第一篇:初三数学几何证明
一、精心选一选
1、△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数为()
A35°B40°C70°D110°
2、三角形的三个内角中,锐角的个数不少于()
A1 个B2 个C3个D不确定
3、适合条件∠A =∠B =1∠C的三角形一定是()
3A锐角三角形B钝角三角形C直角三角形D任意三角形
4、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是()
A①②④B②④C①④D②③
5、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()
AAD=AEB∠AEB=∠ADC CBE=CDDAB=AC
E
A(第5题图)(第6题图)
6、如图,⊿ABC⊿FED,那么下列结论正确的是()
AEC = BDBEF∥AB
CDE = BDDAC∥ED7、等腰三角形的一边为4,另一边为9,则这个三角形的周长为()
A17B22C13D17或228、有两个角和其中一个角的对边对应相等的两个三角形()
A必定全等B必定不全等C不一定全等D以上答案都不对
9、以下命题中,真命题的是()
A两条直线相交只有一个交点B同位角相等
C两边和一角对应相等的两个三角形全等D等腰三角形底边中点到两腰相等
10、面积相等的两个三角形()
A必定全等B必定不全等C不一定全等D以上答案都不对
二、耐心填一填:
11、如果等腰三角形的一个底角是80°,那么顶角是.12、⊿ABC中,∠A是∠B的2倍,∠C比∠A + ∠
B还大12,那么∠B =度
13、在方格纸上有一三角形ABC,它的顶点位置如图所示,则这个三角形是三角形
.(第12题图)(第13题图)
第 19页
14、如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB。
15、等腰直角三角形一条直角边的长为1cm,那么它斜边长上的高是cm.16、在△ABC和△ADC中,下列论断:①AB=AD;②∠BAC=∠DAC;③BC=DC,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:
17、在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是.18、已知⊿ABC中,∠A = 90,角平分线BE、CF交于点O,则∠BOC =
三、细心做一做:(本大题共5小题,每小题6分,共30分)
19、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,求∠ABC的度数是
20、如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD
∶
DC=
2∶1,BC=7.8cm,求D到AB的距离
21、已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC
第 20页 022、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.23、已知:如图,等腰梯形ABCD中,AD∥BC,AB=CD,点E为梯形外一点,且AE=DE.求证:BE=CE.
四、勇敢闯一闯:(本大题共 2小题,每小题
8分,共
16分)
24、已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.第 21页
25、已知:如图,D是等腰ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF。当D点在什么位置时,DE=DF?并加以证明.26、如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点F。
(1)求证:AN=BM;
(2)求证: △CEF
为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)
第 22页
第二篇:初三数学专题复习(几何证明、计算)
几何证明、计算
解题方法指导
平面几何是研究平面图形性质的一门学科,研究平面图形的形状、大小及位置关系,除了常见的计算、证明外,从目前素质教育的要求来看,必须培养学生动手、动脑、分析、观察、和逻辑思维能力,所以新颖的几何题,往往具有操作性、运动性,需要观察、猜想与证明,需要有较强的综合解题能力。其次要求有观察复杂图形的能力。然后去推理、证明和计算。我们经常用的等量关系有已知的等量、勾股定理的等式、平行线推导的比例式,相似三角形对应边成比例的等式、相似三角形的性质等时,面积等式等。
第一课时
一、出示例题
1、例1:如图在△ABC中,∠C=90,点D在BC上,BD=4,AD=BC,cos∠ADC=
(1)求DC的长;(2)sinB的值
(老师引导学生分析后再做)
2、例2:已知如图在△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足。
求证(1)G是CE的中点;(2)∠B=2∠BCE
(师生共同分析后,学生独立完成)
BEGDCA3。5ABC3、例3:如图已知在△ABC中,∠A=90.(1)在所给出的图形基础上,按题意操作:先画BC边上中线AM,设H是线段BM上任一点,再过H,C分别画AB,AM的平行线,相交于点D,连接AD,AH;
(2)求证△ABM∽△DHC;(3)求证AD=AH
A
B
C
分析:第(1)题是按题意画图,考查操作实践能力。第(2)题是考察对直角三角形性质、相似三角形判定掌握情况。第(3)题的证法较多,如果注意到问题之间的相关性、层次性或者抓住基本图形的特征,就容易解决了。
说明:近几年的中考试卷中看,有关几何的证明题基本上是题目新颖、难度不大,涉及重要的知识点较多,且要求证明过程逻辑严密,言必有据,重点考察分析能力及推理能力,本题设计新型,又有一定的操作能力,是一道很好的中考模拟试题。
二、小结
三、作业
1、将两块三角形如图(1)放置,其中∠C=∠EDB=90, ∠A=45, ∠E=30,AB=DE=6,求重叠部分四边形DBCF 的面积。
2、如图(2)Rt △ ABC中,∠B=90,∠A的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D。
求证:(1)AC是⊙D的切线;(2)AB+EB=AC
EB
C
A
A
FEC
DB
D3、如图(3)矩形ABCD中,AB=8cm,BC=4cm,将矩形折叠,使A点与C点重合(1)画出图形;(2)求折叠后矩形分成的两直角梯形不重叠部分的面积和。
4、如图(4)△ ABC中,AB=AC,∠A=36,BD平分∠ABC交AC于D,CD=2cm,△ ABC的周长是19cm,求BC的长。
DA
A
B
D
C5、如图(5),BE平分∠ABC,D是AB的中点,DE∥BC。求证BE⊥AE。
A
BC
DE
B
C
第三篇:初三数学几何综合题
Xupeisen110初三数学
初三数学几何综合题
Ⅰ、综合问题精讲:
几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键.解几何综合题,还应注意以下几点:
⑴ 基本图形.
⑵ 掌握常规的证题方法和思路.
⑶ 数学思想方法伯数形结合、分类讨论等).
Ⅱ、典型例题剖析
【例1】(南充,10分)⊿ABC中,ABAC与AB相交于点E,点F是BE的中点.
(1)求证:DF是⊙O,BC=12,求BF的长.
解:(1)证明:连接OD,∴ AD⊥BC.AC,∴
又∠BED的外角,∴∠C=∠BED.
故∠B=∠BED,即DE=DB.
点F是BE的中点,DF⊥AB且OA和OD是半径,即∠DAC=∠BAD=∠ODA.
故OD⊥DF,DF是⊙O的切线.
(2)设BF=x,BE=2BF=2x.
又 BD=CD=2BC=6,根据BEABBDBC,2x(2x14)612.
2化简,得 x7x180,解得 x12,x29(不合题意,舍去).
1则 BF的长为2.
点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行.
【例2】
点D在AEBD=CD。
证明所以在△ADB所以 点拨:要想证明BD=CD,应首先观察它们所在的图形之间有什么联系,经观察可得它们所在的三角形有可能全等.所以应从证明两个三角形全等的角度得出,当然此题还可以采用“AAS”来证明.
【例3】(内江,10分)如图⊙O半径为2,弦BD=23C,A为弧
BD的中点,E为弦AC的中点,且在BD上。求:四边形ABCD的面积。
解:连结OA、OB,OA交BD于F。
A为弧BD的中点OFBD,BFFD3 OB2
OF1AF1 SABD12BDAFAECESADESCDE,SABESCBE
S四边形2SABD23 ABCD
【例4】(博兴模拟,10分)国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造.莲花村六组有四个村庄A、B、CD正好位于一个正方形的四个顶点.现计划在四个村庄联合架一条线路,他们设计了四种架设方案,如图2-4-4中的实线部分.请你帮助计算一下,哪种架设方案最省电线.
解3. 图2-4-图2-4-显然图2-4点拨:路长,然后通过比较,得出结论.
【例5】(绍兴)如图矩形ABCD中,过A,B两点的⊙O切CD于E,交BC于F,AH⊥BE于H,连结EF。
⑴求证:∠CEF=∠BAH,⑵若BC=2CE=6,求BF的长。
⑴证明:∵CE切⊙O于E,∴∠CEF=∠EBC,∵四边形ABCD是矩形,∴∠ABC=90°
Xupeisen110初三数学
∴∠ABE+∠EBC=90°,∵AH丄BE,∴∠ABE+∠BAH=90°
∴∠BAH=∠EBC,∴∠CEF=∠BAH
⑵解: ∵CE切⊙O于E
∴CE2=CF·BC,BC=2CE=6
339∴CE2=CF·6,所以CF=∴BF=BC-CF=6- =22
2点拨:熟练掌握切线的性质及切线长定理是解决此题的关键.
Ⅲ、综合巩固练习:(100分;90分钟)
一、选择题(每题3分,共21分)
1.如图2-4-6的直径为1.2米,桌面距离地面13地面上阴影部分的面积为()
A.0.036π平方米;B.0.C.2π平方米;D、3.2.同学们设计出正三角形、正方形和圆图案是()
A.正三角形.圆;D.不能确定
3.下列说法:1:2,那么这两个三角形的面积之比是1:4;中错误是()
A.4个B.3个C.2个D.1个
4.等腰三角形的一个内角为70°,则这个三角形其余的内角可能为()
A.700,400B.700,550
C.700,400或550,550D.无法确定
5.如图2-4-7所示,周长为68的矩形被分成了7个全等的矩
形,则矩形ABCD的面积为()
A.98B.196;C.280D.28
4Xupeisen110初三数学
6.在△ABC
中,若|sinA1|2cosB)0,则∠C2的度数为()
A.60oB.30 oC.90 oD.45 o
7.下列命题中是真命题的个数有()
⑴直角三角形的面积为2,两直角边的比为1。2,则它的斜边长为10 ;⑵直角三角形的最大边长为,最短边长为l,则另一边长为2 ;(3)在直角三角形中,若两条直角边为n-1和2n,则斜边长为n+1;⑸等腰三角形面积为12,底边上的高为4,则腰长为5.
A.1个B.2个C.3个D.4个
二、填空题(每题3分,共27分)
8.如图2-4-8所示,在Rt△ABC中,∠C=90°,∠A=60°,AC=.将△ABC绕点B旋转至△A′BC使点A、B、C′三点在一条直线上,则点A线的长度是_____.
9.若正三角形、正方形、正六边形的积分别记为S3,S4,S6,则S3,S4,S6,2210若菱形的一个内角为60__________.已知数4,6是________12一油桶高 0.8m1m,从桶盖小口(小口靠近上壁)斜插入桶内,0.87m,则桶内油面的高度为13 等腰三角形底边中点与一腰的距离为5cm,则腰上的高为__________cm.在平坦的草地上有 A、B、C三个小球,若已知 A球和 B球相距3米,A球与C球相距1米,则B球与C球可能相距________米.(球的半径可忽略不计,只要求填出一个符合条件的数)如果圆的半径为3cm,那么60°的圆心角所对的弧长为____cm.如图2-4-9所示,在正方形 ABCD中,AO⊥BD、OE、FG、HI都
垂直于 AD,EF、GH、IJ都垂直于AO,若已知 SΔAIJ=1,则S
ABCD正方形=______.Xupeisen110初三数学
三、解答题(每题13分,52分)
17.已知:如图 2-4-10所示,在 Rt△ABC中,AB=AC,∠A=90°,点D为BA上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点.试判断△MEF是什么形状的三角形,并证明你的结论.
18.今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4并简述步骤.
19.如图2-4-11所示,已知测速站P到公路lPO米,一辆汽车在公路l上行驶,测得此车从点A行驶到点BAPO=60○,∠BPO=30○,计算此车从A到B过了每秒22米的限制速度.
20.如图2-4-12为梯形ABCD的中位线.AH平分∠DA B交EF于M,延长DM交AB于N.求证:AADN是等腰三角形.
第四篇:初二数学几何证明
1.已知△ABC是等边三角形,D是BC边延长线上一点,以AD为边作等边三角形ADE。连接CE.求证:CE平分∠ACD
E
A
BCD
2.已知:如图,AD是△ABC的角平分线,E是AB边上的一点,AE=AC,EF∥BC交AC于点F.求证:∠DEC=∠FEC
.3.已知△ABC、△DBE、△CEF是等边三角形,求证:四边形ADEF是平行四边形.A
D
F
BC
4.如图,已知在△ABC中,∠A=90°,AB=AC, ∠B的平分线与AC交于点D,过点C作CH⊥BD,H为垂足。试说明BD=2CH。
A
21C
5.在△ABC中,∠C=90°,AC=BC,过C点在△ABC形外作直线MN,AM⊥MN于M,BN⊥MN于N.
(1)求证:
MN=AM+BN
(2)△ABC内,∠ACB=90°,AC=BC若过C点在△ABC内作直线MN,当MN位于何位置时,AM,BN和MN满足MN=AM-BN,并证明之.
6.“等腰三角形两腰上的高相等”
(1)根据上述命题,画出相关图形,并写出“已知’’“求证”,不必证明.(2)写出上述命题的逆命题,并加以证明.
7.已知:如图,在Rt△ABC中,∠ACB=900,D、E、F分别是AB、BC、AC上的点,DE、DC、DF将△ABC分成四个全等的三角形,△ABC的周长是1 2厘米,求由DF、CD、DE所分成的各个小三角形的周长.
8.如图,∠ABC=∠ADC=90°,E是AC的中点,EF⊥BD,垂足为F.求证:BF=DF.
B
FA
D
C
9.已知,如图正方形ABCD中,E、F分别是AB、BC的中点,AF和DE交于点P. 求证:
CP=CD
10.如图△ABC中,BD⊥AC,CE⊥ AB,垂足分别为D、E,BD、CE相交于H,∠A=60°.DH =2,EH=1(1)求BD和CE的长.
(2)若∠ACB= 45°,求△ABC的面积.
11.如图,△ABC中,AD是∠BAC内的一条射线,BE⊥AD于E,CF⊥AD于F,点M 是BC的中点.求证:EM=FM
A
B
E
C
12.中国古代的数学家们不仅很早就发现并应用勾股定理,最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明。你能根据这幅“勾股圆方图”证明勾股定理吗?(图中4个直角三角形全等)
13.如图甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1A1A2A2A3A7A81,如果把图乙中的直角三角形继续作下去,细心观察图形,认真分析各式,然后解答问题:
A8
A
3ICME-7
21图甲图乙
()12,S1
;(2)13,S2
;(3)14,S3
;„„
(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;
2222
(3)求出S1S2S3S10的值。
1.如图,在△ABC中,∠
A=90°,ABAC,BD平分∠ABC交AC于点D,若AB2cm.求:AD的长,2.在Rt△ABC中,∠C=90°,中线AD的长为7,中线BE的长为4.求:AB的长 3.四边形中,∠A=60
°,∠B=∠D=90°,AB2,CD1.(1)求BC、AD的长(2)
求四边形ABCD的面积.
第五篇:初三几何证明综合题1(feisuxs推荐)
几何证明综合题(1)
1、将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是▲,∠CAC′=▲°.
C'
DCC'CDC
BA BA'ADA(A')B问题探究
图1图
2如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向
△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.E
QP
F
BG
图
3C2、点O是等边△ABC所在平面上的任意一点,连结OA并延长到E,使得AE=OA。以OB、OC为邻边作平行四边形OBFC,连结EF。探究EF与BC的关系。
3、如图12,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.
4.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB =∠DCE = 90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请5.如图。,BD是△ABC的内角平分线,CE是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G。
探究:线段FG的长与△ABC三边的关系,并加以证明。
附加题:探究BD、CE满足什么条件时,线段FG的长与△ABC的周长存在一定的数量关系,并给出证明。说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.图1 A B 图
2图
36.在四边形ABCD中,对角线AC平分∠DAB.
(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样7.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点
M、N,试判断△OMN的形状,并加以证明;(2)如图2,在四边形ABCD中,若ABCD,E、F分别是AD、BC的数量关系?写出你的猜想,并给予证明.的中点,联结FE并延长,分别与BA、CD的延长线交于点M、N,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图3,在△ABC中,ACAB,点D在AC上,ABCD,E、F分别是AD、BC的中点,联结FE并延长,与BA的延长线交于点M,若FEC45,判断点M与以AD为直径的圆的位置关系,并简要说明理由.A
E
DBF
C
F
图 1图2图
38.如图,△ABC是等边三角形,F是AC的中点,D在线段BC上,连接
DF,以DF为边在DF的右侧作等边△DFE,ED的延长线交AB于H,连
接EC,则以下结论:①∠AHE+∠AFD=180°;②AF=
BC;③D在线段
29、以△ABC中AB、AC为边分别向形外作等腰直角△ABE和等腰直角△ACF,AH是△ABC的高。
1、探究:线段GE、GF的数量关系。
2、若以梯形ABCD的腰AB、DC向形外作等腰直角△ABE、△DCF,G是EF的中点,探究:线段GA、GD的数量关系。(利用中点构造全等三角形)1
BCEC
BC上(不与B,C重合)运动,其他条件不变时DC
是定值;
(1)其中正确的是-------------------;(2)对于(1)中的结论加以说明;
F
H B
G
D
C
E