首页 > 文库大全 > 精品范文库 > 13号文库

09制药工程基础课程设计计划书

09制药工程基础课程设计计划书



第一篇:09制药工程基础课程设计计划书

一、课程设计的目的与任务

《制药工程基础课程设计》是制药工程专业的一个重要教学环节。进行本课程设计的目的是培养学生综合运用所学知识,特别是制药工程相关专业课程的有关知识解决制药工程车间或工厂设计实际问题的能力,使学生深刻领会洁净厂房GMP车间设计的基本程序、原则和方法;掌握制药工艺流程设计、物料衡算、设备选型、车间工艺布置设计等的基本方法和步骤;从技术上的可行性与经济上的合理性两个方面树立正确的设计思想。通过本课程设计,提高学生运用计算机设计绘图(AutoCAD)的能力。

二、课程设计的时间及工作安排

设计时间:为2-4周。

工作安排:

1.查阅资料、确定生产工艺、绘制工艺流程图,结合工程实际收集所需资料及检索相关规范标准,从技术可行性和经济合理性两方面确定设计思路。物料衡算、能量计算、设备选型。

2.进行车间工艺平面设计、绘制平面布置图、制药单体设备安装设计图、编写设计说明书。

三、课程设计的考核、评分方法

课程设计考核的内容包括:

1.设计说明书、图纸的质量(指说明书内容是否完整、正确,文字表达是否简洁、清楚,车间布置是否合理,主要设备总装图结构是否合理,图纸表达是否规范、正确,图面是否整洁、清楚等)。

2.成绩评定按优、良、中、及格、不及格五级记分。

设计主要成果包括:

①设计说明书一份,包括项目概述、产品概述、工艺概述、物料衡算、工艺设备选型说明、工艺主要设备一览表、车间工艺平面布置说明、车间技术要求等;②工艺平面布置图一套(1:100)、主要制药(如单体)设备安装设计图(1:

50)、带控制点工艺管道流程图等;

③要求学生采用AutoCAD制图;绘图10张左右。

④图中所有图例、管道标号均采用国标,并在图中标出。

四、课程设计题目

设计题目一(制药1班):年处理X吨药材的中药提取车间工艺设计

设计内容和要求:

1、按水提醇沉工艺进行设计,考虑提取的前处理;

2、确定并绘制中药提取工艺管道流程及环境区域划分;

3、详细叙述一个主要中药提取工艺设备的工作原理、结构组成及关于此设备国内外的现状、研究前沿;

4、物料衡算、设备选型;

5、年处理X吨药材的中药提取车间工艺平面布置(包括精烘包区域);

6、醇沉罐的安装图(剖示图1:50);

7、紧扣GMP规范要求;

8、编写设计说明书。

设计主要成果:

1、设计说明书一份,包括工艺概述、物料衡算、工艺设备选型说明、工艺主要设备一览表、车间工艺平面布置说明、车间技术要求;

2、工艺平面布置图一套(1:100);

3、醇沉罐的安装图(剖示图1:50);

4、带控制点工艺管道流程图。

具体分工名单:

1~10号,计算年产量值为:100t+20

11~20号,计算年产量值为:10t+100

21~47号,计算年产量值为:15t+80

(学号末位两个数值用符号t表示)

设计题目二(制药2班):制药用水站的设计(纯化水Xt/h,注射用水1t/h)设计内容和要求:

1、确定纯化水和注射用水的工艺管道流程;

2、详细叙述一个制水工艺设备的工作原理、结构组成及关于此设备国内外的现状、研究前沿。

3、设备选型(纯化水按Xt/h,注射用水按1t/h);

4、按规范要求设计制药用水站工艺平面图,并注明其技术要求;

5、总结和论述制药用水站的设计。

设计主要成果:

1、设计说明书一份。包括工艺概述、工艺流程及净化区域划分说明、物料衡算、工艺设备选型说明、工艺主要设备一览表、工艺平面布置说明、车间技术要求等。

2、工艺平面布置图一套(1:100);

3、纯水生产工艺管道流程图。

具体分工名单:

1~10号,计算产量值为:0.8t+1

11~20号,计算产量值为:0.08t+1

21~44号,计算产量值为:0.01t+1

(学号末位两个数值用符号t表示)

设计题目三(制药3班):片剂车间GMP设计(颗粒剂X万袋/年)

设计内容和要求:

1、确定工艺流程及净化区域划分;

2、详细叙述一个固体制剂工艺设备的工作原理、结构组成及关于此设备国内外的现状、研究前沿。

3、物料衡算、设备选型(颗粒剂按2g/袋计);

4、按GMP规范要求设计车间工艺平面图;

5、制粒机的安装图(平、立、剖面图1:50);

6、编写设计说明书。

设计主要成果:

1、设计说明书一份,包括工艺概述、工艺流程及净化区域划分说明、物料衡算、工艺设备选型说明、工艺主要设备一览表、车间工艺平面布置说明、车间技术要求等。

2、工艺平面布置图一套(1:100);

3、制粒机的安装图(平、立、剖面图1:50);

4、工艺管道流程图。

具体分工名单:

1~10号,按干法制粒方式X=100t+100

11~20号,按湿法制粒方式X=70t+100

21~45号,按一步制粒方式X=50t+100

(学号末位两个数值用符号t表示)

主要设备选型参考:可查阅www.teniu.cc

推荐教材及主要参考书:

1、《化工原理》上、下册,谭天恩,麦本熙,丁惠华编著(1990年);

2、《化工工艺设计手册》,上、下册,国家医药管理局上海医药设计院编(1986年);

3、《药物制剂工程技术与设备》;

4、《药剂学》;

5、《GMP规范》;

6、《洁净厂房设计规范》;

7、杂志:《医药工程设计》;

8、设备选型可查阅www.teniu.cc9、中国制药机械网;中国制药技术联盟网;GMP认证网等。

撰写成文格式如下:

制药工程基础课程设计

题目:

(封面页所填内容均为三号宋体,其中英文与数字为times new roman体)

学生姓名:

学号:

系别:

专业:

指导教师:

起止日期:

年月日

设计任务书

一、设计题目

二、设计参数

三、设计内容及要求

目录(小三号黑体居中)

(空一行)

1概述

1.1****简介

1.2设计方案简介

1.3工艺流程说明及草图

1.4符号说明********工艺计算

2.1****************

2.2****************

3 ********

3.1****************

3.2 ********

3.3****************

****************

********

设计评述

参考文献

附录

(小四仿宋,数字和字母为times nwe roman体,1.5倍行距)

课程设计页码从正文概述部分开始,至附录,用阿拉伯数字连续编排,页码位于页面底端居中。封面、任务书、目录不编入论文页码。概述(作为正文第1级标题,4号黑体)

1.1 ****简介(作为正文2级标题,4号黑体)

□□××××××××

(正文四号仿宋体,数字和字母为times new roman体,单倍行距)

1.2 设计方案简介(作为正文2级标题,4号黑体)

□□××××××××

1.3 确定设计方案(作为正文2级标题,4号黑体)

1.3.1 工艺流程(作为正文3级标题,4号黑体)

□□××××××××

(图表中图序图名为四号仿宋体,图表中文字为五号仿宋体)

1.3.2 选型

□□××××××××

1.4 符号说明

□□Wh热液体质量流量D1接管内径

□□Wc冷流体质量流量Ft结垢校正系数

(一级标题间空一行)

2□××××××(作为正文第1级标题,4号黑体)

□××××××××××(4号仿宋体)×××

□××××××××××(4号仿宋体)×××

(正文后空一行)

参考文献(4号黑体居中)

[1]□××××××××(小4号仿宋体,1.5倍行距)

[2]□××××××××××××××××××××××××××××××××

[3]□××××××××

参考文献的著录应符合国家有关标准(按GB7714—87《文后参考文献著录格式》执行)。

(1)期刊文章

[序号]主要责任者.文献题名[J].刊名,出版年份,卷号(期号):起止页码.如:

[1]毛峡,丁玉宽.图像的情感特征分析及其和谐感评价[J].电子学报,2001,29(12A):1923-1927.

(2)专著

[序号]主要责任者.文献题名[M].出版地:出版者,出版年:起止页码.如:

[2]刘国钧,王连成.图书馆史研究[M].北京:高等教育出版社,1979:15-18,31.

附录(另起一页,4号黑体,顶格)

附录1:工艺流程图(4号仿宋体,顶格)

附录2:主体设备工艺条件图

第二篇:制药工程基础

第一章

1、药物:药物是对疾病具有预防、治疗和诊断作用或用以调节肌体生理功能的一类物质。

2、制药工程的研究目的:①药物制备所用的包括生化反应在内的各类型化学反应热力学和动力学以及细胞生长动力学等规律;②揭示

天然药物和中药提取分离过程中的扩散动力学等规律,药物与其他非活性物质的混合和成型加工等物理过程中的流体动力学和分子扩散动力学规律;③总结包括环境状态和机械力在内的工程因素对制药过程以及药品的生物医学性能的影响,形成一些具有普遍意义的原理,用以知道工业生产过程和开发研究。

3、就放大的方法而言,有数学模型法和工程实验法。

4、制药工程的分类:从工程与工艺技术角度可分为:①生产工艺工程②制药厂(车间)工艺与工程设计。按药物的运转阶段可将制药

工程分为:①原料药制造工程②药物剂型加工工程③药品贮存工程。按生产药物的类别可分为:①化学制药工程②生物制药工程③中药制药工程。

5、制药设备的分类:①原料药生产用设备级机械②药物制剂机械与设备③药用粉碎机械④饮片机械⑤制药用水设备⑥药品包装机械⑦

药物检测设备⑧制药用其他机械设备。

6、设备设计的总目标:总目标是在现行原料和产品价格的条件下使反应器的体积最小、投资最省、操作费用最低和目的产物的收率最

高,从而使经济效益最好;化学反应器的设计通常是根据规定的生产能力、原料组成及产品规格进行的。

7、反应器或浸取器设计通常要借助的数学模型包括:物料衡算式、热量衡算式、动量衡算式以及相关的反应或扩散动力学方程、热力

学计算式和各种传递参数计算式等。

8、制药过程的具体设计的基本方法依次为:①选择、确定每个独立的步骤(工序、技术)②设计(选择、确定)各独立步骤对应的设备与

装置③连接各独立的步骤构成符合生产要求的完整系统。

9、工艺设计的基本程序是:根据(生产)设计任务选择并设计技术方案,然后进行物料能量衡算,再进行设备选型或条件设计,最后

绘制工艺流程图和厂区及车间设备布置图,并绘制设计说明书。

第二章

1、化学计量方程:是表示各反应物与生成物在反应过程中量的变化关系的方程。

2、在间歇生产系统中,反应物一次加入反应器,经历一定的反应时间达到所要求的转化率后,产物一次卸出,生产是分批进行的,在反应期间,反应器中没有物料进出。如果间歇反应器中物料由于搅拌而处于均匀状态,则反应物系的组成、温度、压力等参数在每一瞬间都是一致的,但随反应的进行而变,故独立变量为时间。

3、反应物体积不恒定时:—rAdnA/Vdt

恒定时:—rAdcA/dt nnk组分K已反应掉的物质的量ko4、转化率:xk ninionknko组分K的起始物质的量n反应程度:如果用各组分在反应前后的物质的量的变化与其计量数的比值来定义反应程度,则 koaa5、如果化学反应的反应式能代表反应的真正历程,称为基元反应。基元反应的速率与反应物的浓度(带有指数)的乘积成正比,其中ikab各浓度项的指数就是反应式中各相应物质的计量数。rAkcAcB

① 反应级数不能独立地预示反应速率的大小,它只是表明反应速率对各组分浓度的敏感程度,a和b值越大,则A的浓度和B的浓度

对反应速率的影响也越大。

② 反应级数a和b的值是凭借实验来获得的,它既与反应机理无直接的关系,也不等于各计量数,只有当化学计量方程与反映实际历

程的反应机理式一致时,反应级数与计量数才会相等,对于这类反应我们称之为基元反应,它可以直接应用定律来列出其反应速率方程。

③ 由于反应级数是由实验获得的经验值,所以只能在获得其值的实验条件范围内加以应用;它们在数值上可以是整数、分数或零,亦

可以是负数,但总反应级数在数值上是很少达到3的。E

6、阿伦尼乌斯方程kk0exp

活化能E的物理意义是把反应分子“激发”到可以进行反应的“活化状态”时所需的能量。所以,E的大小直接反映了反应的难易程RT度,E愈大,通常所需的反应温度亦愈高。dcA7、可逆反应:由于正逆向均为一级反应,故其反应速率方程的微分式为:rAkcAkcs npnpodtA的物质的量之比值,

8、收率(或总收率)以符号p记之,它表示生成的目的产物P的物质的量与反应掉的反应组分即 npnpopnAonA9、得率以符号Xp记之,它表示生成的目标产物P的物质的量与反应物A的起始物质的量之比,即XP

10、选择性以符号Sp记之,它是目的产物P所生成的物质的量与某副产物S生成的物质的量之比,即SP nsnso11、釜式反应器主要由搅拌装置、轴封和搅拌罐(釜体)三大部分组成,搅拌装置包括传动装置、搅拌轴、搅拌器,由电动机和减速器驱动搅拌轴使搅拌器按照一定的转速旋转以实现搅拌的目的。

12、釜式搅拌器的缺点:用于非生产性的操作时间长,产物的损失较大等,所以适用于经济价值高、批量小的产物,如药品和精细化工产品等的生产。

13、分批式操作的优化分析(YR为最大的优化 dcRcRdxA1)以反应器的平均生产速率xA(2)以生产费用最低为目标的优化 和rdttt

14、空时:Q进料体积流量空速是单位反应体积、单位时间内所处理的物料量。015、对于一级反应,选择两个体积相同的釜串联,可使总反应体积最小。若多釜串联,则选择各釜的体积相同,可使总反应体积最小。对于级反应,rAkcA,为了使总反应体积最小:若>1,小釜在前,大釜在后;若=1,各釜体积相等;若1<<1,大釜在前,小釜在后,若=0,由于反应速率与浓度无关,所以串联后的总体积与单釜的反应体积相同,串联已无必要;若<0,单釜操作优于多釜操作,串联成为多此一举。

16、碳在铁中的存在形式有固溶体、化合物和混合物三种。一般含碳量在0.02%-2%称为钢,大于2%称为铸铁;小于0.02%称纯铁。17、35CrMo其中数字表示表示平均含碳量的万分之几,合金元素符号后面的数字表示合金元素含量的百分数,含量小于1.5%时可不标

含量。

18、无机非金属材料包括化工陶瓷、化工搪瓷、辉绿岩铸石和玻璃。玻璃虽然有耐腐蚀性、清洁、透明、阻力小、价格低等特点,但质

脆、耐温度及变性差,不耐冲击和振动。

19、有机非金属材料包括工程塑料、涂料(用于涂刷设备、管道的 外表面,也常用于设备内壁的防腐涂层)和不透性石墨(由各种树

脂浸渍石墨消除孔隙后得到的,优点是具有较高的化学稳定性和良好的导热性,热膨胀系数小,耐温度系数小,耐温度急变性好;不污染介质,能保证产品纯度;加工性能良好。缺点是机械强度较低、性脆)。

20、金属腐蚀可分为化学腐蚀(金属的高温氧化、钢的脱碳、氢脆、腐蚀)和电化学腐蚀(腐蚀原电池、微电池与宏电池、浓差电池)

21、电化学保护是通过改变金属-电解质的电极电位来控制金属腐蚀的方法。包括阴极保护和阳极保护。阴极保护法包括外加电流法(把

被保护的金属设备与直流电源的负极相连,电源的正极和一个辅助阳极相连。当电源接通后电源便给金属设备以阴极电流,使金属设备的电极电位相反的方向移动,当电位降至腐蚀电池的阳极起始电位时,金属设备的腐蚀即可停止)和牺牲阳极法(在被保护的金属上连接一块电位更负的金属作为牺牲阳极。由于外接的牺牲阳极的电位比被保护的金属更负,更容易失去电子,它输出阴极的电流使被保护的金属阴极极化)。阳极保护法是把被保护设备与外加的直流电源阳极相连,在一定的电解质溶液中,把金属的阳极极化到一定电位,使金属表面生成钝化膜,从而降低金属的腐蚀作用,使设备受到保护。

22、培养基是生化反应过程中为微生物生长和进行目的产物合成而提供的营养物质及辅助成分,包括碳源、氮源、无机盐、生长因子和

前体物质和促进剂。

23、培养基灭菌可采用加热、化学杀菌和各种物理场杀菌方法,对液体培养基可用过滤、离心分离等除菌法。在工业生产中,几乎都用

蒸汽加热杀菌技术。故通常在工程中是要求每千罐培养基杀菌只允许残存一个活菌,这是工程计算常用的假算。

24、影响培养基的因素:PH、培养基成分、培养基中的颗粒物质。

25、连续发酵的有点:连续进料和排料,细胞浓度、基质浓度和代谢产物浓度稳定,细胞生长和代谢旺盛,产物的质量和产量稳定,所

需的发酵罐容积小,便于自动控制,下游的分离纯化设备投资小,生产效率高。缺点:1是因发酵周期长,细胞易突变特别是用基因工程菌发酵时,少量细胞可能会丢失重组质粒,丢失质粒的细胞生长繁殖更快,故基因重组的细胞所占比例趋于下降,使产物的表达量减少。对此可把外源基因整合到宿主染色体上来解决。2是在长时间维持无杂菌污染是相当困难的,尤其对大规模的工业生产。

26、影响酶活性的环境因素:温度,PH。

27、无菌空气是指通过过滤除菌使空气含菌量为零或极低。

28、空气除菌是除去或杀灭空气中的微生物。包括热杀菌、辐射杀菌、静电除菌和过滤除菌。

29、纤维介质过滤除菌原理有五个作用机理,即:惯性冲击滞留作用机理、拦截滞留作用机理、布朗扩散作用机理、重力沉降作用机理

和静电吸附作用机理。

第三章

1、分配定律:利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂

中。经过反复多次萃取,将绝大部分的化合物提取出来。

2、植物性药材的浸出过程是由湿润、渗透、解吸、溶解及扩散等几个相互联系的阶段组成。

3、单级浸取:g=G/(@+1);@=G’/g’。

4、重复浸取:gn=G/(@+1)n。

5、超临界浸取:各种物质处于临界状态时,都有它固定的临界点温度T和压力p。物质的临界状态是指气态与液态共存的一种边缘状

态。在此状态中,液体的密度与其饱和蒸汽的密度相同,因此界面消失。超临界流体是指超过临界温度与临界压力状态的流体。如果某种流体处于临界温度之上,即T1>T,无论压力多高,也不能液化,这个状态的物质既不是液体也不是气体,而是处于两者之间的一种密度。因此,一种超临界流体可提供像气体一样能够渗入一种样品中的独特优点,同时仍具有液体的溶剂化能力。

6、超临界流体兼有气体和液体的双重特性,如粘度较小,扩散能力和渗透能力都较大,这些性质接近于气体;其密度较大,溶解能力

较大,这些性质接近于液体。

7、常用的超临界流体有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等。

8、结晶分离:在一定的条件下,任何一种物质溶解在某种溶剂中,都有一个最大限度,这个限度就是溶解度,也称为饱和浓度。

9、溶质浓度大于饱和浓度并达到一定的过饱和度时,有晶体析出。结晶包括三个过程:①行程过饱和溶液②结晶形成③晶体生长。

10、冷却或蒸发的速度越慢、晶种越小、机械搅拌越激烈,超溶解度曲线越向溶解度曲线靠近。介稳区宽度是选择合适结晶过饱和度的依据。

11、传统的结晶制备方法(球磨法、粉碎法等)制得的晶种有一下缺点:①数目难以准确控制②晶种外观差。

12、影响整个结晶过程的因素有:溶液的过饱和度、杂质的存在、搅拌速度和各种物理场等。

13、膜分离:膜分离是借助特殊制造的、具有选择透过性能的薄膜,在某种推动力的作用下,利用流体中各组分对膜的渗透速率的差别

而实现组分分离的单元操作。

14、根据被分离物粒子或分子的大小和所采用的膜的结构可以将以压力差为推动力的膜分离过程分为微滤(MF)、超滤(UF)、纳滤和

反渗透(RO)。

15、影响膜分离的因素:a、膜材料,指膜的亲疏水性和电荷性会影响膜与溶质之间作用力的大小;b、膜孔径,膜孔径的大小直接影响

膜通量和膜的截留率,一般来说,在不影响截留率的情况下尽可能选取膜孔径较大的膜,这样有利于提高膜通量;c、操作条件(压力和流量)。另外料液本身的一些性质如溶液的pH值、盐浓度、温度等都对膜通量和膜的截留率有较大的影响。

16、浓差极化:由于膜的选择性透过因素,在膜的分离过程中,溶剂从高压侧透过膜到低压侧,大部分溶质被截留,溶质在膜表面附近

积累,造成由膜表面到溶液主体之间的具有浓度梯度的边界层,它将引起溶质从膜表面通过边界层向溶液主体扩散,这种现象称为浓差极化。

17、浓差极化对膜分离过程产生的不良影响:①由于浓差极化,膜表面处溶质的浓度升高,使溶质通过膜孔的传质推动力升高,当操作

压差一定时,膜分离过程的有效推动力下降,导致溶剂的渗透通量下降,②由于浓差极化,膜表面处溶质的浓度升高,使溶质通过膜孔的传质推动力增大,溶质的渗透通量增高,截留率降低,这说明浓差极化现象的存在对溶剂渗透通量的增加提出了限制,③膜表面处溶质的浓度高于溶解度时,在膜表面上将形成沉淀,会赌赛膜孔并减少溶剂的渗透通量,④会导致膜分离性能的改变,⑤会出现膜污染,膜污染严重时,几乎等于在膜表面又形成一层二次薄膜,会导致反渗透膜通过性能的大幅度下降,甚至完全消失。

18、不同的过滤对象选取合适过滤设备的因素有:①滤液的黏度、腐蚀性,②固态悬浮液的粒度、浓度以及可压缩性,③目的产物是存

在于液体部分还是在细胞等悬浮固体中。

19、离心分离的原理:是利用混合液密度差来分离料液。

20、手性:是指物体和它的镜像不能重合的特征。

21、手性分子:指具有手性的分子,即构型与其镜像不能重合的分子。手性分子都存在对映异构现象。

22、某一化学反应,如果在手性试剂、手性催化剂、手性溶剂等手性条件下进行,则可能生成或主要生成单一的对映异构体。

第四章

1、自由流体的特点:缺点:分散不稳定,组分容易分离。

2、固体制剂过程的常见的混合方法:搅拌混合、研磨混合、过筛混合。1Nsxi

3、样品均值:抽出一个样本,得到一批数据,每组数据的算术平均值称为样品均值,用x表示:xNsNi1标准偏差是用以表示数据波动幅度的一种方法,也成为均方差根,其计算方法为: 122S(xix)N1i

14、粉体颗粒化机制包括固体架桥、液体架桥、结合剂架桥、固体粒子间吸引力和封闭性结合。

5、配料罐的流体有两种混合状态,一是具有相同年龄的流体微元间的混合;二是不同年龄的流体微元的混合,称之为反混。形成反混的原因:一是由不均匀的速度分不引起;二是由物料的流动方向相反的运动引起。

6、漩涡是离心力作用于旋转的液体所产生的。为消除漩涡通常采取在容器内安装挡板的办法,使搅拌体系的流型处于湍流区域,造成从底到顶的大量循环,不会产生漩涡,不至于对搅拌轴形成往复的不平衡的作用力。将搅拌轴偏心安装,即不安装在设备的中心线上,也可以减少漩涡并提高轴向循环速率。

7、冷冻干燥是将需要干燥的药物溶液预先冻结成固体然后在低温低压下,利用冰的升华性,是物料低温脱水而达到干燥成粉体的一种

方法。



第五章

1、原料药生产车间工艺设计的基本顺序:①工艺流程设计②物料衡算③能量衡算④设备选择和计算⑤车间布置设计⑥管道设计⑦非工

艺条件设计⑧工艺部分设计概算。

2、口服固体制剂工艺特点:①该产品属非无菌制剂,按GMP要求,洁净度级别为300000级②如何确保药物不会通过任何途径受到混

杂和交叉污染③生产中的粉尘污染成为最突出的难点④对相对湿度有较严格的要求。

3、容器具的清洗:一般生产区内布置洁具清洗、存放间。洁具区内要设计容器具清洗、存放间,而且面积不能太小。使用的中转容器

应表面光洁、具耐磨性和易清洗性,以不锈钢制品为佳。清洗用水要根据被洗物是否直接接触药物来选择。不接触药品者可使用饮用水清洗,接触药物的容器具还要依据生产工艺的要求使用纯水或注射用水清洗。

4、参观走廊的设置:参观走廊的设置不仅是人、物流通道,保证了消防安全通道畅通,还与洁净区与外界有一定的缓冲,保证了生产

区域的洁净。参观走廊使参观者不影响生产,不破坏环境。

5、最终灭菌小容量注射剂车间GMP设计及要求:将“浓配→粗滤”生产区布置于100000级,将“稀配→精滤→灌装”生产区布置在10000级且其中灌装采用局部100级单向流保护;注射用水系统为80℃以上保温。

6、最终灭菌小容量注射剂(水针)车间设计要求具体如下:①车间设计要贯彻人、物流分开的原则,②按照GMP的规定如工艺无特殊

要求,一般洁净区温度问18~26℃,相对湿度为45%~65%。各工序需安装紫外线灯,③最终灭菌小容量注射剂生产车间需要排热、排湿,房间有浓配间、稀配间、工具清洗间、灭菌间、洗瓶间、洁具室等,灭菌检漏考虑通风。公用工程包括排水、供气、供热、强弱电、制冷通风、采暖等专业的设计应符合GMP。

7、简述原料药生产工艺特点,在其设计中如何贯彻GMP要素。

答:

8、请总结制剂工艺生产、制药设备和GMP三者之间的关系,并叙述如何在实际应用中贯彻。

答:

第六章

1、制药工业厂房的基本组件,一般是由基础、墙、柱、地面和楼板层、楼梯、屋顶和吊顶、门窗的组成。门窗造型要简单,不易积层,清扫方便,门框不得设门槛。

2、生产火灾危险分为甲、乙、丙、丁、戊类。从构件受到火的作用开始到构件失去支持能力(出现穿透性裂缝或到构件背面温度升高到220℃)为止的这段时间叫做耐火极限。

3、有爆炸危险的甲乙类生产部门,宜设在单层厂房靠外墙或多层厂房的最上一层靠外墙处

4、蒸汽供热系统这些设施包括蒸汽锅炉、去离子水装置、蒸汽分配装置、供气管网和耗热体系与设备。以高温有机载体为加热介质的供热系统的设施主要由载热体的储罐、附有膨胀箱的加热器、循环泵和设置补偿器的管路等组成。

5、制药等生产企业供电系统包括:工厂变电所和配电房、生产用电设施以及架空配电网、电缆和测量仪表、继电保护等二次设备。

6、一次设备是指直接用于生产、输送和分配电能的电气设备,经由这些设备完成生产电能并将电能输送到用户的任务。主要的一次设

备有变压器、高压断路器、熔断器。

二次设备是指对一次设备的工作进行监视、测量、操作和控制的设备。

7、制药工业厂区动力及照明一般采用三相四线制(380/220V)。由于制药工业的特殊性,停电容易造成生产安全事故,故采用双回路进线供电系统。最常见的进线方案是一路电源来自发电厂或者电力系统变电站,作为正常的工作电源,而另一路电源则来自邻近单位的高压联络线,作为备用电源。

8、要正确处理电气失火事故,尽快断开失火设备的电源,不能用一般泡沫灭火器和水进行灭火,可以使用二氧化碳、四氯化碳、二氟

一氯一溴甲烷等灭火器,小面积时也可以采用干砂覆盖来进行待电灭火。

9、雷电过电压又称为大气过电压,是由于电力系统内的设备或建(构)筑物遭受来自大气中的雷击或雷电感应而引起的过电压,此电

压很高,电流很大,对系统的危险极大,必须加以防范。一般采用的防雷设备有接闪器和避雷器。具体形式有避雷针、避雷线、避雷带和避雷网等。

10、制冷方法可分为蒸汽压缩式制冷、吸收式制冷(氨水吸收式制冷装置和溴化锂吸收式制冷装置)和蒸汽喷气式制冷。

11、制药工业厂房的采暖不宜使用明火取暖,而应采用集中取暖。

12、常用的除湿方法:冷冻除湿、固体除湿、液体除湿。对于除湿量较大的装置多采用氯化锂转轮除湿机和三甘醇除湿机。

13、空气过滤的原理:惯性作用、扩散作用、拦截作用、静电作用、重力作用和分子间力等。

14、风量的大小,决定了洁净室的换气次数,可通过阀门或变频风机进行调节。

15、我国药典规定制药用水为饮用水、纯水、注射用水及灭菌注射用水。

16、废气的处理方法主要有吸收法、吸附法、催化法以及膜分离等。

17、用于气体净化的吸收装置主要由填料塔、板式塔、喷淋塔、液膜吸收器和搅拌槽等。还有文丘里吸收器以及类似于喷淋塔的喷射式

吸收器等。

18、对于那些通过吸入或由于皮肤接触可使人致命、严重伤害或损害人类健康的废气,以及能够造成延迟或慢性伤害或损害人类健康的废气,一般是通过反应吸收。

1、氰化氢以液碱吸收;

2、氯气以液碱吸收;

3、光气和氟光气的催化水解法处理;

4、氮氧化物用液碱吸收;

5、三氧化硫的处理。

19、与吸收法类似,合理的选择和利用高效吸附剂,是吸附法处理含有机污染物废气的关键。常用的吸附剂有活性炭、活性氧化铝、硅

胶、分子筛和褐煤等。

20、表征废水水质的指标很多,比较重要的有PH、悬浮物(SS)、生化需氧量(BOD)、化学需氧量(COD)等指挥。

21、废渣(液)的处理应根据废渣(液)的数量性质,并结合地区特点等进行综合比较,确定其处理方法。对有利用价值的,应考虑采

取回收或综合利用措施;对没有利用价值的可采取无害化堆置 或焚烧等处理措施。

第三篇:基础工程课程设计

独立基础课程设计

一、设计资料

10号A轴柱底荷载: ①柱底荷载效应标准组合值:

FK1598KN,MK365KNm,Vk120KN;② 柱底荷载效应基本组合值:

F2078KN,M455KNm,V156KN。持力层选用 ③ 号粘土层,承载力特征值

fak180KPa,框架柱截面尺寸500mm500mm,室外地坪标高同自然地面,室内外高差450mm。

二、独立基础设计

1、选用基础材料:C30混凝土,HRB335钢筋,预计基础高度0.8m。

2、基础埋深选择:根据任务书要求和工程地质资料,第一层土:杂填土,厚0.5m,含部分建筑垃圾;

第二层土:粉质粘土,厚1.2m,软塑,潮湿,承载力特征值

第三层土:粘土,厚1.5m,可塑,稍湿,承载力特征值

第四层土:全风化砂质泥岩,厚2.7m,承载力特征值

地下水对混凝土无侵蚀性,地下水位于地表下1.5m。

取基础底面高时最好取至持力层下0.5m,本设计取第三层土为持力层,所以考虑

取室外地坪到基础底面为0.5+1.2+0.5=2.2m。由此得基础剖面示意图如下:

ffak130KPa;180KPa;

akfak240KPa;

3、求地基承载力特征值

fa

根据粘土e=0.58,IL0.78,查表2.6得b0.3,d1.6

基础以上土的加权平均重度 m180.5201100.29.40.516.23KN/3

m2.2 持力层承载力特征值

fa(先不考虑对基础宽度修正)

fafakd(d0.5)1801.616.23(2.20.5)224.15KPa

m(上式d按室外地面算起)

4、初步选择基础尺寸

取柱底荷载标准值:Fk1598KN,MK365KNm,Vk120KN

计算基础和回填土重Gk时的基础埋深d(2.22.65)2.425m

基础底面积:

12A0fdaGFk159828.75m

224.150.7101.72520

由于偏心不大,基础面积按20%增大,即:

A1.2A01.28.7510.08m2

2初步选定基础底面面积Alb3.82.810.64m,且b=2.1m<3m不需再对fa进行修正。

5、验算持力层地基承载力

回填土和基础重:

GkGdA(0.7101.72520)10.64441.56KN

偏心距: ek0.8kFM3651200.226m0,满足要求。

基地最大压力:

P6ekkFkGkmaxA(110.6456l)1598441.(1630..8216)

260.1KPa1.2fa(268.98KPa)

所以,最后确定基础地面面积长3.8m。宽2.8m。

6、计算基底净反力

取柱底荷

合设

值F2078KN,M455KNm,V165KN.净偏心距

e4551560.n,0MN207880.28m

基础边缘处的最大和最小净反力 :

Pn,maxF16en,02078n,minlb(l)(160.28)281.64KPa3.82.83.8108.96KPa

7、基础高度

柱边基础截面抗冲切验算(见图2)

l3.8m,b2.8m,atbc0.5m,ac0.5m.初步选定基础高度h800mm,分两个台阶,每阶高度均为400mm的。h0800(4010)750mm(有垫层)。

aa2h0.520.752m

bt0batamab250020001250mm

2因偏心受压,Pn取Pn,max281.64KPa

冲切力:

因 b2.8mbc2h00.520.752m(即:冲切在地面范围内)

bbac[()b]()hFPh0222222.10.53.80.50.75)]

281.64[(220.75)2.8(22lcln,max02664.67KN抗冲切力:

0.7hpftamh00.71.01.431031.250.75938.44KN664.67KN,满足要求!

8、变阶处抗冲切验算

b1.5m,a2.0m,h40050350mma

aa2h1.520.352.2mb2.8mt1101bt0取ab=2.2m

ama1.52.2a1.85m t2b冲切力:

Flla1b[()b(1h01)]Pn,max22h01222b2 281.64[(3.820.35)2.82.80.5(0.35)] 2222408.38KN抗冲切力:

0.7hpftamh010.71.01.431031.850.35648.15KN408.38KN

满足要求。

9、配筋计算

选用HRB335级钢筋,(1)

基础长边方向

1—1截面(柱边)

柱边净反力:

fy300Nmm

2lac(pPn,IPnmin2lPn,min)n,max3.80.5108.96(281.64108.96)

23.8206.66KPa悬臂部分净反力平均值:

1(1(281.64206.66)244.15KPa )2Pn,maxpn,I弯矩:

221Pn,maxPn,I(l)(2b)1244.15(3.80.5)(22.80.5)bc24ac MI24 2675.78KNm6675.782M10I3337.2mm AS,10.9f0.9300750yh0

III—III截面(变阶处)

la1(Pn,maxPn,min)Pn,Ⅲ2l3.82.0(281.64108.96)

108.9623.8240.74KPaPn,min

21Pn,maxPn,Ⅲ(la1)(2b)b1MⅢ24221281.64240.74(3.82.0)(22.81.5)242250.35KNm250.35102MⅢ

2649mmAS,Ⅲ0.9fyh010.9300350比较AsⅠ 和As,Ⅲ,应AsⅠ按配筋

,实际配 16@180 ,则钢筋根数:

62800402n117,180

As201.1173418.7mm2(2)基础短边方向

因为该基础受单向偏心荷载作用,所以,在基础短边方向的基底反力可 按均布分布计算,取

11Pn(pn,maxpn,min)(281.64108.85)261.19KPa

22弯矩: II-II截面:

21Pn,maxPn,min(bbc)(2lac)M24221261.19(2.80.5)(23.80.5)

24466.32KNm466.32106MI2303mm2 AS,0.9fyh00.9300750IV-IV截面(变阶处)MV1Pn,maxPn,min2bb1)(2la1)(24221281.64108.96(2.81.5)(23.82)242176.5KNmAS,IV176.5102MⅢ1868mm

0.9fyh010.93003506比较AS,II 和AS,IV,应AS,II按配筋

,实际配 22 12@180 则钢筋根数:

3800402n12218010、基础详图配筋大样图:

见施工图

三、B、C两轴计算

2113.1222488.2mmAs1、由任务书得:10号B轴柱子基底荷载为 :

B轴:Fk2205KN,Mk309KNm,Vk117KN;

试取

A'0lb43.614.4m

持力层承载力特征值:

ff(b3)(d0.5)aakbdm

1800.39.4(3.63)1.616.23(2.20.5)

225.84KPa

基础底面积:

22052 11.96mA0faGd225.840.7101.72520Fk

基础面积按20%增大,即:

A1.2A01.211.9614.35m2

2初步选定基础底面面积Alb43.614.4m

2、验算持力层地基承载力

回填土和基础重:

GkGdA(0.7101.72520)14.4597.6KN

3091170.8lMk

偏心距: ek0.145m0.8m

597.66FkGk220P>0,满足要求。

kmin

基地最大压力:

Al14.44.8229.9KPa1.2fa1.2224.15268.98KPaPkmaxG6e2205597.660.145F(1)(1)kkk

所以,最后确定基础地面面积长4m;宽3.6m。

3、计算基底净反力

取柱底荷载效应 基本组合设计值:

F2866KN,M402KNm,V153KN.净偏心距 : en,0M4021530.80.183m N2866 基础边缘处的最大和最小净反力 :

Pn,maxn,minF16en,0286660.183244.56KPa ()(1)153.50KPalbl4.03.64.84、基础高度

柱边基础截面抗冲切验算(见图3)

l4.0m,b3.6m,atbc0.5m,ac0.5m.初步选定基础高度h800mm,分两个台阶,每阶高度均为400mm的。h0800(4010)750mm(有垫层)。

aa2hbt00.520.752mb3.6m

取ab2m

atamnab250020001250mm

2P取Pn,max244.56KPa

冲切力:

因 b2.8mbc2h00.520.752m(即:冲切在地面范围内)

FlblatPn,max[(h0)b(bch0)]2222223.60.534.00.5244.56[(0.75)3.6(0.75)]2222723.90KN抗冲切力:

0.7hp ftamh00.71.01.43101.250.75938.44KN732.90KN39

满足要求!

5、变阶处抗冲切验算

atb11.5m,a12.0m,h0140050350mm

abat2h011.520.352.2mb3.6m

取ab=2.2m

ama1.52.2a1.85m t2b冲切力:

Flbb1la1Pn,max[(h01)b(h01)]2222223.60.54.02281.64[(0.35)3.6(0.35)]2222452.44KN抗冲切力:

0.7hpftamh010.71.01.43101.850.35648.15KN452.44KN3满足要求。

6、由任务书得:10号C 轴柱子基底荷载为 :

C轴:Fk1727KN,Mk428KNm,Vk114KN;

试取

A'0lb43.614.4m 由A轴计算得持力层承载力特征值:

2f224.15KPa a12计算基础和回填土重Gk时的基础埋深d(2.22.65)2.425m 基础底面积:

17272 9.46mA0faGd224.150.7101.72520Fk

由于偏心不大,基础面积按20%增大,即:

A1.2A01.29.4611.35m2 初步选定基础底面面积Alb3.8311.4m,且b=3m不需再对进行修正。

7、验算持力层地基承载力

回填土和基础重:

faGkGdA(0.7101.72520)11.4473.1KN

4281140.8lMk

偏心距: ek0.236m0.633m

6FkGk1727473.10

P>0,满足要求。

kmin

基地最大压力:

Al11.43.8264.91KPa1.2fa1.2224.15268.98KPaPkmaxG6e1727473.1060.236F(1)(1)kkk

所以,最后确定基础地面面积长3.8m;宽3.0m。

8、计算基底净反力

取柱底荷载效应 基本组合设计值:

F2245KN,M557KNm,V149KN.净偏心距 : en,0M5571490.80.301m N2245 基础边缘处的最大和最小净反力 :

Pn,maxn,minF16en,0224560.301290.52KPa ()(1)103.34KPalbl3.83.03.89、基础高度

柱边基础截面抗冲切验算(见图3)

l3.8m,b3.0m,atbc0.5m,ac0.5m.初步选定基础高度h800mm,分两个台阶,每阶高度均为。h800(4010)750mm(有垫层)0400mm的。

aa2hbt00.520.752mb3.0m

取ab2m

atamnab250020001250mm

2P取Pn,max290.52KPa

冲切力:

因 b3.0mbc2h00.520.752m(即:冲切在地面范围内)

FlblatbPn,max[(h0)b(ch0)]2222223.00.53.80.5290.52[(0.75)3.0(0.75)]2222711.77KN抗冲切力:

0.7hpftamh00.71.01.431031.250.75938.44KN711.77KN满足要求!

10、变阶处抗冲切验算

atb11.5m,a12.0m,h0140050350mm

abat2h011.520.352.2mb3.0m

取ab=2.2m

atamab21.52.21.85m

冲切力:

FlPn,max[(bla1h01)b(b1h01)]222222290.52[(3.00.53.820.35)3.0(0.35)]2222432.87KN抗冲切力:

0.7hpftamh010.71.01.43101.850.35648.15KN432.87KN3 满足要求。

根据以上计算,可以绘制出基础平面布置图和A轴柱子基础大样图。见基础平面布置图。

第四篇:基础工程课程设计-

基础工程灌注桩课程设计

本工程是办公大楼,上部结构采用框架结构体系,基础拟采用桩基础。根据工程场地《岩土工程勘察报告》,地基土层依次为素填土、粉质粘土、淤泥质填土、粉土,均在地下水位以上。地下有四种土层,考虑地质特征、荷载加载情况及柱网尺寸较大,土层分布不均匀,混凝土预制桩的预制长度较难掌握,故可以选择灌注桩基础为基础形式。根据《建筑桩基技术规范》(JGJ94-2008),选用内夯沉管灌注桩,单打法施工,与一般钻孔灌注桩比,沉管灌注桩避免了一般钻孔灌注桩桩尖浮土造成的桩身下沉,持力不足的问题,同时也有效改善了桩身表面浮浆现象。另外,这种桩的施工设备简单,沉桩进度快,成本低,该工艺

也更 节省材料,用钢量较省。1.1 设计题目

本次课程设计的题目:灌注桩基设计。

一、1.2设计荷载(○C○3桩)

柱底荷载效应基本组合值如下。

F4681.4kN,Mx72.8kNm,Vx-0.2kN,My0.2kNm,Vy138.3kN

柱底荷载效应标准组合值如下。

Fk3467.7KN,Mxk53.9kNm,Vxk-0.15kN,Myk0.15kNm,Vyk102.4kN1.3底层条件及其参数

底层条件及其参数详见桩基任务书。1.4灌注桩基设计

根据工程场地的《岩土工程勘察报告》,建筑物基础设计方案采用混凝土沉管灌注桩,结合各土层物理力学性质和具体工程地质条件,具体设计方案如下:室外地坪标高为-0.30m,自然地面标高同室外地坪标高。因该建筑桩基属丙级建筑桩基,拟采用直径为600mm的圆形混凝土沉管灌注桩。选择④号的粉土层作为桩基础的持力层。桩端伸入持力层2.15m(3d~10d=1800~6000mm),设计桩长为13.0m,预制桩尖长0.5m。初步设计承台高1.0m,承台地面埋置深度-1.70m,桩顶伸入承台50mm。1.4.1单桩承载力计算 根据以上设计,桩顶标高为-1.65m,桩底标高为-14.65m,桩长为13m。1.单桩竖向极限承载力特征值计算

114003.140.63.140.60.3112268.5112.1533809.6kN42RaqpaApupqsiali2.桩数确定

根据上部荷载初步估计桩数为

n则设计桩数为5根。1.4.2桩基的验算

Fk3467.74.3 Ra809.6

根据《建筑桩基技术规范》(JGJ94-2008),当按单桩承载力特征值进行计算时,荷载应取其效应的标准组合值。由于桩基所处场地的抗震设防烈度为7度,且场地内无可液化砂土、粉土问题,因此可不进行地震效应的竖向承载力验算。

根据桩数设计矩形承台,边长为3.8m3.8m,边桩的中心距为2.6m,桩心至承台边缘为600mm(见图1)。

承台及其上填土的总重为

Gk3.83.81.720490.96kN

计算时取荷载的标准组合,则

FkGk3467.7490.96791.732kNRa823.3kN,n5Qkmax53.9-0.1511.30.15102.411.3MxymaxMyxmaxQ791.732kQkmin41.3241.32yi2xi2821.8kN1.2Ra1.2823.3987.96kN761.7kN0Qk满足设计要求,可知此初步设计是合理的。1.4.3承台设计

根据以上桩基设计及构造要求,承台尺寸为3.8m3.8m,初步设计承台厚1.0m(见图2),承台混凝土选用C30,ft1.43N/mm2,fc14.3N/mm2。承台钢筋选用HRB335级,fy300N/mm2。1.承台内力计算——采用荷载效应基本组合值

承台内力计算采用荷载效应基本组合值,基桩净反力设计值为

NmaxFMxXiMyYi4681.472.8-0.211.30.2138.311.3976.87kN2222Nminnxiyi541.341.3895.69kN

NF4681.4936.28kN。n5 2.承台厚度及受冲切承载力验算

为防止承台产生冲切破坏,承台应具有一定的厚度,初步设计承台厚1.0m,承台保护层厚40mm,则ho100040960mm。分别对柱边冲切和角桩冲切进行计算,以验算承台厚度的合理性。

由于桩基为圆形桩,计算时应将截面换算为方桩,则换算方桩截面边宽为

bp0.8d0.8600480mm

图2所示承台计算简图中的基桩是换算后边长为480mm的方桩。(1).柱对承台冲切

承台受桩冲切的承载力应满足下式:

Fl2oxbcaoyoyhcaoxhpftho

由于FlFNi4681.4936.283745.12kN,则冲跨比为

oxaox8600.895 8(在0.25~1.0之间)ho960

oy冲切系数为

oxaoyho8600.89589600.840.840.766

ox0.20.89580.oy0.840.840.766

oy0.20.89580.2h800,hp1.0;h2000,hp0.9 内插可得

hp1.0-1.0-0.9(100-0800)0.98

4200-08002oxbcaoyoyhcaoxhpftho5215.1kNFl3745.12kN

20.7660.40.860.7660.40.860.98414300.96 故厚度为1.0m的承台能够满足柱对承台的冲切要求。(2).角桩冲切验算

承台受角桩冲切的承载力应满足下式:

a1ya1x

Nl1xc221yc12hpftho

'由于NiNmax976.87kN,从角桩内边缘至承台外边缘距离为

c1c20.84m,a1xa1y0.86m,1x1ya1x0.86,0.895(在80.25~1.0之间)

ho0.960.560.560.511,1x0.20.89580.2

1x1ya1ya1xcc1x21y12hpftho20.98414300.9(0.840.86/2)0.511(0.840.86/2)

0.5111698.5kNNmax976.87kN故厚度为1.0m的承台能满足角桩对承台的冲切要求。

3.承台受剪承载力计算 剪跨比与以上冲垮比相同。

承台剪切破坏发生在柱边与桩便连线所形成的斜截面处,对于I-I截面,oxoy剪切系数为

1.751.01.750.923

0.89581.08600.8958(介于0.3~3之间)960受剪切承载力高度影响系数为

hs(800/ho)I-I截面剪力为

V2Nmax2976.871953.74kN 则

0.25(800/960)0.250.955

hsftbho0.9550.9233.814300.964598.3kN2Nmax2976.871953.74kN故承台能满足抗剪切的要求。

4.承台受弯承载力计算

'对于I-I截面,取基桩净反力最大值Nmax976.87kN进行计算,则

MxNiyi2976.87(1.3-0.2)2149.1kNm,Mx2149.1106

As8291mm.32

0.9fyho0.9300960因此,承台长边方向选用B22@180,钢筋数n=3800/180+1=23,实际配筋As23380.1

8742.3mm2,满足要求。沿平行y轴方向均匀布置。

'对于Ⅱ—Ⅱ截面,取基桩净反力最大值Nmax976.87kN进行计算,则

MyNixi2976.87(1.3-0.2)2149.1kNm,2149.1106

As8291mm.32

0.9fyho0.9300960因此,承台长边方向选用B22@180,钢筋数n=3800/180+1=23,实际配筋

MyAs23380.1

8742.3mm2,满足要求。沿平行x轴方向均匀布置。

5.承台构造设计

混凝土桩顶伸入承台长度50mm,两承台之间设置连系梁,梁顶面标高-0.7m,与承台顶齐平。

梁高

h0.5m h(1/10~1/15)4.5或h(1/10~1/15)6.0即h0.3~0.6m取取梁宽b=0.3m 按构造要求:

N11Fmax4681.4468.14kN 1010按轴心受拉计算时:

ASN/fy468.14103/3001560.5mm2 采用8B16 As1608.8mm2 钢筋锚入承台长度计算:

lafyftd0.1430016469.9mm,取la470mm 1.43箍筋采用A8@200。承台底做100mm厚C10素混凝土垫层,垫层挑出承台边缘100mm 桩身结构设计

沉管灌注桩和预制桩尖选用C30混凝土,钢筋选用HRB335级。1.单桩配筋

桩身按构造要求配筋,桩身配10B12纵向钢筋,As1131mm2,则桩身的配筋率为

gAs11310.4% A1/43.146002满足0.2%~0.65%之间的要求。

验算配筋:

桩身截面尺寸 直径600mm, 混凝土C30 经比较桩©为最不利桩,有

MMy0.2kNm;HVy126.5kNm

根据灌注桩周土层的类别,土的地基抗力的比例系数m以主要影响深度

hm2(d1)米范围内的m平均值作为m的计算值。

hm2(d1)2(0.61)3.2m,在3.2m深度范围内存在三种不同土层,故土的地基抗力比例系数为:

2m[m1h12m2(2h1h2)h2m3(2h12h2h3)h3]/hm[4.50.3210.0(20.32)4.5(20.3220.9)0.9]/3.224.75MN/m4圆形桩桩身的计算宽度为

b00.9(1.5d0.5)0.9(1.50.60.5)1.26 m对C30混凝土,有

Ec3.0104N/mm2 对HRB335级钢筋,有

Es2.0105N/mm2 扣除保护层厚的桩直径为:

d00.6-0.040.56m 桩身换算截面受拉边缘的截面模量为

W0d

53.140.62.01023[0.622(-1)0.4%0.56]0.0220m323.0104[d22(E-1)gd02]

I0W0d/20.02200.6/26.610-3m4

EI0.85EcI00.853.01046.610-316.83MNm2 则

桩的变形系数

桩顶荷载 M0mb054.751.260.513 EI168.3M0.2/50.04kNm nV

H0126.5/525.3kN

n故

CIM00.5130.04/25.30.000392 H023.437694.59637(0.033810.000811)18.258

0.033810.144791.41.3(0.033-80.10008111.)361

h1.3

0.033810.14479查表得 C23.43769故桩身最大弯矩深度为:Zmax桩身最大弯矩:

h1.3612.65m 0.513

MmaxCM018.2580.040.73kNm

按上述配构造配筋的10B12纵向钢筋,As1131mm2 能承担的弯矩M0.9fyh0As 0.93005601131171kNm0.73kNm。

故上述配筋满足要求。

1.桩身轴向承载力验算

根据《建筑桩基技术规范》(JGJ 94-2008)第5.8.2条规定,桩顶轴向压力应符合下列规定:

NmaxcfcAps

FG(MxVxh)ymax(MyVyh)xmaxNmaxnyi2xi24681.41.2490.96(72.8-0.21.0)1.3(0.213.831.0)1.3541.3241.32

1049.7kN

计算桩身轴心抗压强度时,一般不考虑压屈影响,故取稳定系数1;对于灌注桩,基桩施工工艺系数c0.7;C30混凝土 fc14.3N/mm2,则

cfcA1.00.714.31061/43.140.622828.8kNNmax(1094.7kN)

故桩身轴向承载力满足要求。

2.桩身水平承载力验算

由设计资料得桩低传至承台顶面的水平荷载标准值为:

222Hyk(-0.15)102.42102.4kN

HKHxk每根基桩承受水平荷载为

HikHk102.4/520.48kN n对于配筋率小于0.65%的灌注桩,单桩水平承载力特征值按下式计算:

RHa0.75mft0m(1.2522g)(1NNk)mftAn桩身为圆形截面,故m2,N0.5。

0.513

Ec3.0104N/mm2

Es2.0105N/mm2g0.4% 桩顶最大弯矩系数m取值:由于桩的入土深度h=13m,桩与承台为固接,h0.513136.6694,取h4,查表得m0.926。

And24[1(E-1)g]40.62[1(202 m-1)0.4%]0.2893NK取在荷载效应标准组合下桩顶的最小竖向力(用该值计算所得单桩水平承载力特征值最小),有前面计算得Nk761.7kN,则

单桩水平承载力特征值:

RHa0.75mft0m(1.2522g)(1NNk)mftAn0.750.51321.431060.02200.9260.5761.7103(1.25220.004)(1)51097N51.1kNHik(20.48kN)621.43100.289故桩身水平承载力满足要求。3.配筋长度计算

配筋长度应不小于桩长的2/3(即2/3×13=8.67m),同时不宜小于4.0/4.0/0.5137.797m,则配筋长度取9.0m。由于9.0m没有穿过淤泥质土层,故钢筋应通长布置。钢筋锚入承台35倍主筋直径,即3512420mm。4.箍筋配置

箍筋采用A8@200mm螺旋式箍筋,且在桩顶以下5d50.63m范围内箍筋加密,间距为100mm。由于钢筋笼长度超过4m,每隔2m设一道A8@2000焊接加劲箍筋。

二、1.2设计荷载(○D○3桩)

柱底荷载效应基本组合值如下。

F3635.3kN,Mx72.7kNm,Vx-10.9kN,My11.7kNm,Vy138.2kN

柱底荷载效应标准组合值如下。

Fk2692.8kN,Mxk53.85kNm,Vxk-8.07kN,Myk8.67kNm,Vyk102.4kN1.3底层条件及其参数

底层条件及其参数详见桩基任务书。1.4灌注桩基设计 根据工程场地的《岩土工程勘察报告》,建筑物基础设计方案采用混凝土沉管灌注桩,结合各土层物理力学性质和具体工程地质条件,具体设计方案如下:室外地坪标高为-0.30m,自然地面标高同室外地坪标高。因该建筑桩基属丙级建筑桩基,拟采用直径为500mm的圆形混凝土沉管灌注桩。选择④号的粉土层作为桩基础的持力层。桩端伸入持力层1.95m(3d~10d=1800~6000mm),设计桩长为13.0m,预制桩尖长0.5m。初步设计承台高0.9m,承台地面埋置深度-1.50m,桩顶伸入承台50mm。1.4.1单桩承载力计算

根据以上设计,桩顶标高为-1.45m,桩底标高为-14.45m,桩长为13m。1.单桩竖向极限承载力特征值计算

114003.140.53.140.50.5112268.5111.9533612.8kN42RaqpaApupqsiali2.桩数确定

根据上部荷载初步估计桩数为

n则设计桩数为5根。1.4.2桩基的验算

根据《建筑桩基技术规范》(JGJ94-2008),当按单桩承载力特征值进行计算时,荷载应取其效应的标准组合值。由于桩基所处场地的抗震设防烈度为7度,且场地内无可液化砂土、粉土问题,因此可不进行地震效应的竖向承载力验算。

根据桩数设计矩形承台,边长为3.2m3.2m,边桩的中心距为1.5m,桩心至承台边缘为500mm(见图1)。

承台及其上填土的总重为

Gk3.23.21.520307.2kN

计算时取荷载的标准组合,则

QkFkGk2692.8307.2600kNRa612.8kN n5Fk269.824.4 Ra61.28Qkmax53.85-8.070.91.18.67102.40.91.1MxymaxMyxmaxQ612.8k2222Qkminyx41.141.1ii646.3kN1.2Ra1.2612.8735.36kN519.3kN0满足设计要求,可知此初步设计是合理的。

1.4.3承台设计

根据以上桩基设计及构造要求,承台尺寸为3.2m3.2m,初步设计承台厚0.9m(见图2),承台混凝土选用C30,ft1.43N/mm2,fc14.3N/mm2。承台钢筋选用HRB335级,fy300N/mm2。1.承台内力计算——采用荷载效应基本组合值

承台内力计算采用荷载效应基本组合值,基桩净反力设计值为

NmaxFMxXiMyYi3635.372.7-10.90.91.111.7138.20.91.1772.28kNNminnxi2yi2541.1241.12681.84kN

NF3635.3727.06kN。n5 2.承台厚度及受冲切承载力验算

为防止承台产生冲切破坏,承台应具有一定的厚度,初步设计承台厚0.9m,承台保护层厚40mm,则ho90040860mm。分别对柱边冲切和角桩冲切进行计算,以验算承台厚度的合理性。

由于桩基为圆形桩,计算时应将截面换算为方桩,则换算方桩截面边宽为

bp0.8d0.8500400mm

图2所示承台计算简图中的基桩是换算后边长为400mm的方桩。(1).柱对承台冲切

承台受桩冲切的承载力应满足下式:

Fl2oxbcaoyoyhcaoxhpftho, 由于FlFNi3635.3727.062908.24kN,则冲跨比为

oxaox7000.814(在0.25~1.0之间)ho860

oy冲切系数为

oxaoyho7000.8141

8600.840.840.828

ox0.20.8140.2

oy0.840.840.82 8

oy0.20.8140.2h800,hp1.0;h2000,hp0.9 内插可得

hp1.0-1.0-0.9(90-0800)0.99 2

200-08002oxbcaoyoyhcaoxhpftho4444.56kNFl2908.24kN

20.8280.40.700.8280.40.700.99214300.86 故厚度为0.9m的承台能够满足柱对承台的冲切要求。

(2).角桩冲切验算

承台受角桩冲切的承载力应满足下式:

a1ya1xcc

Nl1x221y12hpftho

'由于NiNmax772.28kN,从角桩内边缘至承台外边缘距离为

c1c20.70m,a1xa1y0.70m,1x1ya1x0.700.25~1.0之间),0.81(在4ho0.860.560.56,0.5521x0.20.8140.2

1x1ya1ya1xcchpftho1x21y1220.99214300.86

(0.700.70/2)0.552(0.700.70/2)

0.5521414.2kNNmax772.28kN故厚度为0.9m的承台能满足角桩对承台的冲切要求。

3.承台受剪承载力计算 剪跨比与以上冲垮比相同。

承台剪切破坏发生在柱边与桩便连线所形成的斜截面处,对于I-I截面,oxoy剪切系数为

700(介于0.3~3之间)0.814860

1.751.01.75 0.9650.8141.0受剪切承载力高度影响系数为

hs(800/ho)I-I截面剪力为

V2Nmax2772.281544.56kN 则

0.25(800/860)0.250.982

hsftbho0.9820.9653.214300.863729.3kN2Nmax2772.281544.56kN故承台能满足抗剪切的要求。

4.承台受弯承载力计算

'对于I-I截面,取基桩净反力最大值Nmax772.28kN进行计算,则

MxNiyi2772.28(1.1-0.2)1390.1kNm,Mx1390.1106

As5986.7mm2

0.9fyho0.9300860因此,承台长边方向选用B20@170,钢筋数n=3200/170+1=20,实际配筋As20314.26284mm2,满足要求。沿平行y轴方向均匀布置。

'对于Ⅱ—Ⅱ截面,取基桩净反力最大值Nmax772.28kN进行计算,则

MyNixi2772.28(1.1-0.2)1390.1kNm,1390.1106

As5986.7mm2

0.9fyho0.9300860因此,承台长边方向选用B20@170,钢筋数n=3200/170+1=20,实际配筋

mm2,满足要求。沿平行x轴方向均匀布置。As20314.26284My5.承台构造设计

混凝土桩顶伸入承台长度50mm,两承台之间设置连系梁,梁顶面标高-0.6m,与承台顶齐平。

梁高 h(1/10~1/15)4.5或h(1/10~1/15)6.0即h0.3~0.6m取h0.5m

取梁宽b=0.3m 按构造要求:

N11Fmax4681.4468.14kN 1010按轴心受拉计算时:

ASN/fy468.14103/3001560.5mm2

采用8B16 As1608.8mm2 钢筋锚入承台长度计算:

lafyftd0.1430016469.9mm,取la470mm 1.43箍筋采用A8@200。承台底做100mm厚C10素混凝土垫层,垫层挑出承台边缘100mm 桩身结构设计

沉管灌注桩和预制桩尖选用C30混凝土,钢筋选用HRB335级。1.单桩配筋

桩身按构造要求配筋,桩身配8B12纵向钢筋,As904mm2,则桩身的配筋率为

gAs9040.46% 2A1/43.14500满足0.2%~0.65%之间的要求。

验算配筋:

桩身截面尺寸 直径500mm, 混凝土C30 下面对桩身配筋率进行验算。

经比较,选取最不利组合,荷载M11.7kNm,H138.2kN

根据灌注桩周土层的类别,土的地基抗力的比例系数m以主要影响深度

hm2(d1)米范围内的m平均值作为m的计算值。

hm2(d1)2(0.51)3.0m,在3.0m深度范围内存在三种不同土层,故土的地基抗力比例系数为:

2m[m1h12m2(2h1h2)h2m3(2h12h2h3)h3]/hm[4.50.5210.0(20.52)4.5(20.5220.5)0.5]/3.024.83MN/m4圆形桩桩身的计算宽度为

b00.9(1. m5d0.5)0.9(1.50.50.5)1.125对C30混凝土,有

Ec3.0104N/mm2 对HRB335级钢筋,有

Es2.0105N/mm2 扣除保护层厚的桩直径为:

d00.5-0.040.4m6 桩身换算截面受拉边缘的截面模量为

W0d

53.140.52.010[0.522(-1)0.46%0.462]0.0128m34323.010[d22(E-1)gd02]

I0W0d/20.01280.5/23.210-3m4

EI0.85EcI00.853.01043.210-381.6MNm2 则

桩的变形系数

5

桩顶荷载 M0mb054.831.1250.58 2EI81.6M11.7/52.34kNm nV

H0138.2/527.64kN

n故

CIM00.5822.34/27.640.049 3H023.43769-3.87572(0.0493-0.03381)22.007

0.24563-0.033811.31.2(0.04-90.3033811).293

h1.3-

0.245-603.03381查表得 C23.43769故桩身最大弯矩深度为:Zmax桩身最大弯矩:

h1.2932.22m 0.582

MmaxCM022.0072.3451.5kNm

按上述配构造配筋的10B12纵向钢筋,As1131mm2 能承担的弯矩M0.9fyh0As

0.93005601131171kNm51.5kNm。

故上述配筋满足要求。

2.桩身轴向承载力验算

根据《建筑桩基技术规范》(JGJ 94-2008)第5.8.2条规定,桩顶轴向压力应符合下列规定:

NmaxcfcAps

Nmax

FG(MxVxh)ymax(MyVyh)xmax2nyixi2 3635.31.2307.2(72.7-10.90.9)1.1(11.7138.20.9)1.1541.1241.12

846.0kN

计算桩身轴心抗压强度时,一般不考虑压屈影响,故取稳定系数1;对于灌注桩,基桩施工工艺系数c0.7;C30混凝土 fc14.3N/mm2,则

cfcA1.00.714.31061/43.140.521964.5kNNmax(846.0kN)

故桩身轴向承载力满足要求。

3.桩身水平承载力验算

由设计资料得桩低传至承台顶面的水平荷载标准值为:

222Hyk(-8.07)102.42102.7kN

HKHxk每根基桩承受水平荷载为

HikHk102.7/520.54kN n对于配筋率小于0.65%的灌注桩,单桩水平承载力特征值按下式计算:

RHa0.75mft0m(1.2522g)(1NNk)mftAn桩身为圆形截面,故m2,N0.5。

0.582

Ec3.0104N/mm2

Es2.0105N/mm2g0.46% 桩顶最大弯矩系数m取值:由于桩的入土深度h=13m,桩与承台为固接,h0.582137.5664,取h4,查表得m0.926。

And24[1(E-1)g]40.52[1(202-1)0.46%0].201 m3NK取在荷载效应标准组合下桩顶的最小竖向力(用该值计算所得单桩水平承载力特征值最小),有前面计算得Nk681.84kN,则

单桩水平承载力特征值:

RHa0.75mft0m(1.2522g)(1NNk)mftAn0.750.58221.431060.01280.9260.5681.84103(1.25220.0046)(1)37145N37.145kNHik(20.54kN)621.43100.201故桩身水平承载力满足要求。3.配筋长度计算

配筋长度应不小于桩长的2/3(即2/3×13=8.67m),同时不宜小于4.0/4.0/0.5137.797m,则配筋长度取9.0m。由于9.0m没有穿过淤泥质土层,故钢筋应通长布置。钢筋锚入承台35倍主筋直径,即3512420mm。4.箍筋配置

箍筋采用A8@200mm螺旋式箍筋,且在桩顶以下5d50.63m范围内箍筋加密,间距为100mm。由于钢筋笼长度超过4m,每隔2m设一道A8@2000焊接加劲箍筋。1.4.5 估算○A○7与○B○7柱下桩数

1.桩数估算

设计○A○7与○B○7柱下桩基础的方法与○C○3柱下相同。A○7柱下荷载标准值为 ○Fk2733.4kN,Mxk-44.8kN,Vxk6.07kN,Myk-6.52kN,Vyk-92.67kN 桩径600mm,桩尖进入持力层1.95m 基桩竖向极限力特征值R801.35kN 初步估计桩数为

nFk2733.43.4 R801.35则○A○7柱下设计桩数为4根。B○7柱下荷载标准值为 ○Fk3382.3kN,Mxk-45.78kN,Vxk0.15kN,Myk-0.15kN,Vyk-93.7kN 桩径500mm,桩尖进入持力层1.95m 基桩竖向极限力特征值R612.98kN 初步估计桩数为

nFk3382.35.5 R612.98则○B○7柱下设计桩数为6根。2.承台平面尺寸确定

根据估算的桩数和承台构造要求,设计○A○7柱下承台平面尺寸为3.0m3.0m,桩最小中心距为1.8m,桩心与承台边缘距离0.6m;○B○7柱下承台平面尺寸为2.5m4.0m,桩最小中心距为1.5m,桩心与承台边缘距离0.5m。

第五篇:基础工程课程设计

青海大学《土力学与基础工程》课程设计

课程设计计算书

课 程: 《基础工程》 课程设计 设 计 题 目: 独立基础和双柱联合基础

指 导 教 师:

张 吾 渝

专 业 年 级: 2010级土木工程专业

(建筑方向)建筑(1)班

所在学院和系: 土木工程学院 设 计 者: 童 守 珍 学 号: 1000506007 日 期: 2013年5月

青海大学《土力学与基础工程》课程设计

前 言

《基础工程》是《土力学》的后继课程,本课程是一本独立的课程,但是又于《土力学》教材的内容密切结合。我国改革开放以来,大规模的现代化建设的需要以及国际上的科学进步和技术发展,基础工程领域内取得了许多新的成就,在设计与施工领域涌现了许多新成熟的成果和观点。本次课程设计,就是基于这样的基础,在老师以及同学帮助下,我学会了独立基础和双柱联合基础的设计,这队我以后的工作和学习有很大的帮助。

本设计是基础工程课程的一个重要环节,对培养和提高学生的基本技能,启发学生对实际结构工作情况的认识和巩固所学的理论知识具有重要作用。

本设计主要分为三个层次,独立基础的设计及其荷载配筋计算、双柱联合基础的设计及荷载配筋计算,最后是地梁的设计。

由于编者水平,本设计中还存在很多错误和不足,敬请广大老师和读者批评指正。

编 者 2013年5月

青海大学《土力学与基础工程》课程设计

目 录

一、《土力学基础工程》课程设计任务书………………………………… 1 1.工程概况……………………………………………………………… 1 2.地质资料……………………………………………………………… 1 3.上部荷载……………………………………………………………… 1 4.设计要求……………………………………………………………… 1 5.设计步骤……………………………………………………………… 1 二.根据底层柱网平面图可知柱截面尺寸………………………………… 2 三.B-9轴处柱下设计钢筋混凝土独立基础……………………………… 2 3.1 初步确定基础尺寸………………………………………………… 2 3.2 验算荷载偏心距e………………………………………………… 2 3.3 验算基底的最大压力Pkmax………………………………………… 2 3.4 计算基底净反力设计值…………………………………………… 2 3.5 基础高度 ………………………………………………………… 3 3.6 配筋计算 ………………………………………………………… 3 四.钢筋混凝土双柱联合基础设计………………………………………… 5 4.1 确定基底尺寸……………………………………………………… 5 4.2 计算基础内力……………………………………………………… 6 4.3 确定基础高度…………………………………………………………6 4.4 抗冲切承载力验算……………………………………………………6 4.5 抗剪切强度的验算……………………………………………………7 4.6 配筋计算 ……………………………………………………………7 五.柱间地梁设计………………………………………………………………8 5.1 外墙地梁设计…………………………………………………………8 5.2 内墙地梁设计…………………………………………………………9 六.施工图的绘制………………………………………………………………9 七.参考文献……………………………………………………………………9 八.课程设计感想 ……………………………………………………………9

青海大学《土力学与基础工程》课程设计

课程设计计算书任务书

一、《土力学与基础工程》课程设计任务书 1 工程概况:

某中学五层教学楼,全框架结构,底层柱网平面如图所示。2 地质资料:

自上而下:第一层:素填土,厚2.5m,γ17.8kN/m3; 第二层:砂砾石,厚7.0m,γ18.7kN/m3。上部荷载:⑨轴处

3.1 外柱:B轴,基础承受上部荷载M64kNm,F3240kN;

D轴,基础承受上部荷载M109kNm,F2471kN,;

3.2 内柱:C轴,基础承受荷载上部荷载M138kNm,F3055kN。4 设计要求:

4.1 设计柱下钢筋混凝土独立基础、两柱联合基础; 4.2 绘制基础平面布置图、基础详图并编写计算说明书。5 设计步骤:

5.1 根据持力层承载力特征值fak350kPa确定持力层承载力设计值;5.2 按持力层承载力特征值确定基底尺寸; 5.3 基础结构设计;

5.4 必要时验算地基沉降量; 5.5 绘制施工图。设计时间:2013年4月29日~5月15日。

土木工程学院10级建筑(1)班

青海大学《土力学与基础工程》课程设计

PjF3240405kPa

,净偏心距:eM640.019m,F3240bl24基底最大和最小净反力设计值

PjmaxPjminFbl(16el)405(160.0194)416.5kPa393.5kPa 3.5 基础高度

采用C235混凝土,HRB400级钢筋,查得ft1.57N/mm,fy360N/mm2 3.5.1 柱边截面 取h700mm,as40mm,取h0660mm,bc2h00.620.661.92mb2m,P(lachbb2jmax220)b(2c2h0)416.5420.6(20.620.66)2(220.66)2

865.6kN0.7hpft(bch0)h00.71.01570(0.60.66)0.66

913.9kN856.6kN(可以)基础分两阶,下阶h1400mm,h01360mm,取l12m,b11m

,3.5.2 变阶处截面

b12h01120.361.72mb2m,Pllhbb2jmax(21201)b(212h01)冲切力:416.5(42220.36)2(21220.36)2

524.9kN0.7hpft(b1h01)h01抗冲切力:0.71.01570(0.60.36)0.36

538.1kN524.9kN3.6 配筋计算

3.6.1 计算基础长边方向的弯矩设计值,取截面

土木工程学院10级建筑(1)班

青海大学《土力学与基础工程》课程设计

284.4106s1330.2mm2

0.9fyh010.9360660VV截面

V1Pj(bb1)2(2ll1)241405(21)2(242)24168.75kNmsVV168.751061446.7mm2 0.9fyh010.9360360比较s和sV,应按sV配筋,现于4m宽度范围内按构造配1412@250,实配面积为s1582mm2

四.柱下钢筋混凝土双柱联合基础设计 4.1确定基地尺寸(对称)

由架柱梁定位平面可知:l12700mm

1212l0(~)l1(~)2700900mm~1800mm

取l01300mm

3333则ll12l02700213005300mm

k12(F1F2)偏心距:el12.7138109(30552471)1035.4kNm 22k1035.40.187m

F1F230552471F1F2305524712.24m

l(faGd)5.3(514.56202.5)底面宽度为:b因偏心扩大,取b2.43m,不需要进行深度修正 所以基底尺寸为:bl2.4m5.3m

FKGK30552471205.32.42.5持力层强度验算:

5.32.4484.4kPafa514.56kPaPK

土木工程学院10级建筑(1)班

青海大学《土力学与基础工程》课程设计

l(ac2h0)(bc2h0)(0.620.66)(0.620.66)3.686m2bm12(acbc)4h02(600600)46605040mm

FlF1Pjl3055434.43.6861453.8kN

0.7fthpbm1h00.71.431.050406603329.73kNfl1453.8kN

满足4.4.2 变阶处抗冲切验算

l(l12h01)(b12h01)(1.420.36)(1,420.36)4.49m2bm12(l1b1)4h012(14001400)43607040mm

FlF1Pjl3055434.44.491104.5kN

0.7fthpbm1h010.71.431.070403602536.9kNfl1104.5kN

4.5 抗剪切强度验算 4.5.1 柱边抗剪切强度验算

VF1bPcj(l0a2h30551042.6(1.30.60)20.66)698.7kN 0.7fthpbh00.71.431.024006601585.58kNV698.7kN

满足

4.5.2 变阶处抗剪切强度验算

VF11bPj(l0l2h(1.31.401)30551042.620.36)594.5kN 0.7fthpbh010.71.431.02400360864.86kNV594.5kN

满足

4.6 配筋计算 4.6.1 基底纵向钢筋

max880.99106s0.9f6604119.8mm2

yh00.9360

土木工程学院10级建筑(1)班

青海大学《土力学与基础工程》课程设计

实配:220 s628mm2

箍筋

8@10 05.2 内墙地梁设计:l6.9m,设混凝土保护层as35mm

荷载设计值:q1.353.90.27.50.30.62513.97kN/m 弯矩:11ql13.976.9283.14kNm 8883.14106受力筋:s454.16mm2

0.9fyh00.93605650实配:218 s509mm2

箍筋

8@10

六.绘制施工图(附)

包括:基础平面布置图(1:100)

基础详图(1:20)

地梁剖面图(1:10)七.参考文献

[1]华南理工大学 浙江大学 湖南大学.《基础工程》第二版 中国建筑出版社2011 [2]刘立新 叶燕华.《混凝土结构原理》第2版 武汉理工大学出版社 2012 [3]重庆大学 同济大学 哈尔滨工业大学.《土木工程施工》(上册)中国建筑出版社 2012 [4]何斌 陈锦昌.《建筑制图》第五版 高等教育出版社 2010 八.课程设计感想

课程设计任务下发后我们在老师的讲解下开始对本次设计的步骤有了初步了解,之后就是认真反复的复习老师所讲的基础的设计知识,另外又通过网络或者书籍查阅有关规范,有条不紊的开始做设计。首先,我是报的很积极的态度对待本次设计,因为,这样的经历会对今后的毕业设计乃至工作都会有很大的帮助者。所以,我很认真的做每一步,反反复复的修改,一点点的将其输入到电脑里。在做设计期间,遇到很多很多问题,我发现我所学的知识还掌握的不牢固,经过一段时间的努力,本人在张吾渝老师的带领下,在大家的相互帮助下,顺利的完成了本次的《土力学与基础工程》的课程设计。通过此次课程设计我掌握了更多电脑运用的方法和技巧给大四的时候做毕业设计积累了经验, 在此,首先要感谢张吾渝老师在本学期的悉心教诲,感谢她把知识无私的传授给我们,感谢她在本次设计中提供的详细解答,使我对此次课程设计有了更深的了解和掌握。同时,也要感谢许多同学的帮助,对于老师和同学的帮助和指导我表示诚挚的谢意.童守珍

土木工程学院10级建筑(1)班

相关内容

热门阅读

最新更新

随机推荐