首页 > 文库大全 > 精品范文库 > 13号文库

3+1复习5.6数学归纳法归纳猜想证明

3+1复习5.6数学归纳法归纳猜想证明



第一篇:3+1复习5.6数学归纳法归纳猜想证明

高三3+1复习——5.6数学归纳法归纳猜想证明

5.6归纳、猜想、证明(讲义)

复习目标:1.掌握数学归纳法证明的书写过程

2.掌握用数归法证明恒等式及整除问题

3.培养观察、归纳、猜想、证明的能力

例1.求证:2+462n22222nn12n1 nN* 3

用数学归纳法证明命题的步骤:

1)证明

2)假设命题成立;证明 由1)2)得:命题对于都成立。

11111111例2.求证 :1 2342n12nn1n2nn

例3.设fn111+++nN*,那么fn1fn=__________ n1n22n

111111(A);(B);(C)+;(D)- 2n12n22n12n22n12n2

例4.用数学归纳法证明12-22+32-42++2n-12nn2n1 时,当nk1时2

2比nk时,等式左边增加的项是____________________

例5.在数列an中,9Sn10an7n nN*

(1)求出a1,a2,a3,并猜想an的通项公式;

(2)用数归法证明你的结论.

高三3+1复习——5.6数学归纳法归纳猜想证明

5.6归纳、猜想、证明(学生版)

1.某个与自然数有关的命题,如果nknN*时该命题成立,可推得nk1时命题成立,现

为了推得n5时该命题不成立,则有()

(A)n6时命题不成立;(B)n6时命题成立;

(C)n4时命题不成立;(D)n4时命题成立;

2.用数学归纳法证明1aaa

____________________________

2n11an2a1,在验证n1时,左端计算所得项为1a

nn1 nN*时,在假设2

nk等式成立后.要证明nk1时也成立,这时要证明的等式为_____________________________________________

111111114.数学归纳法证明:1nN*时,当n从k到2342n12nn1n2nn

k1时等式左边增加的项为____________________________________;等式右边增加的项为______________________________________

3.用数学归纳法证明等式12-22+32-42++-1n1n21n1

5.用数学归纳法证明:352n1222n4n212n11 3

6.已知正数列annN*中前n项和为Sn,且2Snan

然后用数归法证明.1,求a1,a2,a3,并猜测通项an,an

第二篇:回文数的猜想

(原创、首发、专投稿,适合课标沪科版7年级9-10月份用,同意删改)

“回文数”的猜想

安徽 师院

我国古代有一种回文诗,倒念顺念都有意思,例如“人过大佛寺”,倒读起来便是“寺佛大过人”。此种例子举不胜举。在自然数中也有类似情形,比如1991就是一个很特殊的四位数,从左向右读与从右向左读竟是完全一样的,这样的数称为“回文数”。这样的年份,在20世纪是仅有的一年。过了1991年,需要再过11年,才能碰到第二个回文数2002。例如,人们认为,回文数中存在无穷多个素数11,101,131,151,191„„。除了11以外,所有回文素数的位数都是奇数。道理很简单:如果一个回文素数的位数是偶数,则它的奇数位上的数字和与偶数位上的数字和必然相等;根据数的整除性理论,容易判断这样的数肯定能被11整除,所以它就不可能是素数。

人们借助电子计算机发现,在完全平方数、完全立方数中的回文数,其比例要比一般自然数中回文数所占的比例大得多。例如112=121,222=484,73=343,113=1331„„都是回文数。

人们迄今未能找到四次方、五次方,以及更高次幂的回文素数。于是数学家们猜想:不存在nk(k≥4;n、k均是自然数)形式的回文数。

在电子计算器的实践中,还发现了一桩趣事:任何一个自然数与它的倒序数相加,所得的和再与和的倒序数相加,„„如此反复进行下去,经过有限次步骤后,最后必定能得到一个回文数。

这也仅仅是个猜想,因为有些数并不“驯服”。比如说196这个数,按照上述变换规则重复了数十万次,仍未得到回文数。但是人们既不能肯定运算下去永远得不到回文数,也不知道需要再运算多少步才能最终得到回文数。

安徽岳西县城关中学 李庆社(246600)

联系电话:05562***622882

lqs_lqs@126.commmtlqs@yahoo.com.cn

QQ:530158005

第三篇:§5.6几何证明举例

年级八年级学科数学第五 单元第 8课时总计课时2013年 11月 4日

§5.6几何证明举例(2)

课程标准:掌握等腰三角形的性质和判定定理,了解等边三角形的概念并探索其性质。学习目标:

1.学生会根据三角形全等推导等腰三角形的性质。

2.熟练掌握应用等腰三角形的性质定理。

3.掌握等边三角形的性质,并会运用判定等边三角形。

学习重点难点:

等腰三角形的性质定理和判定定理。

我的目标以及突破重难点的设想:

学前准备:

学情分析:

学案使用说明以及学法指导:

预习案

一、教材助读

1、等腰三角形的性质是什么?判定是什么?

2、等边三角形的性质和判定是什么?

探究案

探究一:等腰三角形的性质

(1)“等腰三角形的两个底角相等”是真命题吗?怎样证明。

(2)在右图等腰△ABC中,AB=AC.AD为BC边上的高

∠1与∠2有什么关系?BD与CD有什么关系?

你能得出什么结论?试着总结一下。

探究二:等腰三角形的判定(合作交流)

(3)说出命题“等腰三角形的两个底角相等”的逆命题?

(4)这个逆命题是真命题吗?怎样证明它的正确性?

课型:新授执笔:马海丽审核: 滕广福韩增美

(5)求证:如果一个三角形有两个角相等,那么这个三角形是等腰三角形

已知:

求证:

点拨:注意条件中为什么是两个“角”,不是两个“底角”。

三、精讲点拨:

1、等腰三角形的性质:

性质1:

性质2:

2、数学语言叙述:

性质1:性质2:

∵AB=AC∵AB=AC

∴∠B= ∠C① AD平分∠BAC

(等边对等角)

(①,② ,③均可作为一个条件,推出其他两项)

(三线合一)

3、总结等边三角形的性质以及判定(学生小组讨论,写出他们的证明过程)

四、应用新知

2、已知,如图,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F。

求证:AD=AF。

点拨:以后证明线段相等或角相等时,除利用三角形全等外,还可以利用等腰三角形的性质和判定。

五、课堂小结:

训练案

课本180页 练习1,2题

我的反思:

第四篇:“哥德巴赫猜想”及“孪生素数猜想”的证明1

“哥德巴赫猜想”及“孪生素数猜想”的证明

贵州省务川自治县实验学校 王若仲(王洪)

摘要:我闲遐之余,喜好研究数学问题,我在一次偶然探究中,发现了“哥德巴赫猜想”的简捷证明方法,即就是不具体研究单个素数的位置如何,也不研究设定区域内素数的数量如何,而是利用集合的概念,设置一定的条件,在宽泛的前提下探讨整体情形,即假设偶数6,8,10,„,(2m-2),(2m)(m≧3);它们均可表为两个奇素数之和。设奇合数a1,a2,a3,„,at均为不大于偶数2m的全体奇合数,(ai<aj,i<j,i、j=1,2,3,„,t),t∈N。则集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}有缺项。利用前面已知情形,证明集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项;利用该结论以及前面已知情形,证明集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}也有缺项;假设偶数(2m+2)不能表为两个奇素数之和,设奇合数a1,a2,a3,„,ar均为不大于偶数(2m+2)的全体奇合数,(ai<aj,i<j,i、j=1,2,3,„,r),r∈N。则集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}∪{a1,a2,a3,„,ar}没有缺项。该集合中的元素均分别减去2后所得集合({2m-a1)(,2m-a2)(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}仍然没有缺项。这与前面所得结论产生矛盾,说明偶数(2m+2)能表为两个奇素数之和。由此得出“哥德巴赫猜想”成立。由“哥德巴赫猜想”成立,得出“孪生素数猜想”成立。

关键词:哥德巴赫猜想;素数;缺项集合

引言

德国数学家哥德巴赫,他在1742年提出:任一不小于6的偶数均可表为两个奇素数之和,这就是著名的哥德巴赫猜想问题,至今没有完全解决。我在遵义师范高等专科学校求学时,就对哥德巴赫猜想问题产生了兴趣,进行过肤浅的探索。特别是我在1993年的一次偶然的数字游戏演算中,发现了一个特别有趣的现象,通过归纳提炼,得出如下问题,即对于任一集合A,A={p1,p2,p3,„,pk},pi< pj(i

我们知道,只能被1和本身整除的正整数,称为素数。定义1:对于均满足某一特性或某一表达式的全体整数组成的集合A,关于集合A的子集A1,A2,A3,„,Ak;任一子集Ai≠A(i=1,2,3,„,k),则称集合Ai为该条件下的缺项集合。缺具体的某一项,该项则称为缺项。定理1:对于整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={a21,a22,a23,„,a2t},a1h≤a2t,h∈N,t∈N。若集合B∪C在集合A的条件下没有缺项,则集合{(a11±md),(a12±md),(a13±md),„,(a1h±md)}∪{(a21±md),(a22±md),(a23±md),„,(a2t±md)}在集合A的条件下仍然没有缺项,m∈N。

证明:对于整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={a21,a22,a23,„,a2t},a1h≤a2t,h∈N,t∈N。因为集合B∪C在集合A的条件下没有缺项,不妨设集合B∪C={b1,b2,b3,„,bt},则集合{b1,b2,b3,„,bt}={ r,(d+r),(2d+r),(3d+r),„,[(e-1)d+r],(ed+r)},e∈N。而集合{(b1-md),(b2-md),(b3-md),„,(bt-md)}={(r-md),(d+r-md),(2d+r-md),(3d+r-md),„,[(e-1)d+r-md],(ed+r-md)},集合{(b1+md),(b2+md),(b3+md),„,(bt+md)}={(r+md),(d+r+md),(2d+r+md),(3d+r+md),„,[(e-1)d+r+md],(ed+r+md)}。故定理1成立。

定理2:对于整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={a21,a22,a23,„,a2t},a1h≤a2t,h∈N,t∈N。若集合B∪ C在集合A的条件下有缺项,则集合{(a11±md),(a12±md),(a13±md),„,(a1h±md)}∪{(a21±md),(a22±md),(a23±md),„,(a2t±md)}在集合A的条件下仍然有缺项。

证明:对于整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={a21,a22,a23,„,a2t},a1h≤a2t,h∈N,t∈N。因为集合B∪C在集合A的条件下有缺项,不妨设集合B∪C={b1,b2,b3,„,bt},且设集合B∪C缺ai项,i<t。则集合{b1,b2,b3,„,bt}={ r,(d+r),(2d+r),(3d+r),„,[(i-1)d+r],[(i+1)d+r],„,[(e-1)d+r],(ed+r)},e∈N。而集合{(b1-md),(b2-md),(b3-md),„,(bt-md)}={(r-md),(d+r-md),(2d+r-md),(3d+r-md),„,[(i-1)d+r-md],[(i+1)d+r-md],„,[(e-1)d+r-md],(ed+r-md)},集合{(b1+md),(b2+md),(b3+md),„,(bt+md)}={(r+md),(d+r+md),(2d+r+md),(3d+r+md),„,[(i-1)d+r+md],[(i+1)d+r+md],„,[(e-1)d+r+md],(ed+r+md)}。故定理2成立。

定理3:对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)},设a11=bd+r,b∈N,若存在一个数v,v=ed,e∈N,使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b),那么必存在一个数u,u= md,m∈N,使得 {(a11-md),(a12-md),(a13 md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。证明:因为对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),有{(ak+r-a1),(ak+r-a2),(ak+r-a3),„,(ak+r-ak)}={(a2-d),(a3-d),(a4-d),(a5-d),(a6-d),(a7-d),„,(a(k-1)-d),(ak-d),„,ak},那么{(ak+ed+r-a1),(ak+ed+r-a2),(ak+ed+r-a3),„,(ak+ed+r-ak)}={(at-ed),(a(t+1)-ed),(a(t+2)-ed),(a(t+3)-ed),(a(t+4)-ed),(a(t+5)-ed),„,(a(k-1)-ed),(ak-ed),„,(ak+ed)},t>1,t<k,t∈N。

设集合{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed)},又设集合{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a21,a22,a23,„,a2h},根据题设,集合{a1,a2,a3,„,a1h,„,(a1h+ed)}没有缺项,由定理1可知,集合{(a11-ed),(a12-ed),(a13-ed),„,(a1h-ed)}∪{(a21-ed),(a22-ed),(a23-ed),„,(a2h-ed)}仍然没有缺项,e∈N,我们令e=m,则有{(a11-md),(a12-md),(a13 md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。故定理3成立。

定理4:对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)},设a11=bd+r,b∈N,若存在一个数u,u= md,m∈N,使得{(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。那么必存在一个数v,v=ed,e∈N,使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b)。证明:因为对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),有{(ak+r-a1),(ak+r-a2),(ak+r-a3),„,(ak+r-ak)}={(a2-d),(a3-d),(a4-d),(a5-d),(a6-d),(a7-d),„,(a(k-1)-d),(ak-d),„,ak},那么{(ak+ed+r-a1),(ak+ed+r-a2),(ak+ed+r-a3),„,(ak+ed+r-ak)}={(at-ed),(a(t+1)-ed),(a(t+2)-ed),(a(t+3)-ed),(a(t+4)-ed),(a(t+5)-ed),„,(a(k-1)-ed),(ak-ed),„,(ak+ed)},t>1,t<k,t∈N。设集合{(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)},m∈N,又设集合{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={a21,a22,a23,„,a2h},根据题设,集合{(r-md),„,a1,a2,a3,„,(a1h-bd)}没有缺项,由定理1可知,集合{(a11-md+ed),(a12-md+ed),(a13-md+ed),„,(a1h-md +ed)}∪{(a21+ed),(a22+ed),(a23+ed),„,(a2h+ed)}仍然没有缺项,e∈N,我们令e=m,则有{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b)。故定理4成立。

定理5:对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)},设a11=bd+r,b∈N,若不存在一个数v,v=ed,e∈N,使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b),那么也不可能存在一个数u,u= md,m∈N,使得 {(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。证明:由定理4知,假若存在一个数u,u= md,m∈N,关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)},使得{(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。那么必存在一个数v,v=ed,e∈N,使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b)。这与题设产生矛盾,故定理5成立。

定理6:对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+d+r-a11),(a1h+d+r-a12),(a1h+d+r-a13),„,(a1h+d+r-a1h)},设a11=bd+r,b∈N,若不存在一个数u,u= md,m∈N,使得{(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)},那么也不可能存在一个数v,v=ed,e∈N,使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b)。

证明:由定理3知,假定存在一个数v,v=ed,e∈N,关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)},使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b),那么必存在一个数u,u= md,m∈N,使得 {(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。这与题设产生矛盾,故定理6成立。

哥德巴赫定理:任一不小于6的偶数均可表为两个奇素数之和。证明:(Ⅰ)、对于偶数6,8,10,12,14,16,18,20,22等等。有:6=3+3,8=3+5,10=3+7=5+5,12=5+7,14=3+11=7+7,16=3+13=5+11,18=5+13=7+11,20=3+17=7+13,22=3+19=5+17= 11+11。

(Ⅱ)、对于偶数6,8,10,„,(2m-2),(2m)(m≧3)。假设它们均可表为两个奇素数之和。现在设奇合数a1,a2,a3,„,at均为不大于偶数2m的全体奇合数,(ai<aj,i<j,i、j=1、2、3、„、t),t∈N,其中偶数(2m)为比较大的整数。则有{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}≠{1,3,5,7,9,11,„,(2m-5),(2m-3),(2m-1)},根据定义1,说明集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}有缺项。

现在对集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}有无缺项进行分析:

设奇素数p1,p2,p3,„,ps均为小于偶数2m的全体奇素数,(pi<pj,i<j,i、j=1、2、3、„、s),s∈N。对于集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}和集合{(p1-2),(p2-2),(p3-2),„,(ps-2)}以及集合{(p1+2),(p2+2),(p3+2),„,(ps+2)}而言,假设集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)},那么则有:2m-ak1=(p1+2),2m-ak2=(p2+2),2m-ak3=(p3+2),„,2m-aks=(ps+2),k∈N。

又因为集合{a1,a2,a3,„,at}包含集合{ ak1,ak2,ak3,„,aks}。那么则有:

(1)、2m-2-ak1=p1,2m-2-ak2=p2,2m-2-ak3=p3,„,2m-2-aks=p(s-1)(ps>2m-2);

(2)、2m-2-ak1=p1,2m-2-ak2=p2,2m-2-ak3=p3,„,2m-2-aks=ps(ps<2m-2)。从(1)和(2)的情形可得偶数(2m-2)不能表为两个奇素数之和。这与前面已知偶数6,8,10,„,(2m-2),它们均可表为两个奇素数之和产生了矛盾。故前面假定集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)}就不可能成立。说明集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项。

我们现在针对集合{p1,p2,p3,„,ps}中任一奇素数pi得到的奇数(pi-2)和奇数(pi+2)从以下几个方面加以分析:

对于任一奇素数pi以及奇数(pi-2)和(pi+2),令2m-ai=(pi-2),2m-aj=(pi+2),可得ai-2=aj+2,则(pi-2)和(pi+2)有下列情形之一:

①、若等式2m-ai=(pi-2),2m-aj=(pi+2),ai-2=aj+2均成立,当ai和aj均为奇合数时,那么(pi+2)∈({2m-a1)(2m-a2),(2m-a3),„,(2m-at)},(pi-2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)};

②、若等式2m-ai=(pi-2),2m-aj=(pi+2),ai-2=aj+2均成立,当ai和aj均为奇素数时,那么(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},(pi-2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)};

③、若等式2m-ai=(pi-2),2m-aj=(pi+2),ai-2=aj+2均成立,当ai为奇素数,aj为奇合数时,那么(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},(pi-2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)};

④、若等式2m-ai=(pi-2),2m-aj=(pi+2),ai-2=aj+2均成立,当ai为奇合数,aj为奇素数时,那么(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},(pi-2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}。

前面已知集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}不包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)},我们现在针对集合{p1,p2,p3,„,ps}内的全体奇素数均只适合①的情形,均只适合②的情形,均只适合③的情形,均只适合④的情形,均只适合①和②的情形,均只适合①和③的情形,均只适合①和④的情形,均只适合②和③的情形,均只适合②和④的情形,均只适合③和④的情形,均只适合①和②和③的情形,均只适合①和②和④的情形,均只适合①和③和④的情形,均只适合②和③和④的情形,适合①和②以及③和④的情形时,分别进行分析:

㈠、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若出现下列情形之一时,即均只适合①和②的情形或均只适合③和④的情形或均只适合①和②和③的情形或均只适合①和②和④的情形或均只适合①和③和④的情形或均只适合②和③和④的情形或适合①和②以及③和④的情形,其中任一情形,在集合{p1,p2,p3,„,ps}中至少有 奇素数pi和pj,使得(pi-2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},(pj+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}。

㈡、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合 ①的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,均有(pi-2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},这与前面已知集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}不包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)}产生了矛盾,故均只适合①的情形时不能成立。

㈢、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合②的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,均有(pi-2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},(pi+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},因集合{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}中的元素两两互不相同,说明集合{p1,p2,p3,„,ps}中元素的总个数与集合{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}中元素的总个数相等。那么根据式子2m-p=pi-2和2m-q=pi+2(p 和q均为奇素数)可得,p=q+4。这说明均只是②的情形时,则任一奇素数加4只能为奇素数,这就必然产生矛盾。故假定均只适合②的情形时不可能成立。

㈣、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合③的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,均有(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},这与前面已知集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}不包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)}产生了矛盾,故均只适合③的情形时不能成立。㈤、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合④的情形,那么有任一(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},而任一(pi+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},又因集合{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}中的元素两两互不相同,说明集合{p1,p2,p3,„,ps}中元素的总个数与集合{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}中元素的总个数相等。又因任一(pi-2)∈集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},那么根据式子2m-ai=pi-2和2m-q=pi+2(q为奇素数)可得,ai=q+4。这说明均只是④的情形时,则任一奇素数加4只能为奇合数,这就必然产生矛盾。故假定均只适合④的情形时不可能成立。

㈥、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合①和③的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,均有(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},这与前面已知集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}不包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)}产生了矛盾,故均只适合①和③的情形时不能成立。

㈦、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合①和④的情形,则有(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}或(pi+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},并且集合{p1,p2,p3,„,ps}至少有一个奇数(pj+2),(pj+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}(1≤j≤s)。说明对于任一奇素 数pi,pi均可分解为pi=2m-g-2(g为奇数)。而对于集合{p1,p2,p3,„,ps}中任一奇素数pi,则(pi-2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},说明对于任一奇素数pi,pi只能分解为pi=2m-ai+2(ai为奇合数)。由此可知,集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项,集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项。

我们现在来分析集合{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{(a1-2),(a2-2),(a3-2),„,(at-2)}中元素的构成情形: 因为奇合数a1,a2,a3,„,at均为不大于偶数2m的全体奇合数,在自然数2m范围内,因为集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项,而集合{(a1+2),(a2+2),(a3+2),„,(at+2)}中缺集合{3}∪{(p1+2),(p2+2),(p3+2),„,(ps+2)}中的全体奇数。说明集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}中至少缺集合{3}∪{(p1+2),(p2+2),(p3+2),„,(ps+2)}中的某一个奇数,也就是说明集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}中至少缺集合{3}∪{(p1+2),(p2+2),(p3+2),„,(ps+2)}中的某一个奇数。

又因为假定集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项,而集合{(a1-2),(a2-2),(a3-2),„,(at-2)}中缺集合{(p1-2),(p2-2),(p3-2),„,(ps-2)}中的全体奇数。说明集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}包含集合{(p1-2),(p2-2),(p3-2),„,(ps-2)}。

现在对已知集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项,假定集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项进行分析:

﹤1﹥、因为已知集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项,当3或5不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}时,由前面分析的情形可知,即3或5不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}。由集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项的情形可知,3和5属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)},即3和5属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},这就产生了矛盾,故这种情形下,集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项不能成立。

﹤2﹥、现在分析连续的三个奇数依次为奇素数,奇合数,奇素数的情形,即pi,(pi+2),(pi+4)。因为已知集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项,假设(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}时,由前面分析的情形可知,则(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}。我们令pj=(pi+4),则(pi+2)=(pj-2),pi和pj均为奇素数,由集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项的情形可知,那么(pj-2)属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)},即(pj-2)属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},也就是说(pi+2)属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},这就产生了矛盾,故这种情形下,集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项不能成立。

﹤3﹥、如果连续的三个奇数中只有下列情形中任意一种情形或任意两种情形组合而成的情形或任意三种情形组合而成的情形或全部四种情形组合而成的情形。

⒈连续的三个奇数依次为奇素数,奇合数,奇合数; ⒉连续的三个奇数依次为奇素数,奇素数,奇合数; ⒊连续的三个奇数依次为奇合数,奇合数,奇合数; ⒋连续的三个奇数依次为奇合数,奇素数,奇合数;

因为任一奇数(2m-a)(a为奇数,a<2m,a≠(2m-1),a≠1),总有等式(2m-a)=ai+2=aj-2成立,其中ai和aj均为奇数。如果连续的三个奇数中只是﹤3﹥中的情形,则对于任一奇数(2m-a)(a为奇数,a<2m,a≠(2m-1),a≠1),只有等式(2m-a)=ai+2=aj-2成 立,其中ai为奇数,aj为奇合数。对于上面任一组合情形,均可得到集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项,即集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项。

因为集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}总可以转换为集合{(p11+2),(p12+2),(p13+2),„,(p1r+2),(a11+2),(a12+2),(a13+2),„,(a1v+2)}或转换为集合{(p21-2),(p22-2),(p33-2),„,(p2w-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}。说明集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}的缺项与集合{(p11+2),(p12+2),(p13+2),„,(p1r+2),(a11+2),(a12+2),(a13+2),„,(a1v+2)}的缺项以及集合{(p21-2),(p22-2),(p33-2),„,(p2w-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}的缺项相同。

由集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项,根据定理1,则集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}∪{a1,a2,a3,„,at}没有缺项。我们设奇合数a1,a2,a3,„,ar均为不大于偶数(2m+2)的全体奇合数,则有下列情形:

(ⅰ)、若at=ar,则集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}∪{a1,a2,a3,„,at}没有缺项。而集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)} ∪{a1,a2,a3,„,at}总可以转换为集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}或转换为集合{(p21-2),(p22-2),(p33-2),„,(p2y-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}。说明集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}和集合{(p21-2),(p22-2),(p33-2),„,(p2y-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}均没有缺项;那么集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}包含集合{(a1+2),(a2+2),(a3+2),„,(at+2)},集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}包含集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)},则有集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)},由此可知,集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}没有缺项。又根据定理1,则集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}没有缺项,这与前面已知情形产生矛盾,故假定集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项不能成立;即对于﹤3﹥中前面任一组合情形均不可能成立。

(ⅱ)、若奇数(2m+2-1)为奇合数,则集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{a1,a2,a3,„,ar}没有缺项。而集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{a1,a2,a3,„,ar}总可以转换为集 合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}或转换为集合{(p21-2),(p22-2),(p33-2),„,(p2y-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}。说明集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}和集合{(p21-2),(p22-2),(p33-2),„,(p2y-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}均没有缺项;那么集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}包含集合{(a1+2),(a2+2),(a3+2),„,(at+2)},集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}包含集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)},则有集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)},由此可知,则集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{(a1+2),(a2+2),(a3+2),„,(ar+2)}没有缺项。又根据定理1,则集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-ar)}∪{a1,a2,a3,„,ar}没有缺项,即集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at }没有缺项。这与前面已知情形产生矛盾,故假定集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项不能成立;即对于﹤3﹥中前面任一组合情形均不可能成立。

﹤4﹥、现在分析连续的三个奇数依次为奇素数,奇素数,奇素数的情形,即pi和(pi+2)以及(pi+4)。我们令(pi+4)=pj,则(pi+2)=(pj-2),假设(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)},因(pi+2)不属于{(a1+2),(a2+2),(a3+2),„,(at+2)},则(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}。又因假定集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项,而(pj-2)不属于集合{(a1-2),(a2-2),(a3-2),„,(at-2)},则(pj-2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}。因(pi+2)=(pj-2),这就产生了矛盾,故集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}也要缺这种情形下的项。

﹤5﹥、现在分析连续的三个奇数依次为奇合数,奇合数,奇合数的情形,即ai和(ai+2)以及(ai+4)。我们令(pi+4)= a j,则(ai+2)=(a j-2),则(ai+2)属于集合{(a1+2),(a2+2),(a3+2),„,(at+2)},(ai+2)属于集合{(a1-2),(a2-2),(a3-2),„,(at-2)},即(ai+2)属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)},(ai+2)属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)},故集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}中均不可能缺这种情形下的项。

﹤6﹥、如果连续的三个奇数中只有下列情形中任意一种情形或任意两种情形组合而成的情形或任意三种情形组合而成的情形或全 部四种情形组合而成的情形:

第一、为奇合数,奇合数,奇素数; 第二、为奇合数,奇素数,奇素数; 第三、为奇合数,奇素数,奇合数; 第四、为奇合数,奇合数,奇合数。

因为任一奇数(2m-a)(a为奇数,a<2m,a≠(2m-1),a≠1),总有等式(2m-a)=ai+2=aj-2成立,其中ai和aj均为奇数。如果连续的三个奇数中只是﹤6﹥中的情形,则对于任一奇数(2m-a)(a为奇数,a<2m,a≠(2m-1),a≠1),只有等式(2m-a)=ai+2=aj-2成立,其中ai为奇合数,aj为奇数。对于上面任一种情形,均可得到集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}没有缺项,这与前面得到的集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项产生了矛盾,故﹤6﹥中的情形不可能成立。

综上﹤1﹥、﹤2﹥、﹤3﹥、﹤4﹥、﹤5﹥、﹤6﹥所述,故均只适合①和④的情形时不可能成立。

㈧、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合②和③的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,有(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}或(pi+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},并且集合{p1,p2,p3,„,ps}至少有一个奇数(pj+2),(pj+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}(1≤j≤s)。说明对于任一奇素数pi,pi 均可分解为pi=2m-g-2(g为奇数)。而对于集合{p1,p2,p3,„,ps}中任一奇素数pi,则(pi-2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},(pi-2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},说明对于任一奇素数pi,pi只能分解为pi=2m-q+2(q为奇素数),集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}中的任一奇数只能分解为a=2m-a i+2(a和a i均为奇合数),因为3和5以及7是奇素数,而所有自然数中除3和5以及7外,不可能再出现三个连续的奇数均为奇素数,说明对于任一奇素数pi,pi只能分解为pi=2m-q+2(q为奇素数)不可能成立,也就是说(2m+2-3)和(2m+2-5)以及(2m+2-7)中至少有一个奇合数。故均只适合②和③的情形时不可能成立。

㈨、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合②和④的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,有(pi-2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}或(pi-2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},并且集合{p1,p2,p3,„,ps}至少有一个奇数(pj-2),(pj-2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}(1≤j≤s)。说明对于任一奇素数pi,pi均可分解为pi=2m-g-2(g为奇数)。而对于集合{p1,p2,p3,„,ps}中任一奇素数pi,则(pi+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},说明对于任一奇素数pi,pi只能分解为pi=2m-q-2(q为奇素数),集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}中的任 一奇数只能分解为a=2m-ai-2(a和a i均为奇合数),因为3和5以及7是奇素数,而所有自然数中除3和5以及7外,不可能再出现三个连续的奇数均为奇素数,说明对于任一奇素数pi,pi只能分解为pi=2m-q-2(q为奇素数)不可能成立,也就是说(2m-2-3)和(2m-2-5)以及(2m-2-7)中至少有一个奇合数。故均只适合②和④的情形时不可能成立。

综上㈠、㈡、㈢、㈣、㈤、㈥、㈦、㈧、㈨所述,设奇合数a1,a2,a3,„,at均为不大于偶数2m(m≧3)的全体奇合数,(ai<aj,i<j,i、j=1、2、3、„、t),t∈N。设奇素数p1,p2,p3,„,ps均为小于偶数2m的全体奇素数,(pi<pj,i<j,i、j=1、2、3、„、s),s∈N。则集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}不包含集合{(p1-2),(p2-2),(p3-2),„,(ps-2)}。即集合{1,(2m-1)}∪(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(a3-2)}有缺项。

(Ⅲ)、对于偶数(2m+2),现在设奇合数a1,a2,a3,„,ah均为不大于偶数(2m+2)(m≧2)的全体奇合数,(ai<aj,i<j,i、j=1、2、3、„、h)。假设偶数(2m+2),不存在有两个奇素数pi和pj,使得(2m+2)=pi+pj。则说明集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}中包含了所有的奇合数和奇素数,那么必然有集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}={1,3,5,7,9,11,„,(2m+2-5),(2m+2-3),(2m+2-1)},由定理1 可知,集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}中的元素同时均减去2,于是可得集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}={1,3,5,7,9,11,„,(2m-5),(2m-3),(2m-1)}。又由(ⅱ)分析的情形可知,集合{1,(2m-1)}∪(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}有缺项,这样就与假设集合{1,(2m-1)}∪(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}={1,3,5,7,9,11,„,(2m-5),(2m-3),(2m-1)}产生了矛盾。说明集合{1,(2m-1)}∪(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}有缺项。由定理2可知,集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}也有缺项,说明集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}中至少有一个奇素数不在该集合中,即集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{(a1-2),(a2-2),(a3-2),„,(ah-2)}有缺项。故集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}≠{1,3,5,7,9,11,„,(2m+2-5),(2m+2-3),(2m+2-1)},所以假定偶数(2m+2)不存在有两个奇素数pi和pj,使得(2m+2)=pi+pj的情形不能成立。即偶数(2m+2)能表为两个奇素数之和。

综上所述,任一不小于6的偶数均可表为两个奇素数之和。推论1:对于任一不小于10的偶数2m,设奇合数a1,a2,a3,„,at均为不大于偶数2m的全体奇合数,(ai<aj,i<j,i、j=1、2、3、„、t),t∈N,则集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}均有缺项。

证明:由哥德巴赫定理的证明过程可知,推论1成立。孪生素数定理:孪生素数对的对数是无限的。

证明:由哥德巴赫定理以及推论1可知,对于任一比较大的偶数2m,设奇合数a1,a2,a3,„,at均为不大于偶数2m的全体奇合数,(ai<aj,i<j,i、j=1、2、3、„、t),t∈N,那么偶数2m有下列情形:

当偶数2m=6k-2时,则有下列情形: 3 5 7 9 11 13 15 17 19 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 6ki-3-1 3ki-3 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 6ki-4+1 6ki-4-1„ 6kr-1 3kr 6kr-1+1 6kr-1-1 3kr-1 6kr-1+1 „ 3ki-2 6ki-3-1 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki17 15 13 11 9 7 5 3 1 当偶数2m=6k时,则有下列情形: 3 5 7 9 11 13 15 17 19 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 6ki-3-1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 3ki-3 6ki-4+1 „ 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 3kr-1 „ 6ki-3-1 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 19 17 15 13 11 9 7 5 3 1 当偶数2m=6k+2时,则有下列情形: 3 5 7 9 11 13 15 17 19 6ki+1 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 6ki-3-1 3ki-3 „ 3kr 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 „ 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 6ki+1 19 17 15 13 11 9 7 5 3 1 因为不小于4的偶数的顺序为:(6k1-2),(6k1),(6k1+2),(6k2-2),(6k2),(6k2+2),(6k3-2),(6k3),(6k3+2),„。我们具体展开分析:

第一、分析偶数2m=6k时的情形:(11)、对于偶数2m=6k,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1 奇素数 奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1 3ki1-2 6ki1-3+1 6ki1-3-1(12)、对于偶数2m=6k,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1奇合数 奇素数 3kj2+2 6kj2+2-1 6kj2+2+1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2-2+1 6ki2-2-1 3ki2-2 6ki2-3+1 6ki2-3-1(13)、对于偶数2m=6k,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1奇素数 奇合数3kj3+2 6kj3+2-1 6kj3+2+1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1 3ki3-2 6ki3-3+1 6ki3-3-1(14)、对于偶数2m=6k,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1奇合数 奇合数3kj4+2 6kj4+2-1 6kj4+2+1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 3ki4-2 6ki4-3+1 6ki4-3-1 从上面(11),(12),(13),(14)的情形可知,只有当上面(11)的情形中奇数(6ki1-2+1)这样情形的奇数为奇素数时或者上面(11)的情形中奇数(6ki1-2-1)这样情形的奇数为奇素数时或者上面(11)的情形中奇数(6ki1-2+1)和(6ki1-2-1)这样情形的奇数均为奇素数时或者上面(12)的情形中奇数(6ki2-2-1)这样情形的奇数为奇素数时或者上面(13)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数时,集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}才能产生缺项。又因为集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}均有缺项。那么集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}中,必然有由上面(11)的情形中奇数(6ki1-2+1)这样情形的奇数为奇素数和上面(13)的情形中奇数(6ki3-2-1)这样情形的奇数为奇素数而产生的缺项或者必然有由上面(11)的情形中奇数(6ki1-2-1)这样情形的奇数为奇素数和上面(12)的情形中奇数(6ki2-2+1)这样情形的奇数为奇素数而产生的缺项或者必然有由上面(11)的情形中奇数(6ki1-2+1)和(6ki1-2-1)这样情 形的奇数均为奇素数而产生的缺项。

我们又分析偶数2m+2=6k+2时的情形: 3 5 7 9 11 13 15 17 19 6ki+1 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 6ki-3-1 3ki-3 „ 3kr 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 „ 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 6ki+1 19 17 15 13 11 9 7 5 3 1(15)、对于偶数2m+2=6k+2,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1 奇素数 奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 6ki1-1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1 3ki1-2 6ki1-3+1(16)、对于偶数2m+2=6k+2,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1 奇素数 奇合数 3kj2+2 6kj2+2-1 6kj2+2+1 6ki2-1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2-2+1 6ki2-2-1 3ki2-2 6ki2-3+1(17)、对于偶数2m+2=6k+2,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1 奇合数 奇素数 3kj3+2 6kj3+2-1 6kj3+2+1 6ki3-1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1 3ki3-2 6ki3-3+1(18)、对于偶数2m+2=6k+2,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1 奇合数 奇合数 3kj4+2 6kj4+2-1 6kj4+2+1 6ki4-1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 3ki4-2 6ki4-3+1 我们设奇合数a1,a2,a3,„,ar均为不大于偶数(2m+2)的全体奇合数,从上面(15),(16),(17),(18)的情形可知,只有当(15)的情形中奇数(6ki1-2+1)这样情形的奇数为奇素数时或者(17)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数或者(2m+2-3)为奇素数时,集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{a1,a2,a3,„,ar}才能产生缺项。由此可知,必然有上面(11)的情形中奇数(6ki1-2+1)和(6ki1-2-1)这样情形的奇数均为奇素数或者上面(12)的情形中奇数(6ki2-2+1)和(6ki2-2-1)这样情形的奇数均为奇素数或者上面(13)的情形中奇数(6ki3-2+1)和(6ki3-2-1)这样情形的奇数均为奇素数或者前面偶数2m+2=6k+2时的情形中奇数(6ki+1)和(6ki-1)均为奇素数。

第二、分析偶数2m=6k-2时的情形: 3 5 7 9 11 13 15 17 19 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 6ki-3-1 3ki-3 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 6ki-4+1 6ki-4-1„ 6kr-1 3kr 6kr-1+1 6kr-1-1 3kr-1 6kr-1+1 „ 3ki-2 6ki-3-1 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki17 15 13 11 9 7 5 3 1(21)、对于偶数2m=6k-2,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1奇素数奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 3kj1-3 6ki1+1 6ki1-1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1 3ki1-2 6ki1-3+1(22)、对于偶数2m=6k-2,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1 奇素数 奇合数3kj2+2 6kj2+2-1 6kj2+2+1 3kj2-3 6ki2+1 6ki2-1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2+1 6ki2-2-1 3ki2-2 6ki2-3+1(23)、对于偶数2m=6k-2,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1 奇合数 奇素数3kj3+2 6kj3+2-1 6kj3+2+1 3kj3-3 6ki3+1 6ki3-1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1 3ki3-2 6ki3-3+1(24)、对于偶数2m=6k-2,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1 奇合数奇合数3kj4+2 6kj4+2-1 6kj4+2+1 3kj4-3 6ki4+1 6ki4-1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 3ki4-2 6ki4-3+1 从上面(21),(22),(23),(24)的情形可知,只有当(21)的情形中奇数(6ki1-1-1)这样情形的奇数为奇素数或者(22)的情形中奇数(6ki2-1-1)这样情形的奇数为奇素数或者奇数(2m-3)为奇素数时,集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}才能产生缺项。又因为集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}均有缺项。那么集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}必然有由上面(21)的情形中奇数(6ki1-1-1)和(6ki1-2+1)这样情形的奇数均为奇素数而产生的缺项或者由上面(21)的情形中奇数(6ki1-1-1)这样情形的奇数为奇素数和上面(23)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数而产生的缺项或者由上面(21)的情形中奇数(6ki1-1+1)这样情形的奇数为奇素数和上面(22)的情形中奇数(6ki2-1-1)这样情形的奇数为奇素数及上面(23)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数而 产生的缺项等等。

我们又分析偶数2m+2=6k时的情形: 3 5 7 9 11 13 15 17 19 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 6ki-3-1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 3ki-3 6ki-4+1 „ 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 3kr-1 „ 6ki-3-1 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 19 17 15 13 11 9 7 5 3 1(25)、对于偶数2m+2=6k,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1 奇素数 奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 3ki1+1 6ki1+1 6ki1-1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1(26)、对于偶数2m+2=6k,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1奇合数 奇素数 3kj2+2 6kj2+2-1 6kj2+2+1 3ki2+1 6ki2+1 6ki2-1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2-2+1 6ki2-2-1(27)、对于偶数2m+2=6k,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1奇素数 奇合数3kj3+2 6kj3+2-1 6kj3+2+1 3ki3+1 6ki3+1 6ki3-1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1(28)、对于偶数2m+2=6k,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1奇合数 奇合数3kj4+2 6kj4+2-1 6kj4+2+1 3ki4+1 6ki4+1 6ki4-1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 我们设奇合数a1,a2,a3,„,ar均为不大于偶数(2m+2)的全体奇合数,从上面(25),(26),(27),(28)的情形可知,只有当上

面(25)中的情形奇数(6ki1-1+1)这样情形的奇数为奇素数时或者上面(25)的情形中奇数(6ki1-1-1)这样情形的奇数为奇素数时或者上面(25)的情形中奇数(6ki1-1+1)和(6ki1-1-1)这样情形的奇数均为奇素数时或者上面(26)的情形中奇数(6ki2-1-1)这样情形的奇数为奇素数时或者上面(27)的情形中奇数(6ki3-1+1)这样情形的奇数为奇素数时,集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{a1,a2,a3,„,ar}才能产生缺项。又由于集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{(a1+2),(a2+2),(a3+2),„,(ar+2)}和集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{(a1-2),(a2-2),(a3-2),„,(ar-2)}均有缺项,由此可知,必然有上面(21)的情形中奇数(6ki1-1+1)和(6ki1-1-1)这样情形的奇数均为奇素数或者上面(22)的情形中奇数(6ki2-1+1)和(6ki2-1-1)这样情形的奇数均为奇素数或者上面(23)的情形中奇数(6ki3-1+1)和(6ki3-1-1)这样情形的奇数均为奇素数或者偶数2m=6k-2时的情形中奇数(6ki-1+1)和(6ki-1-1)均为奇素数。

第三、分析偶数2m=6k+2时的情形: 3 5 7 9 11 13 15 17 19 6ki+1 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 6ki-3-1 3ki-3 „ 3kr 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 „ 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 6ki+1

19 17 15 13 11 9 7 5 3 1(31)、对于偶数2m=6k+2,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1 奇素数 奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 6ki1-1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1 3ki1-2 6ki1-3+1(32)、对于偶数2m=6k+2,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1 奇素数 奇合数 3kj2+2 6kj2+2-1 6kj2+2+1 6ki2-1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2-2+1 6ki2-2-1 3ki2-2 6ki2-3+1(33)、对于偶数2m=6k+2,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1 奇合数 奇素数 3kj3+2 6kj3+2-1 6kj3+2+1 6ki3-1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1 3ki3-2 6ki3-3+1(34)、对于偶数2m=6k+2,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1 奇合数 奇合数 3kj4+2 6kj4+2-1 6kj4+2+1 6ki4-1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 3ki4-2 6ki4-3+1 从上面(31),(32),(33),(34)的情形可知,只有当(31)的情形中奇数(6ki1-2+1)这样情形的奇数为奇素数或者(33)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数或者(2m-3)为奇素数时,集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}才能产生缺项。又因为集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}均有缺项。那么集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,33(2m-at)}∪{a1,a2,a3,„,at}必然有由上面(31)的情形中奇数(6ki1-1-1)和(6ki1-2+1)这样情形的奇数均为奇素数而产生的缺项或者由上面(31)的情形中奇数(6ki1-1-1)这样情形的奇数为奇素数和上面(33)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数而产生的缺项或者由上面(31)的情形中奇数(6ki1-1+1)这样情形的奇数为奇素数和上面(32)的情形中奇数(6ki2-1-1)这样情形的奇数为奇素数及上面(33)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数而产生的缺项等等。

我们又分析偶数2m-2=6k时的情形: 3 5 7 9 11 13 15 17 19 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 6ki-3-1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 3ki-3 6ki-4+1 „ 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 3kr-1 „ 6ki-3-1 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 19 17 15 13 11 9 7 5 3 1(35)、对于偶数2m-2=6k,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1 奇素数 奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1 3ki1-2 6ki1-3+1 6ki1-3-1(36)、对于偶数2m-2=6k,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1奇合数 奇素数 3kj2+2 6kj2+2-1 6kj2+2+1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2-2+1 6ki2-2-1 3ki2-2 6ki2-3+1 6ki2-3-1(37)、对于偶数2m-2=6k,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1奇素数 奇合数3kj3+2 6kj3+2-1 6kj3+2+1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1 3ki3-2 6ki3-3+1 6ki3-3-1(38)、对于偶数2m-2=6k,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1奇合数 奇合数3kj4+2 6kj4+2-1 6kj4+2+1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 3ki4-2 6ki4-3+1 6ki4-3-1 我们设奇合数a1,a2,a3,„,ar均为不大于偶数(2m-2)的全体奇合数,从上面(35),(36),(37),(38)的情形可知,只有当上面(35)中的情形奇数(6ki1-2+1)这样情形的奇数为奇素数时或者上面(35)的情形中奇数(6ki1-2-1)这样情形的奇数为奇素数时或者上面(35)的情形中奇数(6ki1-2+1)和(6ki1-2-1)这样情形的奇数均为奇素数时或者上面(36)的情形中奇数(6ki2-2-1)这样情形的奇数为奇素数时或者上面(37)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数时,集合{1,(2m-2-1)}∪{(2m-2-a1),(2m-2-a2),(2m-2-a3),„,(2m-2-ar)}∪{a1,a2,a3,„,ar}才能产生缺项。又由于集合{1,(2m-2-1)}∪{(2m-2-a1),(2m-2-a2),(2m-2-a3),„,(2m-2-ar)}∪{(a1+2),(a2+2),(a3+2),„,(ar+2)}和集合{1,(2m-2-1)}∪{(2m-2-a1),(2m-2-a2),(2m-2-a3),„,(2m-2-ar)}∪{(a1-2),(a2-2),(a3-2),„,(ar-2)}均有缺项,由此可知,必然有上面(31)的情形中奇数(6ki1-2+1)和(6ki1-2-1)这样情形的奇数均为奇素数或者上面(32)的情形中奇数(6ki2-2+1)和(6ki2-2-1)这样情形的奇数均为奇素数或者上面(33)的情形中奇数(6ki3-2+1)和(6ki3-2-1)这样情形的奇数均为奇素数或者偶数2m=6k+2时的情

形中奇数(6ki+1)和(6ki-1)均为奇素数。

从上面分析的情形,可得出如下结论:

(ⅰ)、对于有限大的偶数2m,使得偶数2m之前的全体孪生素数对,对于偶数(2m+2k)(2k为有限大的偶数)之前的任一偶数,均满足哥德巴赫定理和推论1成立。

(ⅱ)、对于有限大的偶数2m,偶数2m之前的全体孪生素数对,均满足哥德巴赫定理和推论1成立;而偶数2m之前的全体孪生素数对,对于偶数2m至偶数(2m+2k)(2k为有限大的偶数)之间的任一偶数均不满足哥德巴赫定理和推论1成立,则偶数2m至偶数(2m+2k)(2k为有限大的偶数)之间必至少存在一个孪生素数对,使得偶数2m至偶数(2m+2k)(2k为有限大的偶数)之间的任一偶数,均满足哥德巴赫定理和推论1成立。

综上所述,孪生素数对的对数是无限的。

参考文献

[1]戎士奎,十章数论(贵州教育出版社)1994年9月第1版

[2]闵嗣鹤,严士健,初等数论(人民教育出版社)1983年2月第6版 [3]刘玉琏,付沛仁,数学分析(高等教育出版社)1984年3月第1版 [4]闵嗣鹤 数论方法(哈尔滨工业大学出版社)2011年3月第1版 [5]潘承洞 潘承彪 简明数论(北京大学出版社)1998年1月第1版 [6]陈景润 数论概貌(哈尔滨工业大学出版社)2011年3月第1版

作者简介:王若仲(王洪),男,土家族,1966年生于贵州务川,1988年毕业于遵义师范高等专科学校,1988年务川县实验学校教员至今。

二〇一二年九月十六日

第五篇:猜想证明题1[模版]

猜想证明题

1例1.如图,已知ABC为等边三角形,D、E、F分别在边

BC、CA、AB上,且DEF也是等边三角形.

E(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证

明你的猜想是正确的; F(2)你所证明相等的线段,可以通过怎样的变化相互得到?写

出变化过程. DCB

分析:本题要求学生在掌握全等三角形的概念和性质的基础上,灵活运用三角形全等的判定及性质进行结论猜想。求解这类问题,不能随意乱猜,要结合题目给出的条件,根据图形直观的找出结论后再进行合理的推理论证。

解:(1)图中还有相等的线段是:AE=BF=CD,AF=BD=CE,事实上,∵△ABC与△DEF都是等边三角形,∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD,又∵∠CED+∠AEF=120°,∠CDE+∠CED=120°

∴∠AEF=∠CDE,同理,得∠CDE=∠BFD,∴△AEF≌△BFD≌△CDE(AAS),所以AE=BF=CD,AF=BD=CE。

(2)线段AE、BF、CD它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF、BD、CE它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到。

说明:

1.本题考查的是在三角形全等的判定及应用及旋转变换,它立意考查学生的观察、分析问题的能力.2.因为几何直观是一种思维形式,它是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态.它不仅拓展了学生的思维空间,考查了学生的能力,更因为几何直观具有发现的功能.这种思维既有形象思维的特点,又有抽象思维的特点,所以成为近几年中考试题的考点及热点问题。

练习一

1.(北京丰台)已知:如图,四边形ABCD是菱形,E是BD

延长线上一点,F是DB延长线上一点,且DE=BF。请你以F

为一个端点,和图中已标明字母的某一点连成一条新的线 段,猜想并证明它和图中已有的某一条线段相等(只须证

明一组线段相等即可)。(1)连结____________;(2)猜想:______=______;(3)证明:

2.(河北)如图10-1-2(1),10-1-2(2),四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。

⑴如图10-1-2(1),当点E在AB边的中点位置时:

①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是; ②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;

③请证明你的上述两猜想。

⑵如图10-1-2(2),当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系。

3.(河南)空投物资用的某种降落伞的轴截面如图所示,ABG是等边三角形,C、D是

CG、DG分别交AB于点E、F,以AB为直径的半圆O的两个三等分点,试判断点E、F分别位于所在线段的什么位置?并证明你的结论(证明一种情况即可)

D到B、C、4.(潍坊)如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、直线l的距离分别为a、b、c、d.

(1)观察图形,猜想得a、b、c、d满足怎样的关系式?证明你的结论.

(2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.

5.(锦州)如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;

(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;

(3)若将图a中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;

(4)根据以上证明、说理、画图,归纳你的发现.

相关内容

热门阅读

最新更新

随机推荐