首页 > 文库大全 > 精品范文库 > 13号文库

推理与证明-13.2 直接证明与间接证明(教案)

推理与证明-13.2 直接证明与间接证明(教案)



第一篇:推理与证明-13.2 直接证明与间接证明(教案)

响水二中高三数学(理)一轮复习

教案第十三编推理与证明主备人张灵芝总第67期

§13.2 直接证明与间接证明

基础自测

1.分析法是从要证的结论出发,寻求使它成立的条件.答案充分 2.若a>b>0,则a+答案>

3.要证明3+7<25,可选择的方法有以下几种,其中最合理的是(填序号).①反证法 答案②

4.用反证法证明命题:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是.①假设a、b、c都是偶数;②假设a、b、c都不是偶数

③假设a、b、c至多有一个偶数;④假设a、b、c至多有两个偶数 答案②

5.设a、b、c∈(0,+∞),P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的条件.; 答案充要

②分析法

③综合法

1b

b+

1a

.(用“>”,“<”,“=”填空)

例题精讲

例1设a,b,c>0,证明:

a

2b

b

2c

c

a

≥a+b+c.a

证明∵a,b,c>0,根据基本不等式,有

a

b

+b≥2a,a

b

c

+c≥2b,c

c

a

+a≥2c.三式相加:

b

+

b

c

+

c

a

+a+b+c≥2(a+b+c).即

1a

b

+

b

c

1a

+

a

≥a+b+c.例2(14分)已知a>0,求证: a2证明要证a2

1a

-2≥a+

1a

-2.1a

-2≥a+

1a

-2,只要证a2

+2≥a++2.2分

∵a>0,故只要证



a

1a

12≥(a++a

2),2

6分

427

即a+

1a

+4a2

1a

+4≥a+2+



1a

+22a

1

+2, a

8分

从而只要证2a2

只要证4a

1a

≥2a

1

,a

10分

1112

≥2(a+2+),即a2+≥2,而该不等式显然成立,故原不等式成立.14分 222aaa

例3若x,y都是正实数,且x+y>2,求证:证明假设

1xy

1xy

<2与

1xy

1yx

<2中至少有一个成立.1yx

<2和

1yx

<2都不成立,则有≥2和≥2同时成立,因为x>0且y>0,所以1+x≥2y,且1+y≥2x,两式相加,得2+x+y≥2x+2y,所以x+y≤2,这与已知条件x+y>2相矛盾,因此

1xy

<2与

1yx

<2中至少有一个成立

.巩固练习

1.已知a,b,c为互不相等的非负数.求证:a2+b2+c2>abc(a+b+c).证明∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac.又∵a,b,c为互不相等的非负数,∴上面三个式子中都不能取“=”,∴a+b+c>ab+bc+ac,∵ab+bc≥2ab2c,bc+ac≥2abc2,ab+ac≥2a2bc,又a,b,c为互不相等的非负数,∴ab+bc+ac>abc(a+b+c),∴a2+b2+c2>abc(a++c).2.已知a>0,b>0,且a+b=1,试用分析法证明不等式a

2511

证明要证ab≥

4ab

2511

b≥

4ab

.,只需证ab+

a

bab

1≥

54,只需证4(ab)+4(a+b)-25ab+4≥0,只需证4(ab)+8ab-25ab+4≥0, 只需证4(ab)2-17ab+4≥0,即证ab≥4或ab≤而由1=a+b≥2ab,∴ab≤

14,只需证ab≤



14,成立.显然成立,所以原不等式a

2511

b≥

4ab

3.已知a、b、c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时大于.证明方法一假设三式同时大于,即(1-a)b>

4,(1-b)c>

14,(1-c)a>

14,428

∵a、b、c∈(0,1),∴三式同向相乘得(1-a)b(1-b)c(1-c)a>同理(1-b)b≤

41aa

.又(1-a)a≤642

=

14,(1-c)c≤

14,∴(1-a)a(1-b)b(1-c)c≤

164,这与假设矛盾,故原命题正确.14

2方法二假设三式同时大于,∵0<a<1,∴1-a>0,(1a)b

≥(1a)b>=,同理

(1b)c

12,(1c)a

12,三式相加得

32,这是矛盾的,故假设错误,∴原命题正确

.回顾总结知识 方法

思想

课后作业

一、填空题

1.(2008·南通模拟)用反证法证明“如果a>b,那么a>b”假设内容应是.答案a=b或a<b

2.已知a>b>0,且ab=1,若0<c<1,p=logc是.答案p<q

a

b

2,q=logc



1a

,则p,q的大小关系

3.设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列恒成立的等式的序号是.①(a*b)*a=a ③b*(b*b)=b答案②③④

②[a*(b*a)]*(a*b)=a ④(a*b)*[b*(a*b)]=b

4.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则△A1B1C1是三角形,△A2B2C2是三角形.(用“锐角”、“钝角”或“直角”填空)

429

答案锐角钝角

5.已知三棱锥S—ABC的三视图如图所示:在原三棱锥中给出下列命题: ①BC⊥平面SAC;②平面SBC⊥平面SAB;③SB⊥AC.其中正确命题的序号是

.答案①

6.对于任意实数a,b定义运算a*b=(a+1)(b+1)-1,给出以下结论: ①对于任意实数a,b,c,有a*(b+c)=(a*b)+(a*c);

②对于任意实数a,b,c,有a*(b*c)=(a*b)*c;

③对于任意实数a,有a*0=a,则以上结论正确的是.(写出你认为正确的结论的所有序号)

答案②③

二、解答题

7.已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,„),a1=1.(1)设bn=an+1-2an(n=1,2,„),求证:数列{bn}是等比数列;(2)设cn=

an2

n

(n=1,2,„),求证:数列{cn}是等差数列;

(3)求数列{an}的通项公式及前n项和公式.(1)证明∵Sn+1=4an+2,∴Sn+2=4an+1+2,两式相减,得Sn+2-Sn+1=4an+1-4an(n=1,2,„), 即an+2=4an+1-4an,变形得an+2-2an+1=2(an+1-2an)∵bn=an+1-2an(n=1,2,„),∴bn+1=2bn.由此可知,数列{bn}是公比为2的等比数列.430

(2)证明由S2=a1+a2=4a1+2,a1=1.得a2=5,b1=a2-2a1=3.故bn=3·2n.∵cn=

an2

n

(n=1,2,„),∴cn+1-cn=

an12

n1

an2

n

=

an12an

n1

=

bn2

n1

.将bn=3·2n-1代入得

cn+1-cn=(n=1,2,„),由此可知,数列{cn}是公差为

a12

34的等差数列,它的首项c1==

12,故cn=

n-

(n=1,2,„).-2

(3)解∵cn=n-=

(3n-1).∴an=2n·cn=(3n-1)·2n(n=1,2,„)

当n≥2时,Sn=4an-1+2=(3n-4)·2n-1+2.由于S1=a1=1也适合于此公式,所以{an}的前n项和公式为Sn=(3n-4)·2n-1+2.8.设a,b,c为任意三角形三边长,I=a+b+c,S=ab+bc+ca,试证:I2<4S.证明由I2=(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=a2+b2+c2+2S,∵a,b,c为任意三角形三边长,∴a<b+c,b<c+a,c<a+b,∴a2<a(b+c),b2<b(c+a),c2<c(a+b)即(a2-ab-ac)+(b2-bc-ba)+(c2-ca-cb)<0∴a2+b2+c2-2(ab+bc+ca)<0∴a2+b2+c2<2S ∴a2+b2+c2+2S<4S.∴I2<4S.9.已知a,b,c为正实数,a+b+c=1.求证:(1)a2+b2+c2≥

;(2)3a2+ 3b2+3c2≤6.13

证明(1)方法一a2+b2+c2-13

=

(3a2+3b2+3c2-1)=

[3a2+3b2+3c2-(a+b+c)2]

=(3a+3b+3c-a-b-c-2ab-2ac-2bc)=[(a-b)+(b-c)+(c-a)]≥0∴a+b+c≥

.方法二∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤a2+b2+c2+a2+b2+a2+c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1∴a2+b2+c2≥

1313

.方法三设a=∴a+b+c=(+,b=

+,c=

+.∵a+b+c=1,∴++=0

+)+(+)+(+)=

+

(++)+++

222

431

=

+2+2+2≥

∴a2+b2+c2≥

.=

3a32

(2)∵3a2=(3a2)1≤

3a21,同理3b2≤

3b32,3c2≤

3c32

∴3a2+3b2+3c2≤

x2x1

3(abc)9

=6∴原不等式成立.10.已知函数y=ax+(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数;

(2)用反证法证明方程f(x)=0没有负数根.证明(1)任取x1,x2∈(-1,+∞),不妨设x1<x2,则x2-x1>0,由于a>1,∴ax2x1>1且ax1>0, ∴a∴

x2

-ax1=ax1(ax2x1-1)>0.又∵x1+1>0,x2+1>0,-x12x11

x22x21

=

(x22)(x11)(x12)(x21)

(x11)(x21)x22x21

=

3(x2x1)(x11)(x21)

>0,于是f(x2)-f(x1)=ax2-ax1+

x12x11

>0,故函数f(x)在(-1,+∞)上为增函数.x02x01

(2)方法一假设存在x0<0(x0≠-1)满足f(x0)=0,则ax0=-∵a>1,∴0<ax0<1,∴0<-x02x01

.<1,即

<x0<2,与假设x0<0相矛盾,故方程f(x)=0没有负数根.方法二假设存在x0<0(x0≠-1)满足f(x0)=0, ①若-1<x0<0,则②若x0<-1,则

x02x01

<-2,ax0<1,∴f(x0)<-1,与f(x0)=0矛盾.x02x01

>0,ax0>0,∴f(x0)>0,与f(x0)=0矛盾,故方程f(x)=0没有负数根.432

第二篇:6.6 直接证明与间接证明修改版

高三导学案学科 数学 编号 6.6编写人 陈佑清审核人使用时间

班级:小组:姓名:小组评价:教师评价:课题:(直接证明与间接证明)

【学习目标】

1.了解直接证明的两种基本方法——分析法和综合法,了解分析法和综合法的思考过程、特点。

2.了解间接证明的一种基本方法——反证法,了解反证法的思考过程、特点。

【重点难点】

重点 :了解直接证明和间接证明的思考过程、特点。

难点 :了解直接证明和间接证明的思考过程、特点。

【使用说明及学法指导】①要求学生完成知识梳理和基础自测题;限时完成预习案,识记基础知识;②课前只独立完成预习案,探究案和训练案留在课中完成预习案

一、知识梳理

1. 直接证明

(1)综合法 ①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的,最后推导出所要证明的结论,这种证明方法叫做综合法.

②框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→„→Qn⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证明的结论).

(2)分析法

①定义:从出发,逐步寻求使它成立的,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.

②框图表示:Q⇐P1→P1⇐P2→P2⇐P3→„→得到一个明显成立的条件.2. 间接证明

反证法:假设原命题,经过正确的推理,最后得出,因此说明假设错误,从而证明了原命

题成立,这样的证明方法叫做反证法.

二、基础自测

1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法。其中正确的有()

A.2个B.3个C.4个D.5个

2.)

A.综合法

B.分析法C.反证法D

.归纳法

3.用反证法证明“如果a

b)

A

D4.定义一种运算“*”:对于自然数n满足以下运算性质:

①1*1=1,②(n+1)*1=n*1+1,则n*1=________.

5.下列条件:①ab0,②ab0,③a0,b0,④a0,b0,其中能使

是。ba2成立的条件ab

探究案

一、合作探究

a2b2c

2abc。例

1、设a,b,c0,证明bca

2、已知函数f(x)tanx,x(0,xx21),)。若x1,x2(0,),且x1x2,[f(x1)f(x2)]f(1 222

2例

3、已知数列{an}的前n项和为Sn,且满足an+Sn=2.(1)求数列{an}的通项公式;

(2)求证:数列{an}中不存在三项按原来顺序成等差数列。

二、总结整理

训练案

一、课中训练与检测

1.设a,b为正实数.现有下列命题:

11①若a2-b2=1,则a-b<1;②若1,则a-b<1;③若|a-b|=1,则|a-b|<1;④若|a3-b3|=1,则ba

|a-b|<1.其中的真命题有________.(写出所有真命题的编号)

2.已知a

01a2。a

二、课后巩固促提升

已知a0,b0,且ab2,求证1b1a,中至少有一个小于2.ab

第三篇:直接证明与间接证明

乡宁三中高中部“自主、互助、检测”大学堂学案数学选修2-22014 年3月4日 课题:直接证明与间接证明

主备人:安辉燕参与人:高二数学组1112.①已知a,b,cR,abc1,求证:9.abc

②已知a,b,m都是正数,并且ab.求证:ama.学习任务:

①了解直接证明的两种基本方法----分析法和综合法;并会用直接法证明一般的数

学问题

②了解间接证明的一种方法----反证法,了解反证法的思考过程、特点;会用反证

法证明一般的数学问题 3.求证725

自学导读:

阅读课本P85--P91,完成下列问题。

1.直接证明----综合法、分析法

(1)综合法定义:

框图表示:

问题反馈:

思维特点是:由因导果

(2)分析法定义:

框图表示:

思维特点:执果索因

2.间接证明----反证法

定义:

步骤:

思维特点:正难则反 拓展提升:

3.讨论并完成课本例1--例5 设a为实数,f(x)x2axa.求证:

自主检测:

1.如果3sinsin(2+),求证:tan()2tan.-bmbf(1)与f(2)中至少有一个不小于12.

第四篇:5直接证明与间接证明

龙源期刊网 http://.cn

5直接证明与间接证明

作者:

来源:《数学金刊·高考版》2014年第03期

直接证明与间接证明贯穿在整张高考卷的始终,解题过程中处处离不开分析与综合.近年高考解答题的证明,主要考查直接证明,难度多为中档或中偏高档;有时以解答题的压轴题的形式呈现,此时难度为高档,分值约为4~8分.对于间接证明的考查,主要考查反证法,只在个别地区的高考卷中出现,难度一般为中档或中偏高档,分值约为4~6分.以数列、函数与导数、立体几何、解析几何等知识为背景的证明.(1)综合法解决问题的关键是从“已知”看“可知”,逐步逼近“未知”.其逐步推理,实质上是寻找已知的必要条件.分析法解决问题的关键是从未知看需知,逐步靠拢已知,其逐步推理,实际上是寻找结论的充分条件.因此,在实际解题时,通常以分析法为主寻求解题思路,再用综合法有条理地表述过程,相得益彰.(2)对于某些看来明显成立而又不便知道根据什么去推导(综合法),甚至难于寻求到使之成立的充分条件(分析法)的“疑难”证明题,常考虑用反证法来证明.一般地,可在假设原命题不成立的前提下,经过正确的逻辑推理,最后得出矛盾,从而说明假设错误,从反面证明原命题成立.

第五篇:2.1-2 合情推理与演绎推理、直接证明与间接证明

2.1-2 合情推理与演绎推理、直接证明与间接证明

重难点:了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异;了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法――反证法;了解反证法的思考过程、特点.

考纲要求:①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.

②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. ③了解合情推理和演绎推理之间的联系和差异.

④了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点. ⑤了解间接证明的一种基本方法――反证法;了解反证法的思考过程、特点. 经典例题:25.通过计算可得下列等式:

┅┅

将以上各式分别相加得:

即:类比上述求法:请你求出

当堂练习: 1.如果数列A.的值..

是等差数列,则()B.C.D.2.下面使用类比推理正确的是()A.“若B.“若,则

”类推出“若”类推出“,则”

C.“若” 类推出“(c≠0)” D.“” 类推出“”

3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为()A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4.设()A.B.- C.D.-,那么在5进制中数码2004折合成,n∈N,则5.在十进制中十进制为()A.29 B.254 C.602 D.2004 6.函数的图像与直线

相切,则

=()A.B.C.D.1 7.下面的四个不等式:①④A.1个 B.2个 C.3个 D.4个 8.抛物线上一点的纵坐标为4,则点

;②;③ ;

.其中不成立的有()

与抛物线焦点的距离为()A.2 B.3 C.4 D.5 9.设 , 则()A.B.0 C.,D.1 ,且, 则由的值构成的集合是()10.已知向量A.{2,3} B.{-1, 6} C.{2} D.{6} 11.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线

”的结论显然是错误的,这是因为()A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 12.已知,猜想的表达式为()A.B.C.D.13.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:

。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为.14.从

中,可得到一般规律为(用数学表达式表示)15.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是.16.设平面内有n条直线点.若用,其中有且仅有两条直线互相平行,任意三条直线不过同一

= ;当n>4时,表示这n条直线交点的个数,则=(用含n的数学表达式表示)17.证明: 不能为同一等差数列的三项.18.在△ABC中,判断△ABC的形状.19.已知:空间四边形ABCD中,E,F分别为BC,CD的中点,判断直线EF与平面ABD的关系,并证明你的结论.20.已知函数

21.△ABC三边长的倒数成等差数列,求证:角

.,求的最大值.22.在各项为正的数列(1)求

中,数列的前n项和满足的通项公式;(3)求

;(2)由(1)猜想数列

23.自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用0.不考虑其它因素,设在第表示某鱼群在第年年初的总量,且

>成正

年内鱼群的繁殖量及捕捞量都与

.成正比,死亡量与比,这些比例系数依次为正常数(Ⅰ)求与的关系式;,(Ⅱ)猜测:当且仅当要求证明)

24.设函数(1)证明:

满足什么条件时,每年年初鱼群的总量保持不变?(不

.;

(2)设

25.已知为的一个极值点,证明.恒不为0,对于任意

等式

恒成立.求证:是偶函数.26.已知ΔABC的三条边分别为

参考答案:

经典例题: [解]

求证:

┅┅

将以上

:所以:

当堂练习:

1.B;2.C;3.C;4.D;5.B;6.B;7.A;8.D;9.D;10.C;11.A;12.B;13.14.;

15.f(2.5)>f(1)>f(3.5);

;16.5;

17.证明:假设=①n-②;、、=n-为同一等差数列的三项,则存在整数m,n满足 +nd ② m=

(n-m)两边平方得: 3n2+5m2-

2mn=2(n-m)2 +md ① m得: 左边为无理数,右边为有理数,且有理数无理数 所以,假设不正确。即、、不能为同一等差数列的三项

18.ABC是直角三角形; 因为sinA=

ABC的三边,所以 b+c

0 据正、余弦定理得 :(b+c)(a2-b2-c2)=0; 又因为a,b,c为所以 a2=b2+c2 即ABC为直角三角形.19.平行; 提示:连接BD,因为E,F分别为BC,CD的中点,EF∥BD.20.提示:用求导的方法可求得的最大值为0 21.证明:=

为△ABC三边,22.(1),;(2)

;(3)

..23.解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为

(II)若每年年初鱼群总量保持不变,则xn恒等于x1,n∈N*,从而由(*)式得

因为x1>0,所以a>b.猜测:当且仅当a>b,且24.证明:1)= 2)

=

时,每年年初鱼群的总量保持不变.① 又 ②

由①②知25.简证:令= 所以,则有,再令

即可

26.证明:设设是

上的任意两个实数,且,因为,所以。所以在上是增函数。

由 知 即.

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jingpin/13/1113779.html

相关内容

热门阅读

最新更新

随机推荐