首页 > 文库大全 > 精品范文库 > 12号文库

粉末冶金综述论文

粉末冶金综述论文



第一篇:粉末冶金综述论文

合金元素在Cu-PM材料中的应用研究进展

(重庆理工大学 重庆 巴南)

摘 要:在铜基粉末冶金材料中添加合金元素可以显著改善材料的性能特别是摩擦性能,烧结含合金元素的Cu-PM材料是一种有发展前景的粉末冶金材料,如添加Al、Cr、Ni等元素。本文综述了合金元素对铜基粉末冶金材料的性能和组织结构等的影响,总结了到目前为止相关领域的结论和进展,并讨论了Cu-PM材料生产现状和发展趋势。

关键词:合金元素;Cu-PM;应用;进展 引言

铜基粉末冶金摩擦材料是以铜粉为主要成分,此外含有润滑组元石墨和摩擦组元陶瓷颗粒以及强化铜基体的合金元素等多种组分。其最早出现于1929年,材料是含少量的铅、锡和石墨的铜基合金。铜基粉末冶金摩擦材料在飞机、汽车、船舶、工程机械等刹车装置上的应用发展较快,使用较成熟是在70年代之后。前苏联于1941年后成功地研制了一批铜基摩擦材料,广泛应用于汽车和拖拉机上。美国对铜基摩擦材料的研究也较多,主要是致力于基体强化,从而提高材料的高温强度和耐磨性。二十世纪初,铜基摩擦材料大多用在干摩擦条件下工作,五十年代以后,大约75%的铜基摩擦材料,均在润滑条件下工作。这些摩擦材料都是以青铜为基,以锌、铝、镍、铁等元素强化基体。由于合金元素在铜基粉末冶金材料中的良好作用,国内很多单位及个人展开了相关方面的工作并发表了论文及成果。本文就国内含合金元素的铜基粉末冶金材料的相关研究进行了论述。Cu-PM材料生产现状及国内外对比

纯铜粉末主要用电解法和雾化法生产。

电解法是借助电流的作用, 使电解液中的铜离子在阴极析出成粉的制粉过程。用电解法生产的铜粉呈表面积发达的树枝状、纯度高、压制性能优良, 是纯铜粉末的主要生产方法。相关文献表中数字表明, 我国的铜及铜基合金粉末的产量和用量与欧美等国家差距很大, 这从一个侧面说明我国铜粉生产与应用还具有十分广阔的开发空间。电解铜粉与国外产品相比, 主要差距在于:(1)产品的规格少。(2)粉末的抗氧化性不足, 国外电解铜粉可以保存一年甚至数年都不氧化变色, 而国内铜粉保存期一般不超过半年。

雾化法是借助于高压气流或水流介质的冲击作用将液态铜或其合金粉碎成粉末的工艺过程。所产生的纯铜粉末为近球形, 松装密度大, 流动性好, 但压制性能较差, 用量不及电解铜粉。由于雾化法生产成本低、效率高、对环境污染小, 是一个很有发展潜力的生产方法。

我国的铜基合金粉末的应用以粉末冶金零件为主,与国外相比主要存在两个方面的不足:(1)在新产品的开发能力方面。如美国青铜粉末公司开发了无铅可切削黄铜粉末,已形成Cu-10Zn、Cu-20Zn、Cu-30Zn 三个牌号;而且国外大公司除完全合金化的粉末外, 还普遍开发部分合金化粉末和预混合粉末, 为不同的产品和用户提供特定的粉末, 以提高产品性能, 降低生产成本, 而我国在这方面还是空白。(2)特种铜基粉末的研制和生产能力不足。特种铜基粉末一般指非结构材料中应用的铜合金粉末。这类粉末对合金的成分、纯度、粒度、粒形均有着较高的要求, 如热喷涂、钎焊、化工等领域应用的铜基粉末。目前这些高性能粉末主要是由高等学校和研究院进行研制和小批量生产试制, 还未形成成熟的牌号和批量生产能力。而且部分特殊性能的粉末还需依靠进口。合金元素添加对Cu-PM材料影响进展

3.1 Al元素在Cu-PM材料中的应用综合相关文献可知,材料的显微组织有新相生成,基体组织得到细化且晶粒分布均匀,材料整体性能得到提高。其中,黄建龙等[1]关于Al元素含量对Cu-PM材料性能的影响研究中发现在Cu-PM材料中添加铝元素后,材料的密度、孔隙度和抗压强度、摩擦因数降低,硬度和线膨胀率增加,而磨损率明显降低,同时随着Al含量的增加,材料的密度、孔隙度、抗压强度逐渐降低,线膨胀率呈上升趋势,磨损率明显降低,而摩擦因数变化不明显。杨明关于Al、Zr元素含量对Fe-18Cu-PM材料组织

和性能影响的硕士论文[2]中发现,Al元素的添加量为 0%~3%,添加Al后材料的显微组织有AlCu4 新相生成,且随着Al含量的增加,其力学性能不断提高(含铝 2%时材料的力学性能最佳),材料的摩擦因数随Al含量和转速的增加先上升后下降,在 Al量为2%时,在中高转速下摩擦材料的表面出现薄的氧化膜,这些氧化膜薄较薄且致密,在Al含量为3%时,在高转速下材料由于摩擦热的产生在表面形成氧化膜较厚,且易剥落,剥落后的氧化以磨粒的形式存在,材料的磨损以粘着和犁削为主。3.2 Cr元素在Cu-PM材料中的应用

铬是改善铜基摩擦材料摩擦磨损性能的一个重要组元,以Cr或Cr-Fe取代传统材料中的陶瓷相作为硬质相(即摩擦组元)制备铜基粉末冶金摩擦材料,可改善硬质相与基体间的结合状态从而使摩擦系数和磨损量降低。大连交通大学房顺利的学位论文[3]成果表明,铜基摩擦材料中添加铬元素有利于提高材料的硬度和致密度,且随铬含量的增加,材料的摩擦系数降低、耐磨性增加,而摩擦系数随着摩擦压力的增大整体降低,铬含量较高时,随着压力的增加,摩擦系数的降低幅度变小,磨损量随压力增加而增加,且对于铬含量较少的材料比较明显。赵翔[4]等人的研究结论为用Cr-Fe取代传统铜基粉末冶金摩擦材料中的陶瓷摩擦组元,可有效改善硬质相与基体间的结合状态,摩擦过程中硬质颗粒不易脱落,同时可改变传统摩擦材料的摩擦因数随速度提高而降低的特性,摩擦因数随转速提高呈先降低后增加的趋势,从整体上看,以 Cr-Fe为摩擦组元的摩擦材料相对于以 Al2O3为摩擦组元的材料,其摩擦因数提高12%-27%,摩擦因数稳定性提高 10%-20%,线磨损量降低20%-70%。同时以 Al2O3为摩擦组元的材料,在7000 r/min转速下摩擦后磨损表面存在脱落掉块的现象,而以Cr-Fe为摩擦组元的摩擦材料的摩擦面平整,形成的氧化膜致密、无明显脱落掉块现象。3.3 Fe元素在Cu-PM材料中的应用

由相关文献可知,粉末冶金摩擦材料中经常加入铁粉,或作为基体组元,或作为摩擦组元,或是与基体组元合金化。钟志刚等人[5]研究了Fe含量对Cu基金属陶瓷摩擦材料的摩擦磨损性能的影响,发现随Fe含量从5%增至35%, Cu基金属陶瓷摩擦材料的硬度基本呈线性增加,但 Fe对摩擦系数的提高是有限的。Fe含量的增加导致了Cu基金属陶瓷摩擦材料的耐磨性降低,并且当Fe含量大于20%时,材料的磨损性急剧降低。从摩擦磨损综合性能考虑, Fe粉可以部分替代Cu粉用以制造Cu基金属陶瓷摩擦材料,但Fe粉含量不应超过20%。陈洁等人[6] 发现Fe在铜基航空摩擦材料中起摩擦组元的作用,当Fe含量超过4%后能提高材料的摩擦系数,并且随Fe含量的增加,材料摩擦系数不断增加。低转速摩擦条件下,Fe组元起磨粒作用,使磨损量增大,降低了摩擦材料的耐磨性能。但在高速摩擦条件下,随摩擦面温度的升高,Fe参与摩擦面氧化膜工作层的形成,从而降低了磨损量,提高了材料的耐磨性。对比Fe和SiO2的作用[7],Fe、SiO2都能提高材料的硬度,但加入SiO2降低了材料的密度。Fe、SiO2都可作为摩擦组元,但二者增摩效果不同,摩擦速度较低时SiO2能较大地提高摩擦因数,却增加了材料的磨损量;摩擦速度较高时,因表面工作膜的形成,SiO2提高摩擦因数的作用较小,磨损量也较少。Fe虽然对摩擦因数的提高作用不显著,但能有效地增加材料的耐磨性。不同转速条件下,加Fe材料的摩擦因数和磨损量的变化都较加入SiO2的材料要小。Fe、SiO2在摩擦过程中的作用机理不同,它们对材料摩擦性能的影响与本身的性质、与基体的结合能力以及表面形成的工作膜等因素有关。沈红娟的硕[8]士学位论文中得出了Fe在铜基粉末冶金材料中的作用,随着铁含量升高,磨损率增大,摩擦系数在低速时增大,高速时减小。铁含量为5%左右时摩擦材料的性能最好,具有较低的磨损率和较高的摩擦系数,且摩擦系数和磨损率稳定。对铁含量 5%的试样外加铁粉,摩擦系数在低速度时(小于2000r/min)几乎不变,在较高速度时减小。干湿摩擦相比,湿摩擦的磨损率大于干摩擦。3.4 其他元素在Cu-PM材料中的应用

姚萍屏等人关于合金元素锌/镍对铜基粉末冶金刹车材料的影响[9]的研究发现,铜基粉末冶金刹车材料中加入少量的Zn能提高材料的摩擦因数,降低材料的磨损量,但Zn含量过多则反而会降低材料的摩擦磨损性能。Zn溶入基体,对基体起到了固溶强化作用。高转速摩擦条件下,Zn能提高材料的耐磨性能。而加入少量的Ni能提高材料的摩擦因数和耐磨性能,Ni在基体中起到了固溶强化作用和细晶强化作用,改善了材料的显微结构和物理性能,从而提高了材料的摩擦磨损性能。但Zn、Ni含量不宜过高,加Ni比加Zn更有利于提高材料的综合性能。由文献[2]可知,添加Zr 后材料基体显微组织有 FeZr3新相生成,材料的组织晶粒细化,孔隙率下降,随着Zr含量的增加材料的抗压强度先上升后下降,材料的摩擦系数总体趋势呈先下降后上升的趋势。在 500r/min 的转速下材料摩擦划痕也显著小于不含Zr的材料,材料主要以磨粒磨损为主。材料在中速1500r/min转速下有第三体生成,含锆材料的由于基体组织完善,材料主要以氧化磨损为主,并掺杂少量磨粒磨损。在高速3000r/min下,材料磨损以氧化磨损和磨粒磨损及疲劳磨损为主。赵翔等人[11]的研究表明Al2O3颗粒表面镀铜能使烧结后的铜基粉末冶金摩擦材料Al2O3-Fe-Sn-C/Cu的力学性能有所改善,布氏硬度增加了12%,弹性模量提高了约7%。Al2O3颗粒镀铜使铜基粉末冶金摩擦材料Al2O3-Fe-Sn-C/Cu的摩擦磨损性能提高,摩擦系数提高了5%-10%,摩擦系数稳定性提高了13%-23%,线磨损量降低了20%-50%。Al2O3镀铜能使摩擦材料Al2O3-Fe-Sn-C/Cu在摩擦过程中于摩擦表面形成致密的氧化膜,且不易出现脱落掉块现象。Cu-PM材料研究前景及效益

4.1 研究前景

铜基粉末冶金研究显示,由于材料的用途不同,配方的侧重点也有很大的差异,材料的力学性能也不同,这似乎暗示影响摩擦材料性能的因素很多。目前,理论研究的结论很少,比如材料的动态性能,高温疲劳性能分析,刹车的热机动态藕合等等,都是一些值得研究的问题。材料应用的条件不同则可能表现出不同的性能(比如被动围压),今后研究铜基粉末冶金摩擦材料可从以下几个方面考虑:(l)摩擦时产生振动的原因分析。

(2)刹车时摩擦材料中的热应力测量,磨损测量等。(3)具有减震层的摩擦材料的抗震和除噪研究。(4)摩擦材料的高温冲击及冲击磨损性能研究。(5)材料在高速刹车时抗冲击性的1:l试验研究等。(6)摩擦材料冲击疲劳过程中的微观形变。4.2 铜基粉末冶金材料效益

4.2.1经济效益(内容数据由郑州车辆北段技术设备科提供)经估算,每吨铜基粉末冶金闸瓦的生产成本为1.3万元,每件闸瓦重SKg,成本价约40元左右。目前列车所用高磷铸铁闸瓦每件售价30元左右,复合材料闸瓦每件售价65元左右,由于铜基粉末冶金闸瓦性能优越,建议每件售价90元,即每吨售价为1.8万元。全国消耗闸瓦达5亿元以上。对中型粉末冶金厂,按年产850吨(约17万件)铜基粉末冶金闸瓦的生产能力计算,则: 铜基粉末冶金摩擦材料高温疲劳磨损和冲击性能研究年产值=年产量x售价=850x1.8=1530(万元)年利润=年产量x(售价-成本价)=805x(1.8-1.3)=25(万元)利润率=(利润/成本)x100%=425/(850x1.3)=38% 摩擦片的需求:每根轮轴上装有个制动盘,每个制动盘有2个闸片,每节车有4根轮轴,所以每节车上需用这种闸片32块,每片售价50元,一片的重量大约3Kg,即每吨售价为1.7万元。仍按年产850吨,则年产值为1445万元,年利润为340万元,利润率为31%。4.2.2社会效益

铜基粉末冶金闸瓦寿命为高磷铸铁的4倍左右,消耗850吨闸瓦(约17万件)所用资金为1530万元,相当于消耗68万件(17万件x4)高磷铸铁闸瓦,所需资金为2040万元(68万件x30元/件)。因此年产850吨铜基粉末冶金闸瓦可为国家节约资金510万元(2040万元一1530万元)。若用铜基粉末冶金闸瓦/闸片,每件闸瓦/闸片寿命约为一年。这些闸瓦/闸片若全用铜基粉末冶金闸瓦代替,每年为我国节约的资金数目是非常庞大的。另外,采用铜基粉末冶金闸瓦,由于更换次数大大减少,可省去列车检修人员的大量工作,节省列车维修时间,其间接经济效益也很可观。4.2.3环境效益

铜基粉末冶金材料配方中各组分无毒、无味,产品生产时无环境污染,而高磷铸铁生产时存在炉气、粉尘等环境污染。另外,铜基粉末冶金闸瓦使用时,可避免或减轻铸铁闸瓦制动时的噪音和火花,减轻对环境的危害。结束语

改革开放以来,我国航天行业,航空行业,汽车制造业,机械行业和电子设备制造行业等快速发展,迎合21世纪经济时代,更是呈井喷式飞速发展。行业制造中的活塞环、滑块、滑板、轴承、轴瓦及精密仪器机床导轨等零部件表面长期受交变载荷作用,其中摩擦成为影响零部件主要因素,经常会导致零部件失效甚至报废,从而一定程度上影响企业的经济效益。所以,对传统的减摩装置、减摩材料和减摩工艺提出了更新观念、引进先进技术的客观要求应运而生,粉末冶金减摩涂层就是一种防止摩擦磨损的新兴技术。粉末冶金减摩涂层就是以金属及其合金为基体,常用的基体有铁基、铜基、镁基、铝基、镍基等,用粉末冶金技术在基体表面层添加一层减摩层制成复合材料,以达到增强材料抗高温、耐磨、疲劳强度增强的目的。日本的三部隆宏等专家指出:铜基粉末冶金摩擦材料具有更优异的综合性能。随着粉末冶金工业的不断发展及市场需求的不断扩大,合金元素在Cu-PM材料中的应用将愈加成熟和广泛。

参考文献:

[1]黄建龙.王建吉.党兴武.陈生圣.谢军太.铝含量对铜基粉末冶金材料性能的影响[J].润滑与密 封,2013,(1):57-60.[2]杨明.Al、Zr 对 Fe-18Cu 基粉末冶金摩擦材料组织和性能的影响[D].南京航空航天大学,2011.[3]房顺利.铬对铜基粉末冶金材料摩擦磨损性能的影响[D].大连交通大学,2013.[4]赵翔.郝俊杰.彭坤.于潇.裴广林Cr-Fe为摩擦组元的铜基粉末冶金摩擦材料的摩擦磨损性能[J].粉末冶金材料科学与工程,2014,(6):935-939.[5]钟志刚.邓海金.李明.李东生.Fe含量对Cu基金属陶瓷摩擦材料摩擦磨损性能的影响[J].材料工 程,2002,(8):17-23.[6]陈洁.熊翔.姚萍屏.李世鹏.Fe在铜基粉末冶金摩擦材料中的作用[J].粉末冶金工业,2006,(4):17-20.[7]姚萍屏.熊翔.黄伯云.航空刹车出来的应用现状与发展[J].粉末冶金工业,2000,10(6):34-37.[8]沈红娟.铁在铜基粉末冶金摩擦材料中的作用[D].大连交通大学,2009.[9]姚萍屏.熊翔.李世鹏.陈洁.黄伯云.合金元素锌/镍对铜基粉末冶金刹车材料的影响[J].润滑与密 封,2006,(4):2-3,22.[10]赵翔.郝俊杰.于潇.彭坤.张永振.Al2O3镀铜对铜基粉末冶金摩擦材料Al2O3-Fe-Sn-C/Cu摩擦磨损 性能的影响[J].复合材料学报,2015,2):451-457.[11]陈仕奇.铜基粉末及材料研究新进展[J].粉末冶金工业,2002,(5):37-41.[12]邓陈虹.葛启录.范爱琴.粉末冶金金属基复合材料的研究现状及发展趋势[J].粉末冶金工 业,2011,(1):54-59.[13]丁华东.铜基粉末冶金含油自润滑材料研究进展[J].粉末冶金材料科学与工程,1998,(1):34-38.[14]韩凤麟.铜基粉末冶金的过去、现状及前景[J].粉末冶金工业,2009,(1):39-48 [15]赵洪汐.熊计.稀土在铁基粉末冶金材料中的应用研究进展[J].稀土,2009,(3):76-78.

第二篇:粉末冶金技术论文

粉末冶金

作者姓名

班级: 学号:

摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。

关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇

Abstract: Powder metallurgy is used for preparing metal or metal powder(or metal powder and metal powder mixture)as raw material, after forming and sintering, manufacture of metal materials, composite and various types of products technology.Powder metallurgy method and the production of ceramic have similar place, therefore, a series of new powder metallurgy technologies can also be used for preparing ceramic material.Powder metallurgy materials refers to the use of several kinds of metal powder or metal and non metal powder as raw material, through mixing, pressing, sintering process and made of materials.The process to become powder metallurgy method, is different from the melting and casting method.Its production process and ceramic products are similar, so called ceramic metal.Powder metallurgy method not only has some special properties of material preparation method, is also a kind of without cutting or less cutting processing method.It has high productivity, high material utilization rate, saving machine tools and production area etc..But the metal powder and high mold cost, product size and shape are subject to certain restrictions, flexibility is poor.Powder metallurgy method often used for the production of hard alloy, antifriction material, structural material, friction material, refractory metal materials, filter materials, metal ceramic, no segregation in high speed tool steel, magnetic materials, heat resistant materials.Key words: powder metallurgy, basic process, application, development trend, problems.引言:

粉末冶金是一种特殊的固态成形工艺,它是制取金属粉末,采用成形和烧结工艺将金属粉末(或金属粉末与非金属粉末的混合物)制成制品的工艺技术。粉末冶金是制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合材料以及各种类型制品的工艺技术。粉末冶金工艺的第一步是制取原料粉末,第二步是将原料粉末通过成形、烧结以及烧结后处理制得成品。典型的粉末冶金产品生产工艺路线。粉末冶金的工艺发展已远远超过此范畴而日趋多样化,已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。

1.粉末冶金的发展史

1、海绵铁粉(sponge iron)时间:公元前3000年前,最早的粉末冶金技术,生产的粉末是海绵铁粉。

2、锻压铂(wrought platinum)时间:1750~1850年

3、钨丝(tungsten wire)20世纪初开始,1913年获得专利

4、高熔点金属(refractory metal)时间:1940年前采用粉末冶金方法,1940年后采用真空电弧、电子束

5、自润滑轴承或含油轴承(self-lubricating bearing)时间:20世纪20年代

6、硬质合金(cemented carbides)时间:20世纪20年代,1925年获得专利

7、结构件(structural parts)时间:20世纪30年代后期

8、热固结:压制与烧结结合起来同时进行的一种技术,时间:20世纪40年代后 所以,对于粉末冶金技术来说,该技术具有着历史的考验,然后一步步不断的完善,当然,就目前而言,粉末冶金技术还在不断的改进与发展中。

2.世界粉末冶金的工业概括

2003年全球粉末货运总量约为88万吨,其中美国占51%,欧洲18%,日本13%,其它国家和地区18%。铁粉占整个粉末总量的90%以上。从2001年起,世界铁粉市场持续增长,4年时间增加了近20%。

汽车行业仍然是粉末冶金工业发展的最大动力和最大用户。一方面汽车的产量在不断增

加,另一方面粉末冶金零件在单辆汽车上的用量也在不段增加。北美平均每辆汽车粉末冶金零件用量最高,为19.5公斤,欧洲平均为9公斤,日本平均为8公斤。中国由于汽车工业的高速发展,拥有巨大的粉末冶金零部件市场前景,已经成为众多国际粉末冶金企业关注的焦点。

粉末冶金铁基零件在汽车上主要应用于发动机、传送系统、ABS系统、点火装置等。汽车发展的两大趋势分别为降低能耗和环保;主要技术手段则是采用先进发动机系统和轻量化。

欧洲对汽车尾气过滤为粉末冶金多孔材料又提供了很大的市场。在目前的发动机工作条件下,粉末冶金金属多孔材料比陶瓷材料具有更好的性能优势和成本优势。

工具材料是粉末冶金工业另一类重要产品,其中特别重要的是硬质合金。目前制造业的发展朝着3A方向,即敏捷性(Agility)、适应性(Adaptivity)和可预测性(Anticipativity)。这要求加工工具本身更锋利、刚性更好、韧性更高;加工材料的范围扩大到吕合、镁合金、钛合金以及陶瓷等;尺寸精度要求更高;加工成本要求更低;环境影响要减到最小,干式加工比例更大。这些新要求加快了粉末冶金工具材料的发展。硬质合金的晶粒(<200nm=和超粗晶粒(>6um);涂层技术发展很快,CVD、PVD、PCVD技术日益完善,涂层种类也很多,从常用的CVDTiCN/Al2O3/TiN到CVDPCBN(聚晶立方BN)以及PVDTiAIN,Al2O3,cBN(立方BN)和SiMAlON等,满足加工场合的需要。

信息行业的发展也为粉末冶金工业提供了新的契机。日本电子行业用的粉末冶金产品已经达到了每年4.3亿美元,其中热沉材料占23%,发光与点极材料占30%。前者主要包括散热材料,如Si/SiC,Cu-Mo,Cu-W,Al-SiC,AlN以及Cu/金刚石等材料;后者则主要包括钨、钼材料。

有这些材料的统计可以看出,粉末冶金技术在改革中得到了很大的进步,它有了自己本身的优点,是别的一些技术手段没办法取代的,已经慢慢的渗透到各个方向。

3.粉末冶金工艺的各个程序

3.1粉末的制取方法

还原法:

这是一种应用最广的金属粉末制取方法,是采用氢气、一氧化碳等作为还原剂,使金属

氧化物或氧化物矿石在高温下与之反应,制得金属粉末。这种粉末多呈多面体形,其成形性与烧结性良好。粉末粒度可由原料的粒度及还原条件的不同任意调整并均匀化。目前,粉末成形使用的铁粉大部分由还原法产生;难熔化合物粉末(如硬质合金)的制取也用此类方法。雾化法:

这是一种生产效率较高、成本较低、易于制得高纯度粉末的生产方法。它利用高压惰性气体或高速旋转的叶片将从小孔喷嘴中熔融的金属扩散成雾状液滴并迅速使之冷却成金属微粒的制粉方法。雾化粉末的颗粒形状因雾化条件而异。金属液的温度越高,球化的倾向越显著。其缺点是易产生偏析和不易制得超细粉末。

电解沉积法:

在金属熔盐或金属盐的水溶液中通入直流电,使金属离子重新获得外层电子,变成金属粉末。电解沉积法制取的粉末纯度高,颗粒成树枝状或针状,成形性和烧结性都很好,但生产率低,成本较高,仅适用于制造要求纯度高、密度高的粉末材料和制品。机械粉碎法:

利用机械,通过压碎、击碎和磨削等作用,使金属块、合金或化合物机械地粉碎成粉末。这种方法生产效率低,动力消耗大,成本较高。

由于人类的智慧集成,人们不断的考虑着去完善这项技术的各个方面,在人们的努力中,研发出原料粉末的制取方法,为粉末冶金的发展提供了不可或缺的条件。

3.2粉末冶金的基本工序

粉末成型为所需形状的坯块:成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。

坯块的烧结:成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。

产品的后序处理:烧结后的处理,可以根据产品要求的不同,采取多种方式。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。

4.粉末冶金技术的特点及发展趋势

4.1粉末冶金技术的特点

1.粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料具有重要的作用。

2.可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。

3.可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。

4.可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷和功能陶瓷材料等。

5.可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。

4.2粉末冶金的发展趋势

粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。

粉末冶金技术的优点所在,也就导致了粉末冶金技术会迅速发展的必然趋势。在我看来一个技术的成型与发展,在于各个方面的完善。首先,人们看到了粉末冶金的优点,这样人们就会为该技术去寻找完善的方法,就这样得到不断的改进。

5.粉末冶金材料和工艺与传统材料工艺相比较与优点的体现

5.1粉末冶金材料和工艺与传统材料工艺相比较

1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品,比如金属与非金属组成的摩擦材料等,控制制品的孔隙率和孔隙大小,可生产各种多孔性才材料和多孔含油轴承。

2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。

3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。

5.2粉末冶金工艺的优点:

1.绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。2.由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。

3.由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。

4.粉末冶金法能保证材料成分配比的正确性和均匀性。

5.粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。

6.粉末冶金的应用

1.金属粉末多孔材料的应用非常广泛,如轻质结构材料、高温过滤装置、分离膜等。目前最大的市场可能是柴油发动机的烟尘过滤装置。德国的Fraunhofer研究所开发了一种金属空心球制备技 术,在聚合物基体上涂覆金属粉末料浆,然后通过脱涂聚合物基体和粘结剂,最后烧结成各种具有空心结构的金属球体。球体的直径可丛1mm至8mm。所制备的钢空心球的密度仅0.3g/cm3。

2.纳米晶和梯度结构是硬质合金的两个重点方向。纳米晶材料方面包括晶粒长大控制和纳米粉末制备。梯度结构合金方面包括工艺与结构的关系。将纳米晶和梯度结构结合起来可能是一个很好的方向,能够在更微观层次上实现性能的可调。硬质合金的硬度高,可加工性差,因此采用注射成形制备复杂形状中小型零件是发展趋势,但是其商用化仍然受技术成熟度的控制。硬质合金其他方面的工作包括天家稀土及合金元素、断裂韧性和可靠性表征等。车轻量化为铝、镁、钛等轻金属材料提供了广阔的应用前景。粉末铝合金在汽车上可应用的部位非常多,但Al-Si合金由于高比强度、高比刚度、低热膨胀系数和耐磨性好,有可能率先在油泵齿轮方面大规模应用。从工业化角度来看,对粉末冶金铝合金制备过程的优化研究更为重要。

在之前,就得到了一些现今工业的概括,随着各个方面的发展和需求,就需要有好的技术相辅,就在这时,粉末冶金技术得到了比较完善的发展,所以也就有了机会开始渗透这些行业。

7.我国粉末冶金的发展与机遇

随着我国汽车工业快速发展,高附加值的零部件需求将加速增长。与此同时,汽车产业链全球化的采购系已经形成,带给国内零部件企业商机显而易见。然而,我们是否能够握当前机遇,不仅是我国汽车零部行业突破当前困局的机遇,更是产业升级的契机。因此,充分利用自身势,扬长补短是产业突破困局的必手段。

虽然,当前我国的粉末冶金技术水平相对国外发达国家依然有着不小的距离。但由于我国拥有原料供给的区域优势,作为产业竞争力提升的基础,依然有较强的竞争力。

与此同时,自上世纪90年代开始,我国粉末冶金制品行业也呈加速发展(主要集中在东部及沿海地区),东部和沿海地区的年产量增长幅度均在10%以上。以山东为例,该省的生产企业由于引进了国外先进设备技术,生产高强度、高精度粉末冶金零件,把粉末冶金制品的质量、技术提高到一个新的水平;粉末注射成型、粉末锻造、纳米技术、精细陶瓷等新技术的开发应用提高了行业整体技术水平,构成了一个完整的行业体系。据不完全统计,目前全省已有各类粉末冶金企业40多家,产品应用各个领域。

对目前的中国而言,我们所拥有的粉末冶金技术不是很完善,而且应用的不多,这样就希望我国可以认清粉末冶金技术的优点,同时可以与其他技术相辅相成,更好的为我们的工业以及各个行业服务。

小结:

第一次接触到粉末冶金是在一堂课中,在那堂课上,老师只是简单的提到几句,说了一些关于粉末冶金的优点,也没有进行很具体的介绍,在那个时候我就开始有了对这个技术的兴趣,想去好好的了解一番,若是以后可以接触到这方面的东西,也算是有了一些的准备了。由于粉末冶金技术对绝大多数难熔金属及其化合物、假合金、多孔材料都可以实现加工,而且可以实现少切割或不切割等一些优点,有着很大的发展空间。在对这篇论文的整理中,我对粉末冶金技术有了初步的了解与认识,这是一次很好的总结过程,同时也希望有机会可以真正的接触到粉末冶金技术。

对现在的中国而言,我了解到,粉末冶金技术没有得到非常好的发展,虽然粉末冶金技术已经开始渗透到各行各业中,但是规模和数量还是很少,我真切地希望该技术可以在中国得到发展,而且可以造福中国的工业以及各个行业中。

【参考文献】

【1】王盘鑫.粉末冶金学[M].冶金工业出版社,2011.【2】黄伯云, 易健宏.现代粉末冶金材料和技术发展现状

(一)[J],上海金属,2007年第3期.【3】黄伯云,易健宏.现代粉末冶金材料和技术发展现状

(二)[J],上海金属,2007年第4期.【4】刘咏,黄伯云.世界粉末冶金的发展现状[J],中国有色金属,2006年第1期.【5】黄伯云.粉末冶金标准手册[D],中南大学出版社,2000.【6】刘道春.汽车零部件的粉末材料技术及其发展[M].柴油机设计与制造,2011年第1期.【7】李祖德,李松林,赵慕岳.20世纪中、后期的粉末冶金新技术和新材料(1)[M],第11卷第5期.【8】周洪强,陈志强.钛及钛合金的粉末冶金新技术材料导报[N],2006 1.【9】王浩.粉末冶金多孔材料性能研究.导弹与航天运载技术[M],2006.4.【10】周洪强,陈志强.钛及钛合金的粉末冶金新技术[M], 2006.1.【11】亓家钟(摘择).粉末冶金文摘[C],2006.2.【12】廖怀平.数控机床编程与操作[M].北京:机械工业出版社,2007.【13】赵在军.机电一体化概论[M].北京:科学出版社,2001 【14】王信义.机电一体化手册(上册)[M].北京:机械工业出版社,1999.【15】张慧玲.浅淡数字电路的抗干扰技术[J].中国信息技术.2006.【16】张威.PLC与变频器项目教程[M].北京:机械工程出版社.2010

第三篇:粉末冶金技术论文

粉末冶金技术 刘工艺 200806102 摘要: 粉末冶金(P/M)技术是一门重要的材料制备与成形技术,被称为是解决高科技、新材料问题的钥匙。高性能、低成本、净近成形一直以来是粉末冶金工作者重要研究课题之一。粉末冶金法能实现工件的少切削、无切削加工,是一种高效、优质、精密、低耗节能制造零件的先进技术。

关键词:粉末冶金、基本工序、发展历史、应用、相关技术、发展方向、问题及机遇

一、世界粉末冶金工业概况

2003年全球粉末货运总量约为88万吨,其中美国占51%,欧洲18%,日本13%,其它国家和地区18%。铁粉占整个粉末总量的90%以上。从2001年起,世界铁粉市场持续增长,4年时间增加了近20%。

汽车行业仍然是粉末冶金工业发展的最大动力和最大用户。一方面汽车的产量在不断增加,另一方面粉末冶金零件在单辆汽车上的用量也在不段增加。北美平均每辆汽车粉末冶金零件用量最高,为19.5公斤,欧洲平均为9公斤,日本平均为8公斤。中国由于汽车工业的高速发展,拥有巨大的粉末冶金零部件市场前景,已经成为众多国际粉末冶金企业关注的焦点。

粉末冶金铁基零件在汽车上主要应用于发动机、传送系统、ABS系统、点火装置等。汽车发展的两大趋势分别为降低能耗和环保;主要技术手段则是采用先进发动机系统和轻量化。

欧洲对汽车尾气过滤为粉末冶金多孔材料又提供了很大的市场。在目前的发动机工作条件下,粉末冶金金属多孔材料比陶瓷材料具有更好的性能优势和成本优势。

工具材料是粉末冶金工业另一类重要产品,其中特别重要的是硬质合金。目前制造业的发展朝着3A方向,即敏捷性(Agility)、适应性(Adaptivity)和可预测性(Anticipativity)。这要求加工工具本身更锋利、刚性更好、韧性更高;加工材料的范围扩大到吕合、镁合金、钛合金以及陶瓷等;尺寸精度要求更高;加工成本要求更低;环境影响要减到最小,干式加工比例更大。这些新要求加快了粉末冶金工具材料的发展。硬质合金的晶粒(<200nm=和超粗晶粒(>6um);涂层技术发展很快,CVD、PVD、PCVD技术日益完善,涂层种类也很多,从常用的CVDTiCN/Al2O3/TiN到CVDPCBN(聚晶立方BN)以及PVDTiAIN,Al2O3,cBN(立 方BN)和SiMAlON等,满足加工场合的需要。

信息行业的发展也为粉末冶金工业提供了新的契机。日本电子行业用的粉末冶金产品已经达到了每年4.3亿美元,其中热沉材料占23%,发光与点极材料占30%。前者主要包括散热材料,如Si/SiC,Cu-Mo,Cu-W,Al-SiC,AlN以及Cu/金刚石等材料;后者则主要包括钨、钼材料。

二、粉末冶金技术

粉末冶金技术简介

粉末冶金是制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合材料以及各种类型制品的工艺技术。粉末冶金工艺的第一步是制取原料粉末,第二步是将原料粉末通过成形、烧结以及烧结后处理制得成品。典型的粉末冶金产品生产工艺路线如图11-1所示。粉末冶金的工艺发展已远远超过此范畴而日趋多样化,已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。

粉末冶金技术有如下特点:

(1)可以直接制备出具有最终形状和尺寸的零件,是一种无切削、少切削的新工艺,从而可以有效地降低零部件生产的资源和能源消耗;

(2)可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷基复合材料的工艺技术;

(3)可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如多孔含油轴 承、过滤材料、生物材料、分离膜材料、难熔金属与合金、高性能陶瓷材料等;

(4)可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织,在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用;

(5)可以制备非晶、微晶、准晶、纳米晶和过饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能;

(6)可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。

粉末冶金工艺的基本工序是:

1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。

2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。

3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。

4、产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。

粉末冶金工艺的优点:

1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。

2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。

3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。

4、粉末冶金法能保证材料成分配比的正确性和均匀性。

5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。

粉末冶金工艺的缺点:

1、在没有批量的情况下要考虑 零件的大小.2、模具费用相对来说要高出铸造模具.三、粉末冶金与熔化冶金的区别

1、产品成分、结构不同

粉末冶金最终产品成分未变,只是粉末固结在一起;

熔化冶金最终产品组织结构发生变化,例:开始是两种金属,最后是合金。产品性能不同

粉末冶金可生产特殊性能产品,例:高熔点金属、多孔材料、摩擦材料、磁性或电性能材料;

熔化冶金只能生产普通产品。

2、生产工艺不同

粉末冶金工艺

a.传统方法:金属→化学法、物理法、机械法→不同形状、粒度的粉 末→混合→压制→烧结→制品→后处理

b.先进技术:热固结——压制和烧结同时进行(热压、热挤压、热等静压、锻压等)

熔化冶金工艺

金属→熔炼成锭→轧制、拉伸、挤压、锻压、机加工→线材、棒材、型材等不同形状、不同性能的产品

四、粉末冶金的发展史:

1、海绵铁粉(sponge iron)时间:公元前3000年前,最早的粉末冶金技术,生产的粉末是海绵铁粉。

生产方法:较纯的铁矿(Fe3O4)→木炭还原(在木炭炉内)→海绵铁→破碎成细粒→清洗干净→拣出脉石和渣→压制→烧结(或松散状态烧结)→锻压→产品

2、锻压铂(wrought platinum)时间:1750~1850年

生产方法:自然铂→清洗干净→压制成形→烧结→热锻→ 锻压铂

生产国家:西班牙、英国、前苏联

发展状况:随着科技的发展,合适的炉子和耐火材料出现。P.M生产锻压铂的工艺消失,现在采用F.M法。

3、钨丝(tungsten wire)时间:20世纪初开始,1913年获得专利

生产方法:WO3→氢还原→W粉→烧结→低压高密度电流再烧结→ 密度90%的固态W →模锻 →钨丝

还原反应: WO3+3H2= W+3H2O 烧结温度: 1200℃; 模锻温度: 2000℃

4、高熔点金属(refractory metal)Mo、Nb、Ti、Ta、Zr 时间:1940年前采用粉末冶金方法,1940年后采用真空电弧、电子束

5、自润滑轴承或含油轴承(self-lubricating bearing)时间:20世纪20年代

特征:孔的体积占轴承体积的15~30%,润滑剂贮存在孔内

材料:90%Cu粉,10%锡粉,无机物粉

生产方法:Cu粉+锡粉+无机物粉→混合→压制成轴承形状→烧结→多孔轴承→浸渍(油)→含油轴承

与自润滑轴承相关的产品:多孔过滤器、金属电刷(Cu粉和石墨粉)、摩擦材料等。

6、硬质合金(cemented carbides)时间:20世纪20年代,1925年获得专利

特征:硬度高、耐磨损,作为切割工具、模具或轧辊等

材料:金属碳化物(TiC、TaC、WC)、金属粘结剂

生产方法: WC粉+Co粉→混合→→烧结→硬质合金

烧结温度:1400 ℃;

烧结气氛:氢气

微观结构:粘结剂基体中弥散着碳化物颗粒

7、结构件(structural parts)时间:20世纪30年代后期

最早的结构件:油泵齿轮,由铁粉和石墨粉混合烧结而成,基体为共析合金钢,有25%孔,性能类似于铸铁

结构件种类:铁基零件、低碳钢、不锈钢、铜、青铜、黄铜、镍、铝、钛、银等

特点:数量大、用途广,自动压制、连续烧结炉烧结。

生产方法:传统方法→再加工(浸渍、热锻、淬火和回火、渗碳、渗碳氮)→结构件 最先进的技术——热固结(hot consolidation)

8、热固结:压制与烧结结合起来同时进行的一种技术

时间:20世纪40年代后

热固结方法:热压、热等静压、热挤压、热锻等

热固结产品:工具钢、超合金、钛合金等

产品特征:全密产品

五、粉末冶金应用举例

金属粉末多孔材料

金属粉末多孔材料的应用非常广泛,如轻质结构材料、高温过滤装置、分离膜等。目前最大的市场可能是柴油发动机的烟尘过滤装置。德国的Fraunhofer研究所开发了一种金属空心球制备技术,在聚合物基体上涂覆金属粉末料浆,然后通过脱涂聚合物基体和粘结剂,最后烧结成各种具有空心结构的金属球体。球体的直径可丛1mm至8mm。所制备的钢空心球的密度仅0.3g/cm3。

硬质合金

纳米晶和梯度结构是硬质合金的两个重点方向。纳米晶材料方面包括晶粒长大控制和纳米粉末制备。梯度结构合金方面包括工艺与结构的关系。将纳米晶和梯度结构结合起来可能是一个很好的方向,能够在更微观层次上实现性能的可调。硬质合金的硬度高,可加工性差,因此采用注射成形制备复杂形状中小型零件是发展趋势,但是其商用化仍然受技术成熟度的控制。硬质合金其他方面的工作包括天家稀土及合金元素、断裂韧性和可靠性表征等。

粉末轻金属合金

汽车轻量化为铝、镁、钛等轻金属材料提供了广阔的应用前景。粉末铝合金在汽车上可应用的部位非常多,但Al-Si合金由于高比强度、高比刚度、低热膨胀系数和耐磨性好,有可能率先在油泵齿轮方面大规模应用。从工业化角度来看,对粉末冶金铝合金制备过程的优化研究更为重要。铝合金的另一个研究热点是复合材料,包括传统的Al/SiC,Al/C,Al/BN,Al/Ti(C,N)以及新出现的纳米碳管增强铝合金。高强粉末铝合金与快速凝固技术密切相关。通过成分设计,在纯铝基体中加入金属间化合物行成组元,可以制备高强度、高韧性、高热稳定性兼顾的铝合金。该材料的室温强度大于600Mpa,延伸率超过10%,在400℃还有很好的热稳定,疲劳极限是锻造铝合金的2倍。

镁合金的密度更小,其应用前景可能更好,但目前仍处于研究状态。采用快速凝固方法也是制备高性能粉末镁合金的重要手段。目前该技术在安全性方面已经没有太大的问题,所制备出的材料性能也远远高于铸造合金。

钛合金在汽车上的应用主要是成本问题,而粉末钛合金的主要障碍在于高性能低成本钛粉。英国QinetiQLtd开发了一种店脱氧技术(EDO),可批量生产钛粉。该技术与传统的以海绵钛为原料的氢化脱氢过程完全不同。它是一种类似于熔盐电解的方法,以TiO2为阴极,石墨为阳极,在电解过程中TiO2的阳极迁移,并消耗阳极的炭形成CO,在阴极得到钛粉。钛粉的氧含量在0.035%~0.4%之间。采用这一技术还可方便地制备各种钛合金粉末。由于对气氛和杂质的敏感性,粉末钛合金的烧结也是工艺难点,通常与要热等静压或后续热加工。通过添加共晶形成组元和稀土元素能够明显改善粉末钛合金的烧结致密度,其力学性能也能达到锻造钛合金水平。这一系列工作将大大推动钛合金在汽车机关键部件上的应用。

六、粉末冶金相关技术

1、粉末注射成型

粉末注射成形仍然是当前研究的热点之一。粉末注射成形的材料已经从早期的铁基、硬质合金、陶瓷等对杂质含量不敏感,性能要求不是非常苛刻的体系,发展到了镍基高温合金、钛合金和铌材料。材料应用领域也从结构材料向功能材料发展、如热沉材料、磁性材料和形状记忆合金。材料结构也从单一均匀结构向复合结构发展。金属工注射成形技术可实现多种不同成分的粉末同时成形,因而能够得到具有三明治形式的复合结构。例如将316L不锈纲和17-4PH合金复合,能够实现力学性能的连续可调。粉末注射成形的一个重要发展方向与与微系统技术密切相关。在与微系统技术密切相关。在与微系统相关的领域中,如电子信息、微化学、医疗器械等,器件不断小型化,功能更加复合化。而粉末注射成形技术提供了实现的可能。微注射成形技术是对传统注射成形技术的改进。它是针对零件尺寸结构小到1um所开发的成形技术,基本工艺与传统注射成形一致,但原料粉末粒度更小。采用微注射成形技术已经开发出了表面微结构精度10um的微流体装置,尺寸为350um~900um的不锈钢零件;实现了不同材料成分、复合结构的共烧结或共连接,获得了磁性/非磁性、导体/非导体微型复合零件。

2、粉末制备技术

粉末雾化一直是高性能粉末的制备技术。热气流雾化技术能够延长金属液滴在液相状态的时间,使粉末可以经过二次破碎(雾化),因而大大提高了雾化的效率,所得到的粉末粒度更为细小。ASL公司的研究结果表明,若将气体温度提高到330℃。制备相同粒度粉末所需的气体消耗量减少30%,其经济分析和工程化问题研究说明该技术是完全可行的。粉末雾化方面的技术有很大的改进。例如,采用一种新型自由裸体式气体雾化,能够得到更细的工具钢粉末,颗粒中碳化物的分布更均匀、缺陷更少。美国赫格拉斯公司将先进的炼钢技术用于粉末生产中,融合了电弧炼炉(EAF)技术、氩氧脱碳技术(ADO)、高性能雾化技术和氢退火技术,大大改善了粉末质量、粉末压坯密度和强度得到了提高。在活性粉末雾化方面,为了减少熔炼过程熔体与坩埚的反应,德国开发了电极感应熔炼气雾化(EIGA)技术,可制备高活性的钛、锆以及TiAl金属间化合物粉末。机械合金化仍然是研究的热门,但大多数是实验室工作。值得一提的是德国Zoz公司才用自己开发的高能球磨设备研磨电弧熔炼炉的炉渣,然后经过湿法冶金回收金属,这一技术既改善了环境,有开拓了巨大的市场。

3、粉末烧结理论与技术

微波烧结作为一种新的快速烧结技术,已经完全适用于金属粉末材料,如粉末钢、硬质合金、有色金属等。微波烧结的工业化也许指日可待因为不管是设备和技术的成熟度,还是批量化生产能力都没有太大问题而主要障碍是生产商的接受程度和风险度。

放电等离子烧结(SPS)的研究也不少,材料体系也从陶瓷扩展到了金属材料,特别是一些超细晶材料,如铝合金、镁合金和自润滑铁基材料等。但是由于其单件生产的特点,该方法恐怕只能用来作一些基础研究。

喷射沉积在制备大型、细晶材料方面非常有优势。该技术最初主要生产铝合金和铝硅合金。随着熔炼技术的提高,喷射沉积已可用来制备工具钢和高温合金。德国不来梅大学报导采用喷射沉积制备出了单件质量超过100公斤,内径40mm,外径500mm,宽100mm的高温合金环。

快速成形技术近年来引起了很多学者的关注。在粉末冶金领域应用最多的是直接金属激光烧结。目前该技术已用于钢铁粉末和钛合金粉末等。另一种金属快速成形方法是三维印刷。该方法非常方便用于各种不同成分合金按照不同结构需要进行三维微观堆积,目前尚处于概念阶段。但该技术已用来制备了一些由金属+粘结剂组成的结构,以及梯度功能材料。

4、粉末零件后续处理技术

后续处理对粉末冶金零件的性能至关重要。烧结硬化将烧结和热处理融为一体,合金成分和冷却条件对材料性能的影响很大。Miba公司采用钻孔技术对零件可加工性进行了评价。神户钢铁公司在烧结钢中添加一种复杂钙氧化物,代替通常用的MnS,明显改善了零件的可加工性,而不损害其力学性能。此外随着应用的扩大粉末铝及复合材料的切削多孔材料的线切割也受到了关注。

七、粉末冶金材料和制品的今后发展方向:

粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。

粉末冶金材料和制品的今后发展方向:

1、有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展。

2、制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金。

3、用增强致密化过程来制造一般含有混合相组成的特殊合金。

4、制造非均匀材料、非晶态、微晶或者亚稳合金。

5、加工独特的和非一般形态或成分的复合零部件。

八、粉末冶金技术国内与国外差距

1、产品水平低

在产品精度方面,少数企业尺寸精度可达IS07—8级,形位公差可达8—9级,与国外水平相比低1—2级,但一般企业约相差2—3级。产品质量不够稳定,产品内在重量和外观质量均有较大的差距

2、工艺装备落后

多数企业仍采用性能较差的设备、能耗大、效率低、炉温均匀性差,质量不稳定;国内还没有形成一个专业生产粉末冶金模具、模架的企业

3、企业技术经济效益与国外同类企业相比差距较大

日本住友电工(株): 650人,年产粉末冶金零件24000吨,年销售额近2亿美元,人均年销售额255.4万元人民币;

台湾保来得公司 : 530人,年销售额6210万美元,人均年销售额97.25万元人民币。宁波粉末冶金厂 : 400人,年销售额1.2亿元,人均年销售额30万元; 扬州保来得公司 : 300人,年销售额1.8亿元,人均年销售额60万元; 国内一般粉末冶金厂 : 人均年销售2万元。

九、国内粉末冶金技术面临的问题及机遇

大力发展粉末冶金技术,积极培养核心竞争力

当前我国汽车零部件企业不仅面临着跨国企业的猛烈冲击和国内企业间同质化的激烈竞争,还有上游原料成本的挤压以及下游主机及经销商不断提高的产品质量标准。而我国大多数汽车零部件企业的现状却是专业化水平低,产品开发能力弱。绝大多数零部件企业不具备产品开发能力,产品开发主要依靠主机厂,难以适应整车更新换代的要求,企业自身核心竞争力较低。由此,使得企业在不断上涨的成本压力下并不能有效的得到传导,迫使企业收益水平不断下降。面临当前困境,积极培养自身核心竞争力便成为目前企业亟需解决的问题。我们知道汽车核心零部件中,附加值较高的主要有:发动机的进排气门、发动机连杆、变速箱齿轮中的同步器锥环和油泵主从动齿轮等。而这些零部件中,主流的核心技术,便是粉末冶金技术。如:连杆是发动机上的重要零件,许多引进车型图纸上都规定有连杆的疲劳试验负荷,并要求在该负荷下的疲劳周次达到500万以上。而国内汽车发动机连杆大多采用的锻钢连杆和铸造连杆疲劳周次要达到50万以上是很困难的,因为连杆的工字筋部位均不经切削加工,细小的缺陷对连杆的疲劳寿命影响较大。而国外主流连杆主要采用粉末锻造,如:美国通用汽车公司的别克轿车,德国宝马公司BMW、GNK Sintermetals公司制造的甚至连杆达到了抗拉强度1041MPa。因此,要想培养自身的核心竞争力,当务之急必须谋动粉末冶金技术发展,以此为突破点增强国内零部件业已衰弱的竞争力。随着我国汽车市场加速增长,粉末冶金技术市场潜力凸现

近几年,中国汽车业一直保持高速发展。据中国汽车工业协会的统计数据,2007年上半年,中国汽车累计产销量分别为445.67万辆和437.38万辆,同比增长22.36%和23.3%。中国已经成为世界第二大汽车消费国,第三大汽车生产国,第一大汽车潜在市场。伴随着中国汽车工业的蓬勃发展,带动了零部件市场的快速发展。2006年,中国汽车零部件企业销售收入达4035亿元。据预计,到2010年中国汽车零部件国内产值将达到7000亿元左右。

与此同时,我国粉末冶金工业由于长期缺乏数量较大和附加值较高的零件需求,没有机会让粉末冶金行业发挥它特有的优势提供了良好的机遇。因此在20世纪90年代中期,用于汽车和摩托车工业的粉末冶金零件按质量计算在10年间几乎翻了一番。而用于附加值较低的农机工业粉末冶金零件则几乎减少一半。可见,高附加值的粉末冶金零件正逐步向汽车领域转移。据中国通用机械零部件协会粉末冶金分会报告,2006年中国粉末冶金零件及制品的产量增加了17.5%,达到约88000t。统计的产品类别包括铁铜基粉末冶金零件、含油轴承以及摩擦材料。其中汽车市场粉末冶金零件用量约为32000t,占37%,增长了28%;电动工具市场增长29%。

未来我国汽车粉末冶金零件产品市场潜力将呈井喷增长。据资料显示,发达国家汽车制造业粉末冶金制品的用量占其粉末冶金制品总产量的绝大多数,如美国占90%,欧洲为80%,而我国目前尚不足40%。欧洲平均每辆汽车的粉末冶金制品使用量是14kg,日本为16kg,美国已达到19.5kg以上,预计未来几年可能达到22kg,而我国目前平均每辆汽车粉末冶金制品的用量却只有5kg左右。如果按年产500万辆车计算,我国全年汽车零件用钢铁粉末约2.5万吨左右,如果我国每辆汽车粉末冶金制品的用量达到欧洲水平,加上保有量汽 车粉末冶金零件的更换,那么仅此一项的钢铁粉末就需要近10万吨,是当前粉末冶金总需求量的1.25倍。

把握机遇,利用自身优势突破我国汽车零部件困局

随着我国汽车工业快速发展,高附加值的零部件需求将加速增长。与此同时,汽车产业链全球化的采购系已经形成,带给国内零部件企业商机显而易见。然而,我们是否能够握当前机遇,不仅是我国汽车零部行业突破当前困局的机遇,更是产业升级的契机。因此,充分利用自身势,扬长补短是产业突破困局的必手段。

虽然,当前我国的粉末冶金技术水平相对国外发达国家依然有着不小的距离。但由于我国拥有原料供给的区域优势,作为产业竞争力提升的基础,依然有较强的竞争力。

与此同时,自上世纪90年代开始,我国粉末冶金制品行业也呈加速发展(主要集中在东部及沿海地区),东部和沿海地区的年产量增长幅度均在10%以上。以山东为例,该省的生产企业由于引进了国外先进设备技术,生产高强度、高精度粉末冶金零件,把粉末冶金制品的质量、技术提高到一个新的水平;粉末注射成型、粉末锻造、纳米技术、精细陶瓷等新技术的开发应用提高了行业整体技术水平,构成了一个完整的行业体系。据不完全统计,目前全省已有各类粉末冶金企业40多家,产品应用各个领域。

最后在拥有区域优势的同时,建立产业基地,形成基地集群效应,从而实现市场和效益最大化、成本最小化。同时,在行业内部合理分工,逐步形成分工明确的纵向多层次有机整体,依托国内市场发展制造能力,再通过国际合作迅速提升竞争力、获取竞争优势,并且通过国际合作所获得的企业在未来发展中的资本、技术、产品和管理的支撑,进入国际合作伙伴的配套体系和融人全球采购体系,突破当前产业困局。

参考文献:

【1】粉末冶金新技术与新装备

刘文胜 马运柱...矿冶工程 2007 5 【2】现代粉末冶金材料和技术发展现状

(一)黄伯云 易健宏 上海金属 2007 3 【3】现代粉末冶金材料和技术发展现状

(二)黄伯云 易健宏 上海金属 2007 4 【4】钛及钛合金的粉末冶金新技术

周洪强 陈志强 材料导报:网络版 2006 1 【5】世界粉末冶金的发展现状

刘咏 黄伯云...中国有色金属 2006 1 【6】粉末冶金多孔材料性能研究

孙纪国 王浩...导弹与航天运载技术 2006 4 【7】粉末冶金文摘

亓家钟(摘择)粉末冶金技术 2006 2

第四篇:粉末冶金技术论文

粉末冶金技术

摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。

关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇

Powder metallurgy technology

(11 grade material class two)Abstract: Powder metallurgy is used for preparing metal or metal powder(or metal powder and metal powder mixture)as raw material, after forming and sintering, manufacture of metal materials, composite and various types of products technology.Powder metallurgy method and the production of ceramic have similar place, therefore, a series of new powder metallurgy technologies can also be used for preparing ceramic material.Powder metallurgy materials refers to the use of several kinds of metal powder or metal and non metal powder as raw material, through mixing, pressing, sintering process and made of materials.The process to become powder metallurgy method, is different from the melting and casting method.Its production process and ceramic products are similar, so called ceramic metal.Powder metallurgy method not only has some special properties of material preparation method, is also a kind of without cutting or less cutting processing method.It has high productivity, high material utilization rate, saving machine tools and production area etc..But the metal powder and high mold cost, product size and shape are subject to certain restrictions, flexibility is poor.Powder metallurgy method often used for the production of hard alloy, antifriction material, structural material, friction material, refractory metal materials, filter materials, metal ceramic, no segregation in high speed tool steel, magnetic materials, heat resistant materials.Key words: powder metallurgy, basic process, application, development trend, problems and opportunities

一基本简介

粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。

二发展前景

近年来,通过不断引进国外先进技术与自主开发创新相结合,中国粉末冶金产业和技术都呈现出高速发展的态势,是中国机械通用零部件行业中增长最快的行业之一,每年全国粉末冶金行业的产值以35%的速度递增。

全球制造业正加速向中国转移,汽车行业、机械制造、金属行业、航空航天、仪器仪表、五金工具、工程机械、电子家电及高科技产业等迅猛发展,为粉末冶金行业带来了不可多得的发展机遇和巨大的市场空间。另外,粉末冶金产业被中国列入优先发展和鼓励外商投资项目,发展前景广阔。

七、粉末冶金研究先进设备-放电等离子烧结系统(SPS)

前言

随着高新技术产业的发展,新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。放电等离子烧结(Spark Plasma Sintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。

国内外SPS的发展与应用状况

SPS技术是在粉末颗粒间直接通入脉冲电流进行加热烧结,因此在有的文献上也被称为等离子活化烧结或等离子辅助烧结(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)[1,2]。早在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用。

1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广使用。1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t 的烧结压力和脉冲电流5000~8000A。最近又研制出压力达500t,脉冲电流为25000A的大型SPS装置。由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新材料的研究和开发[3]。1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作[4]。

国内近三年也开展了用SPS技术制备新材料的研究工作[1,3],引进了数台SPS烧结系统,主要用来烧结纳米材料和陶瓷材料[5~8]。SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。

SPS的烧结原理

3.1等离子体和等离子加工技术[9,10]

SPS是利用放电等离子体进行烧结的。等离子体是物质在高温或特定激励下的一种物质状态,是除固态、液态和气态以外,物质的第四种状态。等离子体是电离气体,由大量正负带电粒子和中性粒子组成,并表现出集体行为的一种准中性气体。

等离子体是解离的高温导电气体,可提供反应活性高的状态。等离子体温度4000~10999℃,其气态分子和原子处在高度活化状态,而且等离子气体内离子化程度很高,这些性质使得等离子体成为一种非常重要的材料制备和加工技术。

等离子体加工技术已得到较多的应用,例如等离子体CVD、低温等离子体PBD以及等离子体和离子束刻蚀等。目前等离子体多用于氧化物涂层、等离子刻蚀方面,在制备高纯碳化物和氮化物粉体上也有一定应用。而等离子体的另一个很有潜力的应用领域是在陶瓷材料的烧结方面[1]。

产成等离子体的方法包括加热、放电和光激励等。放电产生的等离子体包括直流放电、射频放电和微波放电等离子体。SPS利用的是直流放电等离子体。

3.2SPS装置和烧结基本原理

SPS装置主要包括以下几个部分:轴向压力装置;水冷冲头电极;真空腔体;气氛控制系统(真空、氩气);直流脉冲及冷却水、位移测量、温度测量、和安全等控制单元。SPS的基本结构如图1所示。

SPS与热压(HP)有相似之处,但加热方式完全不同,它是一种利用通-断直流脉冲电流直接通电烧结的加压烧结法。通-断式直流脉冲电流的主要作用是产生放电等离子体、放电冲击压力、焦耳热和电场扩散作用[11]。SPS烧结时脉冲电流通过粉末颗粒如图2所示。在SPS烧结过程中,电极通入直流脉冲电流时瞬间产生的放电等离子体,使烧结体内部各个颗粒均匀的自身产生焦耳热并使颗粒表面活化。与自身加热反应合成法(SHS)和微波烧结法类似,SPS是有效利用粉末内部的自身发热作用而进行烧结的。SPS烧结过程可以看作是颗粒放电、导电加热和加压综合作用的结果。除加热和加压这两个促进烧结的因素外,在SPS技术中,颗粒间的有效放电可产生局部高温,可以使表面局部熔化、表面物质剥落;高温等离子的溅射和放电冲击清除了粉末颗粒表面杂质(如去处表面氧化物等)和吸附的气体。电场的作用是加快扩散过程[1,9,12]。

SPS的工艺优势

SPS的工艺优势十分明显:加热均匀,升温速度快,烧结温度低,烧结时间短,生产效率高,产品组织细小均匀,能保持原材料的自然状态,可以得到高致密度的材料,可以烧结梯度材料以及复杂工件[3,11]。与HP和HIP相比,SPS装置操作简单,不需要专门的熟练技术。文献[11]报道,生产一块直径100mm、厚17mm的ZrO2(3Y)/不锈钢梯度材料(FGM)用的总时间是58min,其中升温时间28min、保温时间5min和冷却时间25min。与HP相比,SPS技术的烧结温度可降低100~200℃[13]。

SPS在材料制备中的应用

目前在国外,尤其是日本开展了较多用SPS制备新材料的研究,部分产品已投入生产。SPS可加工的材料种类如表1所示。除了制备材料外,SPS还可进行材料连接,如连接MoSi2与石磨[14],ZrO2/Cermet/Ni等[15]。

近几年,国内外用SPS制备新材料的研究主要集中在:陶瓷、金属陶瓷、金属间化合物,复合材料和功能材料等方面。其中研究最多的是功能材料,他包括热电材料[16]、磁性材料[17]、功能梯度材料[18]、复合功能材料[19]和纳米功能材料[20]等。对SPS制备非晶合金、形状记忆合金[21]、金刚石等也作了尝试,取得了较好的结果。

5.1功能梯度材料

功能梯度材料(FGM)的成分是梯度变化的,各层的烧结温度不同,利用传统的烧结方法难以一次烧成。利用CVD、PVD等方法制备梯度材料,成本很高,也很难实现工业化。采用阶梯状的石磨模具,由于模具上、下两端的电流密度不同,因此可以产生温度梯度。利用SPS在石磨模具中产生的梯度温度场,只需要几分钟就可以烧结好成分配比不同的梯度材料。目前SPS成功制备的梯度材料有:不锈钢/ZrO2;Ni/ZrO2;Al/高聚物;Al/植物纤维;PSZ/T等梯度材料。

在自蔓延燃烧合成(SHS)中,电场具有较大激活效应和作用,特别是场激活效应可以使以前不能合成的材料也能成功合成,扩大了成分范围,并能控制相的成分,不过得到的是多孔材料,还需要进一步加工提高致密度。利用类似于SHS电场激活作用的SPS技术,对陶瓷、复合材料和梯度材料的合成和致密化同时进行,可得到65nm的纳米晶,比SHS少了一道致密化工序[22]。利用SPS可制备大尺寸的FGM,目前SPS制备的尺寸较大的FGM体系是ZrO2(3Y)/不锈钢圆盘,尺寸已达到100mm×17mm[23]。

用普通烧结和热压WC粉末时必须加入添加剂,而SPS使烧结纯WC成为可能。用SPS制备的WC/Mo梯度材料的维氏硬度(HV)和断裂韧度分别达到了24Gpa和6Mpa·m1/2,大大减轻由于WC和Mo的热膨胀不匹配而导致热应力引起的开裂[24]。

5.2 热电材料

由于热点转换的高可靠性、无污染等特点,最近热电转换器引起了人们的极大兴趣,并研究了许多热电转换材料。经文献检索发现,在SPS制备功能材料的研究中,对热电材料的研究较多。

(1)热电材料的成分梯度化氏目前提高热点效率的有效途径之一。例如,成分梯度的βFeSi2就是一种比较有前途的热电材料,可用于200~900℃之间进行热电转换。βFeSi2没有毒性,在空气中有很好的抗氧化性,并且有较高的电导率和热电功率。热点材料的品质因数越高(Z=α2/kρ,其中Z是品质因数,α为Seebeck系数,k为热导系数,ρ为材料的电阻率),其热电转换效率也越高。试验表明,采用SPS制备的成分梯度的βFeSix(Si含量可变),比βFeSi2的热电性能大为提高[25]。这方面的例子还有Cu/Al2O3/Cu[26],MgFeSi2[27], βZn4Sb3[28],钨硅化物[]29]等。

(2)用于热电制冷的传统半导体材料不仅强度和耐久性差,而且主要采用单相生长法制备,生产周期长、成本高。近年来有些厂家为了解决这个问题,采用烧结法生产半导体致冷材料,虽改善了机械强度和提高了材料使用率,但是热电性能远远达不到单晶半导体的性能,现在采用SPS生产半导体致冷材料,在几分钟内就可制备出完整的半导体材料,而晶体生长却要十几个小时。SPS制备半导体热电材料的优点是,可直接加工成圆片,不需要单向生长法那样的切割加工,节约了材料,提高了生产效率。

热压和冷压-烧结的半导体性能低于晶体生长法制备的性能。现用于热电致冷的半导体材料的主要成分是Bi,Sb,Te和Se,目前最高的Z值为3.0×10/K,而用SPS制备的热电半导体的Z值已达到2.9~3.0×10/K,几乎等于单晶半导体的性能[30]。表2是SPS和其他方法生产BiTe材料的比较。

5.3 铁电材料

用SPS烧结铁电陶瓷PbTiO3时,在900~1000℃下烧结1~3min,烧结后平均颗粒尺寸<1μm,相对密度超过98%。由于陶瓷中孔洞较少[31],因此在101~106HZ之间介电常数基本不随频率而变化。

用SPS制备铁电材料Bi4Ti3O12陶瓷时,在烧结体晶粒伸长和粗化的同时,陶瓷迅速致密化。用SPS容易得到晶粒取向度好的试样,可观察到晶粒择优取向的Bi4Ti3O12陶瓷的电性能有强烈的各向异性[32]。

用SPS制备铁电Li置换IIVI半导体ZnO陶瓷,使铁电相变温度Tc提高到470K,而以前冷压烧结陶瓷只有330K[34]。

5.4 磁性材料

用SPS烧结Nd Fe B磁性合金,若在较高温度下烧结,可以得到高的致密度,但烧结温度过高会导致出现温度过高会导致出现α相和晶粒长大,磁性能恶化。若在较低温度下烧结,虽能保持良好的磁性能,但粉末却不能完全压实,因此要详细研究密度与性能的关系[35]。

SPS在烧结磁性材料时具有烧结温度低、保温时间短的工艺优点。Nd Fe Co V B 在650℃下保温5min,即可烧结成接近完全密实的块状磁体,没有发现晶粒长大[36]。用SPS制备的865Fe6Si4Al35Ni和MgFe2O4的复合材料(850℃,130MPa),具有高的饱和磁化强度Bs=12T和高的电阻率ρ=1×10Ω·m[37]。

以前用快速凝固法制备的软磁合金薄带,虽已达到几十纳米的细小晶粒组织,但是不能制备成合金块体,应用受到限制。而现在采用SPS制备的块体磁性合金的磁性能已达到非晶和纳米晶组织带材的软磁性能[3]。.5 纳米材料

致密纳米材料的制备越来越受到重视。利用传统的热压烧结和热等静压烧结等方法来制备纳米材料时,很难保证能同时达到纳米尺寸的晶粒和完全致密的要求。利用SPS技术,由于加热速度快,烧结时间短,可显著抑制晶粒粗化。例如:用平均粒度为5μm的TiN粉经SPS烧结(1963K,196~382MPa,烧结5min),可得到平均晶粒65nm的TiN密实体[3]。文献[3]中引用有关实例说明了SPS烧结中晶粒长大受到最大限度的抑制,所制得烧结体无疏松和明显的晶粒长大。

在SPS烧结时,虽然所加压力较小,但是除了压力的作用会导致活化能力Q降低外,由于存在放电的作用,也会使晶粒得到活化而使Q值进一步减小,从而会促进晶粒长大,因此从这方面来说,用SPS烧结制备纳米材料有一定的困难。

但是实际上已有成功制备平均粒度为65nm的TiN密实体的实例。在文献[38]中,非晶粉末用SPS烧结制备出20~30nm的Fe90Zr7B3纳米磁性材料。另外,还已发现晶粒随SPS烧结温度变化比较缓慢[7],因此SPS制备纳米材料的机理和对晶粒长大的影响还需要做进一步的研究。

5.6 非晶合金的制备

在非晶合金的制备中,要选择合金成分以保证合金具有极低的非晶形成临界冷却速度,从而获得极高的非晶形成能力。在制备工艺方面主要有金属浇铸法和水淬法,其关键是快速冷却和控制非均匀形核。由于制备非晶合金粉末的技术相对成熟,因此多年来,采用非晶粉末在低于其晶化温度下进行温挤压、温轧、冲击(爆炸)固化和等静压烧结等方法来制备大块非晶合金,但存在不少技术难题,如非晶粉末的硬度总高于静态粉末,因而压制性能欠佳,其综合性能与旋淬法制备的非晶薄带相近,难以作为高强度结构材料使用[39]。可见用普通粉末冶金法制备大块非晶材料存在不少技术难题。

SPS作为新一代烧结技术有望在这方面取得进展,文献[40]中利用SPS烧结由机械合金化制取的非晶Al基粉末得到了块状圆片试样(10mm×2mm),磁非晶合金是在375MPa下503K时保温20min制备的,含有非晶相和结晶相以及残余的Sn相。其非晶相的结晶温度是533K。文献[41]中用脉冲电流在423K和500MPa下制备了Mg80Ni10Y5B5块状非晶合金,经分析其中主要是非晶相。非晶Mg合金比A291D合金和纯镁有较高的腐蚀电位和较低的腐蚀电流密度,非晶化改善了镁合金的抗腐蚀抗力。从实践来看,可以采用SPS烧结法制备块状非晶合金。因此利用先进的SPS技术进行大块非晶合金的制备研究很有必要。

6总结与展望

放电等离子烧结(SPS)是一种低温、短时的快速烧结法,可用来制备金属、陶瓷、纳米材料、非晶材料、复合材料、梯度材料等。SPS的推广应用将在新材料的研究和生产领域中发挥重要作用。

SPS的基础理论目前尚不完全清楚,需要进行大量实践与理论研究来完善,SPS需要增加设备的多功能性和脉冲电流的容量,以便做尺寸更大的产品;特别需要发展全自动化的SPS生产系统,以满足复杂形状、高性能的产品和三维梯度功能材料的生产需要[42]。

对实际生产来说,需要发展适合SPS技术的粉末材料,也需要研制比目前使用的模具材料(石墨)强度更高、重复使用率更好的新型模具材料,以提高模具的承载能力和降低模具费用。

在工艺方面,需要建立模具温度和工件实际温度的温差关系,以便更好的控制产品质量。在SPS产品的性能测试方面,需要建立与之相适应的标准和方法。

三 主要特点

粉末冶金具有独特的化学组成和机械、物理性能,而这些性能是用传统的熔铸方法无法获得的。运用粉末冶金技术可以直接制成多孔、半致密或全致密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削工艺。

(1)粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。

(2)可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。

(3)可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。

(4)可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。

(5)可以实现近净形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。

(6)可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。

我们常见的机加工刀具,五金磨具,很多就是粉末冶金技术制造的。

四 应用分类

(1)应用:(汽车、摩托车、纺织机械、工业缝纫机、电动工具、五金工具。电器.工程机械等)各种粉末冶金(铁铜基)零件。[1]

(2)分类:粉末冶金多孔材料、粉末冶金减摩材料、粉末冶金摩擦材料、粉末冶金结构零件、粉末冶金工模具材料、和粉末冶金电磁材料和粉末冶金高温材料等。五生产过程

(1)生产粉末。粉末的生产过程包括粉末的制取、粉料的混合等步骤。为改善粉末的成型性和可塑性通常加入机油、橡胶或石蜡等增塑剂。

(2)压制成型。粉末在15-600MPa压力下,压成所需形状。[2]

(3)烧结。在保护气氛的高温炉或真空炉中进行。烧结不同于金属熔化,烧结时至少有一种元素仍处于固态。烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具有一定孔隙度的冶金产品。

(4)后处理。一般情况下,烧结好的制件可直接使用。但对于某些尺寸要求精度高并且有高的硬度、耐磨性的制件还要进行烧结后处理。后处理包括精压、滚压、挤压、淬火、表面淬火、浸油、及熔渗等。六工艺性能

等静压成型粉末冶金

金属喷射成型粉末冶金

粉末锻造粉末冶金

压力烧结粉末冶金

粉末性能(property of powder)

粉末所有性能的总称。它包括:粉末的几何性能(粒度、比表面、孔径和形状等);粉末的化学性能(化学成分、纯度、氧含量和酸不溶物等);粉体的力学特性(松装密度、流动性、成形性、压缩性、堆积角和剪切角等);粉末的物理性能和表面特性(真密度、光泽、吸波性、表面活性、ze%26mdash;ta(%26ccedil;)电位和磁性等)。粉末性能往往在很大程度上决定了粉末冶金产品的性能。

几何性能最基本的是粉末的粒度和形状。

(1)粒度。它影响粉末的加工成形、烧结时收缩和产品的最终性能。某些粉末冶金制品的性能几乎和粒度直接相关,例如,过滤材料的过滤精度在经验上可由原始粉末颗粒的平均粒度除以10求得;硬质合金产品的性能与wc相的晶粒有很大关系,要得到较细晶粒度的硬质合金,惟有采用较细粒度的wc原料才有可能。生产实践中使用的粉末,其粒度范围从几百个纳米到几百个微米。粒度越小,活性越大,表面就越容易氧化和吸水。当小到几百个纳米时,粉末的储存和输运很不容易,而且当小到一定程度时量子效应开始起作用,其物理性能会发生巨大变化,如铁磁性粉会变成超顺磁性粉,熔点也随着粒度减小而降低。

(2)粉末的颗粒形状。它取决于制粉方法,如电解法制得的粉末,颗粒呈树枝状;还原法制得的铁粉颗粒呈海绵片状;气体雾化法制得的基本上是球状粉。此外,有些粉末呈卵状、盘状、针状、洋葱头状等。粉末颗粒的形状会影响到粉末的流动性和松装密度,由于颗粒间机械啮合,不规则粉的压坯强度也大,特别是树枝状粉其压制坯强度最大。但对于多孔材料,采用球状粉最好。

力学特性粉末的力学性能即粉末的工艺性能,它是粉末冶金成形工艺中的重要工艺参数。粉末的松装密度是压制时用容积法称量的依据;粉末的流动性决定着粉末对压模的充填速度和压机的生产能力;粉末的压缩性决定压制过程的难易和施加压力的高低;而粉末的成形性则决定坯的强度。

化学性能主要取决于原材料的化学纯度及制粉方法。较高的氧含量会降低压制性能、压坯强度和烧结制品的力学性能,因此粉末冶金大部分技术条件中对此都有一定规定。例如,粉末的允许氧含量为0.2%~1.5%,这相当于氧化物含量为1%~10%。参考文献:

【1】粉末冶金新技术与新装备

刘文胜 马运柱...矿冶工程 2007 5 【2】现代粉末冶金材料和技术发展现状

(一)黄伯云 易健宏 上海金属 2007 3 【3】现代粉末冶金材料和技术发展现状

(二)黄伯云 易健宏 上海金属 2007 4 【4】钛及钛合金的粉末冶金新技术

周洪强 陈志强 材料导报:网络版 2006 1 【5】世界粉末冶金的发展现状 刘咏 黄伯云 中国有色金属2006 1 【6】粉末冶金多孔材料性能研究

孙纪国 王浩...导弹与航天运载技术 2006 4 【7】粉末冶金文摘

亓家钟(摘择)粉末冶金技术 2006 2 【8】German R M.Powder Inject ion Molding [ M].MPIF: Princeton,1990.61~ 95.【9】Capus J, Pickering S, Weaver A.Hoeganaes offers higher density atlower cost [ J].Metal Powder Report, 1994, 49(78): 22~ 24.【10】 Rutz H G, Hanejko F G.High density processing of high performance ferrous mat erials [ J ].The Internat ional of PowderMetallurgy, 1995, 31(1): 9~ 17.

第五篇:粉末冶金

粉末冶金

—株洲艾森硬质合金有限公司

粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合材料以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。

发展:

粉末冶金是制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制取金属材料、复合材料以及各种类型制品的工业技术。目前,粉末冶金技术已被广泛应用于交通、机械、电子、航空航天、兵器、生物、新能源、信息和核工业等领域,成为新材料科学中最具发展活力的分支之一。粉末冶金技术具备显著节能、省材、性能优异、产品精度高且稳定性好等一系列优点,非常适合于大批量生产。另外,部分用传统铸造方法和机械加工方法无法制备的材料和复杂零件也可用粉末冶金技术制造,因而备受工业界的重视。

广义的粉末冶金制品业涵括了铁石刀具、硬质合金、磁性材料以及粉末冶金制品等。狭义的粉末冶金制品业仅指粉末冶金制品,包括粉末冶金零件(占绝大部分)、含油轴承和金属射出成型制品等。本报告使用的行业定界为狭义范围。

据《2013-2017年中国粉末冶金制造行业产销需求预测与转型升级分析报告》[1]数据显示,目前,中国粉末冶金零件及含油轴承总产值超过55亿元,占全球市场比重较小,发展空间也较为广阔。根据中国机协粉末冶金专业协会对53家企业统计数据显示,2010年中国粉末冶金零件行业实现主营业务收入48.41亿元,同比增长39.75%;利润总额为3.76亿元,较上年增加了一倍。在产值方面,粉末冶金零件行业实现工业总产值50.57亿元,其中新产品产值6.28亿元,新产品率(新产品产值/工业总产值)为12.37%;工业销售产值49.73亿元,其中出口交货值6.28亿元,出口率(出口交货值/工业销售产值)为16.62%。

从产销规模来看,根据中国机协粉末冶金专业协会对53家企业统计数据显示,2010年中国粉末冶金零件行业实现产量为16.36万吨,同比增长39.40%;销量为16.17万吨,同比增长43.15%。

相关内容

热门阅读

最新更新

随机推荐