首页 > 文库大全 > 精品范文库 > 13号文库

光纤通信与数字传输实验报告

光纤通信与数字传输实验报告



第一篇:光纤通信与数字传输实验报告

南 京 邮 电 大 学

实验报告

光纤通信与数字传输专业:通信工程学生姓名:毕瑞班级学号:B07021520指导教师:李跃辉指导单位:通信技术实验教学中心

日期:二○一○年五月

实验名称:SDH光纤传输系统(2课时)

实验目的:了解中兴S385 SDH多业务传送设备结构、单板工作原理及业务实现,熟悉SDH传输系统的组成。

实验内容:中兴S385 SDH多业务传送设备及单板配置认知,掌握SDH传输系统构成及配置。

实验方法及结果:

一.中兴通讯SDH传输设备S385

1. 观察S385机柜结构。

2. 观察S385子架结构。

3. 了解S385机柜走线。

分析:实验系统配置成何种网络结构?

答:三个设备构成环

二.S385业务单板

1. 观察S385子架槽位及单板配置。

2. 观察光线路板配置及插槽位置。

3. 观察电接口板/支路单元配置及插槽位置。

分析:OL64单板工作状态如何,单板上有哪些指示灯?

答:工作状态:S385-1正常10(绿灯闪烁)

S385-1不正常11(黑灯常亮)

S385-2正常10(绿灯闪烁)

S385-3正常10(绿灯闪烁

指示灯有:NOM,ALM1,ALM2,TX1,RX1,RET

三.S385业务实现

1. 观察S385节点配置类型。

2. 观察时钟单板工作状态。

3. 观察E1业务实现过程。

分析:按照C12复用路径,E1业务在S385系统中复用时涉及哪些功能单板?

答:公务板OW,CSA,ESE1,BIE1,EPE1,实验名称:光纤通信系统光电接口参数测量(2学时)

实验目的:通过EXFO FTB8130综合传输分析测试平台的认知和演示,了解光纤通信系统中光电接口参数指标及基本测试方法。

实验内容:了解FTB8130的结构和功能,熟悉光电接口参数含义及测试方法。

实验方法及结果:

一.SDH传输分析平台FTB8130

1. 观察FTB8130构成。

2. 观察FTB8130模块配置。

3. 了解FTB8130主要功能。

分析:FTB8130主要包括哪几个功能模块组件?

答:8510G,8510B,8130NG

二.光接口参数测量

1. 观察FTB8130光接口连接设置。

2. 观察光接口发送光功率。

3. 观察光接口接收光功率。

4. 了解灵敏度的测试方法。

分析:FTB8130光接口模块输出光功率为多少?功率和功率电平如何换算?

答:

DBm是一个表示功率绝对值的值(也可以认为是以1mW功率为基准的一个比值),计算公式为:10lg(功率值/1mw)。

三.电接口参数测试

1. 观察FTB8130电接口理解设置。

2. 观察STM-1电接口频率及误差。

3. 观察STM-1抖动测试方法。

分析:抖动容限表征了系统的什么性能?测试结果曲线与摸板之间应满足什么关系? 答:网络接口的最大允许抖动和设备输入口的抖动和漂移容限。

实验名称:SDH传输系统性能分析(2学时)

实验目的:通过登录SDH多业务传送系统网络管理系统操作,了解SDH传输系统性能指标及基本测试方法。

实验内容:掌握网管操作在误码和抖动测量的基本方法,熟悉SDH传输系统性能指标及其含义。

实验方法及结果:

一.多业务传送平台网管E300

1. 观察E300网管系统组成。

2. 使用用户名“ny”和口令“ny”登录客户端GUI。

3. 了解E300网管视图及主要菜单。

分析:客户端PC与网管服务器是什么关系?

答:客户端PC与网管服务器是配置与管理的关系

二.E300网管告警管理

1. 使用告警统计和查看,检查当前系统告警状况。

2. 观察告警确认前后网管及单板告警颜色变化。

3. 观察历史告警统计。

分析:告警分为几个等级,分别用何种颜色表示?

答:共分为四个等级:紧急告警 红色

主要告警 橙色

次要告警 黄色

提示告警 紫色

三.E300网管性能管理

1. 使用性能统计和查看菜单,对网元进行15分钟性能统计。

2. 观察OL64单板当前激光器状态及输出光功率。

3. 观察当前自愈环的配置状态。

分析:进行15分钟性能计数,结果以何种形式给出?

答:以性能数据报告的形式给出。

第二篇:浅谈模拟传输与数字传输

浅谈模拟传输与数字传输

进入天诚线缆集团网站,集团介绍篇第一句话就是“天诚线缆集团是国内唯一一家专业从事全系列弱电线缆、综合布线产品研发、生产的集团企业,也是行业中创办时间最早、定位最高、规模最大的厂家”。这句话从传输的过程上将集团的产品划分为两类,那就是“全系列弱电线缆”的模拟传输和“综合布线产品”的数字传输。

不管是在家庭影院组建或是在多媒体厅组建还是在工程方案传输系统中,我们都常常会遇到这样一个问题,那就是因地制宜地考虑到底要采用数字传输方式还是模拟传输方式。比如现在很多都开始有这样的倾向,多倾向于用HDMI传输方式,这是目前最先进、也是未来主流的影音传输方式,但事实上考虑到现实环境的条件许可,其实你会发现很多情况下采用HDMI传输方式还并不太切实际,而且对于放DVD的用户,采用色差接口对于搭配器材反而更方便和普及,而且色差传输事实上对于色差的真实还原并不会太亚于数字信号,或者说是人肉眼无法太深刻辨别出来。另外一个很大的问题就是两种传输方式所需要用到的线材价格悬殊也指导用户做法需更现实。因此我们说,采用何种传输方式最好还是因地制宜。

一直来,很多朋友对于数字和模拟传输,可能单纯从技术角度会较了解,但并未能真正关注到它们的产品、市场应用层面,那么今天就借会刊这个平台跟大家一起来从整体上对数字和模拟传输作一番鸟瞰。

信号传输系统包括:信号的切换(包括矩阵切换)、分配和传输(含电缆传输、网线传输、光纤传输),即从信号源出发到显示设备为止(不包括图像处理等)的全过程,由于信号在传输过程中应用的技术和出现问题有相似性,故作同类问题来考虑。

从技术角度上讲,传输过程可分为两类:一是模拟的传输过程,二是数字化的传输过程。这两类相互之间有本质的不同,经过多次与施工现场接触,我感觉我们的工程施工方在概念方面比较模糊,但也许他们是从成本为出发点吧!下面我们来看看这两类传输过程的差异、常见误区、市场分析和价格分析:

数字传输系统优点:

(1)抗干扰、抗噪声性能好

以二进制为例,在接收端恢复信号时,首先对其进行抽样判决,再确定是“1”码还是“0”码,并再生“1”、“0”码的波形。因此,只要不影响判决的正确性,即使波形有失真也不会影响再生后的信号波形,而在模拟通信中,如果模拟信号叠加上噪声,即使噪声很小,也很难消除。数字通信的抗噪声性能好还表现在微波中继(接力)通信时,它可以消除噪声积累。这是因为数字信号在每次再生后,只要不发生错码,它仍然像信源中发出的信号一样,没有噪声叠加在上面。因此,中继站再多,数字通信仍具有良好的通信质量,而模拟通信中继时只能增加信号能量(对信号放大),不能消除噪声(2)差错可控

数字信号在传输过程中出现的错误(差错),可通过纠错编码技术来控制(3)易加密

数字信号与模拟信号相比,它容易加密和解密。因此,数字通信的保密 性好(4)易于与现代技术相结合

由于计算机、数字存储、数字交换以及数字处理等现代技术飞速发展,许多设备、终端接口均采用数字信号,因此极易与数字通信系统相连接。正因为如此,数字通信才得以高速发展

数字传输系统缺点:

(1)频带利用率不高

数字通信中,数字信号占用的频带较宽。以电话为例,一路数字电话一般要占据约20~60 kHz的带宽,而一路模拟电话仅占用约4 kHz的带宽。如果系统传输带宽一定的话,模拟电话的频带利用率要高出数字电话5—15倍

(2)需要严格的同步系统

数字通信中,要准确地恢复信号,必须要求接收端和发送端保持严格同步。因此,数字通信系统及设备一般都比较复杂

常见误区:

为了施工过程中走线问题得以简化,有的施工方直接用网络线代替VGA或RGB线缆,综合布线时一起布线。加上网络线其性价比要优于传统VGA或RGB电缆,一般情况下,只要传输距离不长,从表面上看可以传输视频图像,网线传输是有其可用价值的,其实不然。

首先,由于网络双绞线存在幅频特性(带宽)问题和群延时问题,传输过程中的会导致图像变暗、模糊和拖尾现象。

其次,网线传输还存在另一个问题,就是不等长问题,由于CAT5等网线在生产时考虑到网络信号的同频干扰,故意在生产时将各对线之间长度作成非等长的(有1%左右的长度差)这种结构在VGA信号传输时就造成了R.G.B信号到达的时间不一致,画面会出现分色。

另外,网络线每对对绞线的特性阻抗为100欧姆,而VGA或RGB特性阻抗为75欧姆,端子焊接处存在严重阻抗不匹配,信号在两者交界处形成强的反射。

当然,并不是因为上述现象就说明不能用网络线传输VGA或RGB信号,只是我们要克服上述问题。上海天诚通信公司开发的VGA转RJ45模块便能有效的克服上述问题。市场分析:

应用领域和模拟方式重叠,但相对竞争较少,毕竟是一种全新的技术实现方式,客户(工程方和用户方)接受有一定过程,但在看到效果后会很快接受;设备的生产厂家较少,国外产品也较少(有些国外厂家直接从国内OME),对国内的冲击基本没有,有利于国产品牌的成长;随着推广工作的加大及成本的下降,会较快地取代模拟方式,成为今后的应用主流。目前的发展与国际同步甚至领先,某些产品处于发展的前沿,比如:高速USB 3.0传输,光纤传输,HDMI/HDCP等产品,已能形成批量出口;国内已有较有规模的实际应用范例。由于是全新的领域,难度较大,相对而言,技术人员了解不多,国内厂家也较少,如果没有自主知识产权和相当的专业修养,仅靠仿制是比较难形成自有产品线的,由此也限制了一些厂家的进入。

数字传输应用领域很广,由于工程公司对此技术了解不多或根不了解,限制了应用的推广,但这也提供了极大的机会,谁能先掌握技术,谁将赢得很大的商机。由于数字方式中,信号的传输原理与模拟的有本质的不同,可以无穷次复制,本身又具有纠错功能,可利用光纤等技术手段进行长距离或超长距离传输,因此工程实施非常容易,只要信号接通,没有错点(有错点是传输距离问题),图像质量一定没问题,这将对推广和接受非常有力。

价格分析:

很快数字方式与模拟方式的成本会接近甚至会低于模拟方式,在分配,切换方面,很快会(或已经)接近模拟方式,传输方面目前比模拟方式略高;矩阵方面,如果我公司新思路的产品技术上可实现,其成本与模拟方式基本相当,这样一套数字的方案和模拟的方案成本上基本相当,但数字方式带来的好处明显,对推广应用有极大好处。

模拟方式技术上不会有太多革命性的变化,竞争会更加激烈,已经有些厂家采取低价策略,只保留极小的利润空间,希望靠产量取胜,但这种产品不是能够大批量生产的,说有那么大的市场容纳量(像彩电或计算机),并且产品种类多,数量少,这种低价策略会很快摧毁整个市场,从发展上看来必是一种可取的方式,由于利润空间下滑,厂家会牺牲品质,对用户使用也造成极大隐患。数字方式正处在上升阶段,随着应用的推广和概念的接受,会较快地取代模拟方式,在生产厂家与工程商中,完成“洗牌”的工作。

第三篇:光纤通信

光纤通信系统包括实现点对点通信的全部设施,主要偶传输系统,用户终端,接入设备和交换设备四个部分组成。

光纤传输系统一般有光发射机,光传输线路,光接收机等功能部分的组成电端机

就是电信通信中采用的载波机、电信号手法设备、计算机终端盒其它常规电子通信设备的总称。电端机在发送端的任务就是吧模拟信号转换成数字信号,在接收端则讲光接收及处理后的信号送给用户。

光发送机

由光源,驱动电路和光调制器组成,光源是起核心。他利用电端机输送载有信息的电信号通过光调制器对光源发出的连续广播的振幅、相位或频率进行调制,从而输出载有有用信息的光信号,再将该光信号耦合进光纤传输线路。

光接收机

由光探测器,放大器和相应的信号处理电路组成,光探测器是其核心部分,他把来自光纤的光信号转换为电信号。因为光探测其输出的电流很微弱,必须经放大器将信号进行增益放大;均衡器对信号进行整形,是输出波形适合于判决,判决器和始终提取电路对信号进行再生,把均衡器输出的波形信号恢复数字信号;由于在发射端对信号进行了编码,最后需要译码器将信号恢复到初始状态。

就广义而言,通信就是各种形式信息的转移或传递。通常的具体做法是首先将拟传递的信设法加载(或调制)到某种载体上,然后再将被调制的载体传送到目的地后,将信息从载体上解调出来。光纤通信系统中电端机的作用是对来自信息源的信号进行处理,例如模拟/数字转换多路复用等;发送端光端机的作用则是将光源(如激光器或发光二极管)通过电信号调制成光信号,输入光纤传输至远方;接收端的光端机内有光检测器(如光电二极管)将来自光纤的光信号还原成电信号,经放大、整形、再生恢复原形后,输至电端机的接收端。对于长距离的光纤通信系统还需中继器,其作用是将经过长距离光纤衰减和畸变后的微弱光信号经放大、整形、再生成一定强度的光信号,继续送向前方以保证良好的通信质量。目前的中继器多采用光--电--光形式,即将接收到的光信号用光电检测器变换为电信号,经放大、整形、再生后再调制光源将电信号变换成光信号重新发出,而不是直接放大光信号。近年来,适合作光中继器的光放大器(如掺铒光纤放大器)已研制成功,这就使得采用光纤放大器的全光中继及全光网络将会变得为期不远。

光纤通信系统是用光作为信息的载体,以光纤作为传输介质的一种通信方式。它首先要在发射端将需要传送的电话,电报,图像和数据进行光电转换,即将电信号转变为光信号,再经光纤传输到接收端,接收端讲收到的光信号转变成电信号,最后还原为消息。

光纤通信系统的构成

第四篇:光纤通信

光纤通信课堂题目

1.SDH有一套标准化的信息结构等级,称为同步传送模块STM-N。

2.准同步数字体系的帧结构中,如果没有足够的运行和维护。

3.SDH中STM-1的速率是

4.SDH中STM-4的速率是

5.常用的SDH设备有:终端复用器、再生器和数字交叉连接设备等。

6.在SDH帧结构中,AU指针处于帧结构左侧1-9N

7.PDH复用成SDH信号必须经过映射、定位、复用三个步骤。

8.9.我国采用的PDH信号的基群是。

10.STM-4传输一帧所用的时间为125u/s

11.STM-n信号一帧的字节数为12.对STM-1信号来说,每秒可传的帧数为

1.什么叫自愈? 二纤双向通道专用保护环是怎么实现自愈的?

2.SDH的优点?136页

3.什么是段开销?它可分为哪两部分?138页

143页

第五篇:光纤通信

光纤传输的关键技术

(1)光纤喇曼放大器(FRA)对光纤损耗进行补偿

在光纤传输中,喇曼放大器技术是最关键的光传输技术,它可以将传输光纤本身变成一个放大器,也可以放大掺铒光纤放大器(EDFA)所不能放大的波段。它利用普通的传输光纤就能实现分布式放大,从而大大提高系统的光信噪比(OSNR)。

FRA利用光纤自身对信号进行放大,信号在传输过程中的固有损耗可以在光纤内部进行补偿,一种应用较广的被称之为分布式光纤喇曼放大器(DFRA)。对于长距离光纤传输来说,利用喇曼放大器提高系统的OSNR、增加系统中继长度、提高波分复用(WDM)系统的通道数和抑制光纤非线性效应是其主要目的。

(2)前向纠错(FEC)编码减少误码率

在光传输系统中采用FEC技术,能够减少系统的误码率,其编码增益提供了一定的系统富余量,从而降低光链路中线性及非线性因素对系统性能的影响,对于有光放大器的系统,可以增加光放大器间隔、延长传输距离、提高信道速率、减小单通道光功率。FEC的实现方式有带外FEC系统和带内FEC系统两种。带内FEC的增益一般为3dB左右,而带外的增益远高于带内,因此,长距系统均采用带外FEC编码。使用带外FEC时,总体改善情况可达7~9dB,大大提高了系统的传输距离。

(3)码型技术提升系统的传输性能

由于不同线路调制码型的光信号在色散容限、自相位调制(SPM)、交叉相位调制(XPM)等非线性的容纳能力、频谱利用率等方面各有特点,对于超宽频带的长距离WDM传输系统,非归零(NRZ)、归零(RZ)等码型都有各自的特色。

NRZ码应用简单、成本低、频谱效率高,是目前SDH系统和WDM系统中应用最广泛的码型。由于码元过渡不归零,对传输损伤敏感,不适用于高速长距离光信号的传输。

RZ码的主要缺点是信号频谱宽度相对码较大,增加调制器使系统变得复杂、成本高。为了进一步提高码的传输性能,近年来还出现了载频抑制RZ(CS-RZ)和啁啾RZ(CRZ)等码型。在CS-RZ码中,相邻码元的电场振幅符号相反,从而达到降低光谱宽度的目的,在功率较高的情况下,不但增加了色散容限,而且有更强的抵抗SPM和四波混频(FWM)等光纤非线性效应的能力。

CRZ码采用了三级调制技术(RZ幅度调制、相位调制和数据调制),其相位调制器在发射端对RZ脉冲的上升沿和下降沿上加入一定的啁啾量,抵抗非线性效应的能力非常优异。此外,CRZ码还具有良好的抵抗偏振相关损耗(PDL)和偏振模色散(PMD)的能力,具有更高的传输稳定性。

(4)色散补偿延伸光传输的距离

色散是限制光纤传输距离的主要因素。色散补偿包括色度色散补偿和偏振模色散补偿。色度色散补偿的方式包括色散补偿器件和色散补偿模块。目前使用最多的是色散补偿模块(DCM),通常用在EDFA的两级之间,用以补偿的插损。目前,对于动态的色度色散补偿方式也进行了大量的研究,但是真正商用的产品尚不多。

从技术角度来看,利用长距离光纤传输中的与结合的放大技术,及采用色散和非线性容限较高的码型等长距离光纤传输技术,都可以延长光放段的传输距离,用于骨干网中部分长跨距中,这是目前比较普遍的长距离光纤传输技术应用。

相关内容

热门阅读

最新更新

随机推荐