景基础上,用含有未知数的等式表示出来建立等量关系,这对小学生来说具有相当的难度。
3、设何数为x的障碍
在题目中无间接未知数时,学生设直接未知数为x没有什么困难,但是,往往由于定势思维的影响,误认为列方程解决问题可以无须考虑题意与条件,只要以x表示未知数,一切问题都解决了。
其次,列方程解应用题要培养以下几种能力:
(一)培养学生构建代数式的能力。
培养学生把未知数x和已知数放在同等地位来进行分析,并正确、熟练地列出代数式是列方程的基础。为此,应该强化以下两点:
1、训练学生对数学语言和代数式进行“互译”。这种“翻译”训练可以为列方程扫除障碍,铺平道路。
例如:(1)用数学语言叙述下列代数式:
① 4x-8
② 3×6-4x
(2)用代数式表示下列数量关系
①x与10的和,②8与y的差
③x与8的积
2、训练学生把日常语言“翻译”为代数式,是以数学语言为中介实现的。
比如:“故事书比科技书的2倍多46本”,先翻译为数学语言“比某数的2倍多46”,再翻译为代数式,“2x+46”。其意义在于使学生真正明白每个代数式的实际意义,这不仅是学习方程的基础,也是培养学生把实际问题抽象为数学问题的能力。
(二)培养学生寻找等量关系的能力
分析数量关系是列方程解决问题的关键,着力培养学生寻找等量关系的能力是教学的重点。
1、利用数形结合寻找等量关系。数和形在客观世界中是不可分割地联系在一起的,小学数学教材十分重视数形结合。一般地,学生在感知问题情景的基础上,画出示意图,采用数形结合的方法分析数量关系。
2、从常见数量关系中寻找等量关系。
如:路程=时间×速度,工作总量=工作效率×时间,总价=单价×数量,以及各种形体周长的计算公式。经常性的复习一些常见的等量关系,有利于学生列方程时寻找等量关系。
此外,还可以从常见的“和、差、倍、分”问题入手寻找等量关系。
(三)训练学生列方程的能力。
训练学生列方程的能力,最基本的就是训练学生用综合分析法列方程,这是和寻找等量关系紧密结合进行的,所谓综合法列方程,就是先假定题目中某一未知数为x,根据这个数与其他的已知数、未知数的关系,列出代数式,再依题意找出等量关系,最后用等号连接含此等量关系的代数式,即列出方程。而分析法列方程则是找出题中最明显的两个性质相同的等量关系,然后再找到这两个量分别与其他已知数、未知数的关系,如此一直推到最后只剩下一个未知数为止,即假定这个未知数为x,带入上式的各种相关关系中,即得到两个相等的代数式,由此列出方程。
方程解决问题不是难事,只要认真理解题意,抓住题中的关键词或者是不变关系,就可找出相等关系。利用所学的列代数式的基础,将其最终用数学符号语言表示出来,列出方程解决问题。
第五篇:列方程解决问题(教学设计)
【教学设计】
课题:列方程解决问题
(三)工作单位:
xxxxxxx
姓名:
x
x
x
列方程解决问题
(三)内容解析:
《列方程解决问题
(三)》是义务教育课程标准实验教科书五年级数学上册第四单元最后一个教学的内容,即课本70页的例题3(解决含有两个未知数的实际问题),以及课本第72至73页练习十三的第5至8题。教学目标:
知识与技能:
(1)、理解实际问题中有关和、差、倍的数量关系,初步学会根据两个未知量之间的关系,列方程解答含有两个未知数(形如ax+bx=c)的实际问题。
(2)、学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。过程与方法:
培养学生的主体意识、创新意识和合作意识;以及分析、观察能力和表达能力。
情感、态度与价值观:
让学生体验生活中处处是数学,体验数学的应用价值和数学学习的乐趣,建立学好数学的信心。教学重、难点:
重点:学会解答含有两个未知数的实际问题。难点:正确寻找等量关系,列出方程。教具准备:
多媒体课件。课时安排:
一课时
教学过程:
一、导入新课:
1、直接写出结果:
1.8a+0.5a= 105x+13x= c-0.3c= 8x-0.25x= 0.6x-0.13x= b+0.75b= 提问:你在写出结果的时候,运用了什么运算定律?
2、填空:
(1)、学校科技组的男生人数是女生人数的3倍,设女生有x人,则男生有()人;设男生有x人,则女生有()人。提问:比较这两种设未知数的方法,选择哪个量设为x,另一个量容易表示?
(2)、学校书法兴趣小组有女同学x人,男同学人数是女同学的2.5倍,男同学有()人,一共有()人,男同学比女同学多()人。
3、引入新课:
教师:当像上面这些式子出现在方程当中,我们应该如何解决呢?这节课,我们继续学习列方程解决问题。(板书课题)
二、探究新知:
1、创设情境:出示旋转的地球图片和地图,让学生整体感知地球上面陆地和海洋面积的大小,知道地球上海洋的面积比陆地面积要大!
教师:从图片中,我们已经知道,地球上,海洋的面积要比陆地面积大,那么,海洋面积和陆地面积存在着什么样的关系呢?(出示:海洋面积是陆地面积的2.4倍。)
教师:你能用一个式子表示出海洋和陆地面积之间的关系么?学生尝试,指名回答后出示:
陆地面积×2.4=海洋面积
海洋面积÷2.4=陆地面积
海洋面积÷陆地面积=2.4 教师:如果我们用前面学习的用字母表示数的知识来表示陆地和海洋的面积,我们可以怎样表示?(学生自主完成,在小组内交流,寻找比较容易的表示方式。)
2、学生汇报后,补充出示:地球的表面积是5.1亿平方千米,其中,海洋的面积是陆地面积的2.4倍。
教师首先讲解什么是地球的表面积,提问:地球的表面积包含了哪些?你能用一个式子表示出它们之间的数量关系么?(学生自主完成,汇报)
板书: 陆地面积+海洋面积=地球表面积
3、学生提出问题,教师板书:陆地面积和海洋面积各是多少亿平方千米?
4、讨论:问题中有两个未知数,我们应该怎么办呢?怎样设未知数?怎样列方程?(学生分组讨论)
5、交流各种解题的方法,教师重点讲解并板书下面这种解法:
解:设陆地面积为x亿平方千米,则海洋面积为2.4亿平方千米。x+2.4x=5.1(1+2.4)x=5.1 3.4x=5.1 3.4x÷3.4=5.1÷3.4 x=1.5 提问:为什么设陆地面积为x亿平方千米?怎样求海洋的面积?[5.1-1.5=3.6(亿平方千米)或2.4x=2.4×1.5=3.6]
6、引导学生进行检验,有几种检验的方法? A、代入方程检验;
B、看陆地面积与海洋面积之和是否等于地球的表面积; C、看海洋面积与陆地面积的倍数关系是不是2.4。
三、巩固练习:
完成课本第72页练习十三的第4、5、6、7、8题。
学生独立完成,进行检验,集体订正。
四、联系生活实际,拓展延伸(出示):
1、五年级一班共有学生37人,其中,男生人数比女生人数多9人,五年级一班男、女生各有多少人? 2、1路公共汽车原来有50名乘客,到A站后下了一部分后,又上来了7人,现在比原来少了23人。在A站下车多少人?
五、总结升华,结束新课:
教师:我们这节课学习的知识和前面的列方程解决问题有什么不同?有什么相同的地方?(学生自主汇报后师生共同总结,出示列方程解决问题的一般步骤)
1、寻找等量关系;
2、根据等量关系设未知数,列出方程;
3、解方程;
4、检验、作答。
板书设计:
列方程解决问题
(三)例
3、地球的表面积为5.1亿平方千米,其中,海洋面积是陆地面积的2.4倍。地球上的海洋面积和陆地面积分别是多少亿平方千米?
解:设陆地面积为x亿平方千米,则海洋面积为2.4x亿平方千米。
x+2.4x=5.1(1+2.4)x=5.1 3.4x=5.1
3.4x÷3.4=5.1÷3.4
x=1.5 5.1-1.5=3.6(亿平方千米)或
2.4x=2.4×1.5=3.6 答:地球上陆地面积是1.5亿平方千米,海洋面积为3.6亿平方千米。