首页 > 文库大全 > 精品范文库 > 12号文库

雷达测速原理及其实际应用的研究[精选多篇]

雷达测速原理及其实际应用的研究[精选多篇]



第一篇:雷达测速原理及其实际应用的研究

工程设计作业

关于雷达测速原理及其实际应用的研究

班级:020831 学号:02083050 姓名:陈彦武

关于雷达测速原理及其实际应用的研究

雷达测速原理:

雷达英文为RADAR, 是 Radio Detection And Ranging 的缩写.为目前侦测移动物体最普遍的方法.雷达测速的基本原理是应用„都卜勒 Doppler 效应‟, 利用持续不断发射出电波的装置,对着物体发射出电波, 当无线电波在行进的过程中, 碰到物体时被反射, 而且其反弹回来的电波波长会随着所碰到的物体的移动状态而改变.经由计算之后, 便可得知该物体与雷达之间相对移动速度.若无线电波所碰到的物体是固定不动的, 那么所反弹回来的无线电波其波长是不会改变的.但若物体是朝着无线电线发射的方向前进时, 此时所反弹回来的无线电波其波长会发生变化, 借于反弹回来的无浅电波波长所产生的变化, 便可以依特定比例关系经由计算之后, 便可得知该移动物体与雷达之间物体的相对移动速度.(PS: 此原理初级物理学当中有公式可以计算)1 雷达测速仪

雷达测速的原理是应用多普勒效应, 因此, 具有以下特点:

(1)雷达波束比激光光束的照射面大, 因此雷达测速易于捕捉目标, 无须精确瞄准。

(2)雷达测速设备可安装在巡逻车上, 能够在运动中实现车速检测, 是“移动电子警察”非常重要的组成部分。

(3)雷达固定测速误差为±1km/h, 运动时测速误差为±2km/h, 完全可以满足对交通违章查处的要求。

(4)雷达发射的电磁波波束有一定的张角, 因此有效测速距离相对于激光测速较近, 最远测速距离为800m(针对大车)。

(5)雷达测速仪技术成熟, 价格适中。

(6)雷达测速仪发射波束的张角是一个很重要的技术指标。张角越大, 测速准确率越易受影响;反之, 则影响较小。

雷达测速仪以其价格便宜、测速准确、使用方便和在运动中能够实现检测车速, 被公安交管部门作为判断是否超速并进行处罚的首选工具。

毫米波测速雷达系统原理图 雷射测速与雷达测速区别

雷达为利用无线电回波以探测目标方向和距离的一种装置。雷达为英文Radar一字之译音,该字系由Radio Detection And Ranging一语中诸字前缀缩写而成,为无线电探向与测距之意。全世界开始熟悉雷达是在1940年的不列颠空战中,七百架载有雷达的英国战斗机,击败两千架来袭的德国轰炸机,因而改写了历史。二次大战后,雷达开始有许多和平用途。在天气预测方面,它能用来侦测暴风雨;在飞机轮船航行安全方面,它可帮助领港人员及机场航管人员更有效地完成他们的任务。

雷达工作原理与声波之反射情形极类似,差别只在于其所使用之波为一频率极高之无线电波,而非声波。雷达之发射机相当于喊叫声之声带,发出类似喊叫声之电脉冲(Pulse),雷达之指向天线犹如喊话筒,使电脉冲之能量,能集中某一方向发射。接收机之作用则与人耳相仿,用以接收雷达发射机所发出电脉冲之回波。

测速雷达主要系利用都卜勒效应(Doppler Effect)原理:当目标向雷达天线*近时,反射信号频率将高于发射机频率;反之,当目标远离天线而去时,反射信号频率将低于发射机率。如此即可借由频率的改变数值,计算出目标与雷达的相对速度。

雷射的英文为Laser,这个字是由Light Amplification by Stimulated Emission of Radiation的第一个字母缩写而成,意思是指,经由激发放射来达到光的放大作用。雷射所激发出来的光,其光子大小与运动方向皆相同,因此每个波束的频率都相等,再加上它们一束束紧密地排列着,彼此间分毫不差地互相平行,使整个光束发射至极远处也不会散开来。在一九六二年的实验中发现,从地球发射的雷射光在经过近四十万公里的太空之旅后,只在月球表面上投射出一片约三公里直径大小的圆而已!此特性使得雷射在焊接、切割、雕刻、穿洞等加工与医学(眼科、牙科、肿瘤)之应用更为广泛。

测速雷射种类于固态雷射中的半导体雷射。雷射测速设备采用红外线半导体雷射二极管。雷射二极管有几个特点使它极适合用来量测速度:

1.雷射二极管自微小范围中发射出极窄的光束,此一狭窄光束才能精确地瞄准目标。

2.雷射二极管以小于十亿分之一秒的瞬间切换开关,大大提高精确度。

3.雷射二极管发射率很窄,其侦测器极易接收到精确的波长;因此在日间有强烈阳光时,仍能正常操作。

4.雷射二极管只发射电磁光谱中的红外线部分;而红外线系眼睛看不见的,不会影响驾驶人的注意力。

雷射测速枪以量测红外线光波传送时间来决定速度。由于光速是固定,激光脉冲传送到目标再折返的时间会与距离成正比。以固定间隔发射两个脉冲,即可测得两个距离;将此二距离之差除以发射时间间隔即可得到目标的速度。理论上,发射两次脉冲即可量测速度;实务上,为避免错误,一般雷射测速器(枪)在瞬间发射高达七组的脉冲波,自以最小平方法求其平均值,去计算目标速度。

雷射测速原理:

目前较先进的测速系统乃是利用雷射来测速, 英文为 LIDAR 是 Light Infrared Detection And Ranging 的缩写.通常这类的雷射光都是使用一级不可见光的红外线, 其精确度及可*度都远超过传统的电波式雷达.雷射测速的原理与雷达电波的„都卜勒原理‟不同, 而是利用雷射光的多次碰撞移动物体以后计算移动物体于特定时间内移动的距离, 利用时间差与物体移动的距离即可计算物体与测速系统的相对移动速度.3 举例来说 :

LIDAR 装置以 15Hz 的频率运作(每秒15次), 而光速是 30万/sec, 当第一次雷射光束发射出去后, 经过 0.000001333 sec 后再反射回来, 所以第一次雷射光经反弹来回所走的距离为 300,000,000(m/s)x 0.000001333(s)= 399(m)公尺, 雷射系统与车辆的距离必须除以 2, 相对距离为 399/2 = 199.5 m.经过 1/15 秒后,第二次雷射光束再对移动当中的车辆测量相对距离, 经过 0.000001325 sec 后再被车辆反射回来, 利用上述方法计算, 此时雷射系统与车辆距离为 198.75。利用两次特定时间内(1/15 sec), 车辆瞬间移动 199.5-198.75=0.75m 换算, 所以车辆速度为 40.5Km/h.而雷射测速系统必须在连续侦测到2到3次相似的速度时, 才确定此为该车的速度, 这也就是为什么使用雷射测速装置, 只需要0.3秒的时间来锁定您的车速的原因了.二

测速雷达应用技术

多普勒雷达就是利用多普勒效应进行定位,测速,测距等工作的雷达。所谓多普勒效应就是,当声音,光和无线电波等振动源与观测者以相对速度V相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。因为这一现象是奥地利科学家多普勒最早发现的,所以称之为多普勒效应。由多普勒效应所形成的频率变化叫做多普勒频移,它与相对速度V成正比,与振动的频率成反比。

脉冲多普勒雷达是利用多普勒效应制成的雷达。1842年,奥地利物理学家C·多普勒发现波源和观测者的相对运动会使观测到的频率发生变化,这种现象被称为多普勒效应。脉冲多普勒雷达的工作原理可表述如下:当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差,称为多普勒频率。根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。同时用频率过滤方法检测目标的多普勒频率谱线,滤除干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号。所以脉冲多普勒雷达比普通雷达的抗杂波干扰能力强,能探测出隐蔽在背景中的活动目标。脉冲多普勒雷达于20世纪60年代研制成功并投入使用。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,脉冲多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备。装有脉冲多普勒雷达的预警飞机,已成为对付低空轰炸机和巡航导弹的有效军事装备。此外,这种雷达还用于气象观测,对气象回波进行多普勒速度分辨,可获得不同高度大气层中各种空气湍流运动的分布情况。机载火控系统用的主要是脉冲多普勒雷达。如美国战机装备的 A P G-68雷达,代表了机载脉冲多普勒火控雷达的先进水平。它有18种工作方式,可对空中、地面和海上目标边搜索边跟踪,抗干扰性能好,当飞机在低空飞行时,还可引导飞机跟踪地形起伏,以避免与地面相撞。这种雷达体积小,重量轻,可靠性高。

机载脉冲多普勒雷达主要由天线、发射机、接收机、伺服系统、数字信号处理机、雷达数据处理机和数据总线等组成。机载脉冲多普勒雷达通常采用相干体制,有着极高的载频稳定度和频谱纯度以及极低的天线旁瓣,并采取先进的数字信号处理技术。脉冲多普勒雷达通常采用较高以及多种的重复频率和多种发射信号形式,以在数据处理机中利用代数方法,并可应用滤波理论在数据处理机中对目标坐标数据作进一步滤波或预测。脉冲多普勒雷达具有下列特点:①采用可编程序信号处理机,以增大雷达信号的处理容量、速度和灵活性,提高设备的复用性,从而使雷达能在跟踪的同时进行搜索并能改变或增加雷达的工作状态,使雷达具有对付各种干扰的能力和超视距的识别目标的能力;②采用可编程序栅控行波管,使雷达能工作在不同脉冲重复频率,具有自适应波形的能力,能根据不同的战术状态选用低、中或高三种脉冲重复频率的波形,并可获得各种工作状态的最佳性能;③采用多普勒波束锐化技术获得高分辨率,在空对地应用中可提供高分辨率的地图测绘和高分辨率的局部放大测绘。

利用多普勒频率变化技术来测量移动车辆的速度。这项技术是基于多普勒原理建立起来的,即雷达把微波发射到一个移动的物体上时,将会反射回一个与目标速度成比例的雷达信号,内部的线圈将该信号进行处理后得到一个频率的变化,通过DSP(数字信号处理)技术处理后便得到目标速度。不论驶近的车辆还是远离的车辆都会产生频率变化,因此,任何方向的车辆都会被测量到速度。

测速雷达系列产品在世界发达国家的应用状况:世界发达国家的 测速装备比较完善。针对不同的地区、地势及环境,他们都配有相应的测速产品。无论固定测量还是移动测量、手动测量还是自动测量,都有一定的普及度。例如在高速公路上,既有固定地点进行速度监测,也有许多巡逻车穿梭于公路间进行移动测量。再如在学校附近的路段,大多数都安装了速度显示牌,时时对过往车辆进行监测并对其提醒,从而保证学生的安全。3

测量应用中的先进技术:

最快速度跟踪技术

当雷达正在测量一辆目标车速度时,有一辆更快的车驶来,最快速度跟踪技术的出现不但让操作者可以继续对目标车进行跟踪测量,同时雷达还将显示更快车的速度。

数字天线通讯技术

数字天线通讯技术的出现不但提高了雷达抗干扰的能力,同时大大提高了雷达测量的准确性。比如斯德克DSR型雷达,它的每一个天线实际上有两套微波线圈和两套A/D转换线圈。这两个微波线圈成90度方向同时提供多普勒信号。在计算单元内,所有通道的数字化多普勒信息被送到DSP线圈。每个高速的DSP线圈于是便对每一个通道的信息进行综合的“傅立叶快速变换”,以获得每一个目标的方向。

同车道技术

对于测速难题中讲到的同车道测量难点,最新技术的出现已不再需要操作者用眼睛估计和手工输入“较快”和“较慢”目标以便计算目标车读数,雷达能够自动识别巡逻车前的车速快慢并将目标车速度计算出来,这使得同一车道的操作跟相反车道模式操作同样精确和简单。

方向感应技术

先进的方向感应技术允许操作者去选择特定的交通方向进行监控。不论目标车是不是距离的最近车辆,也不论它是同一车道还是相反车道,雷达都可自动对其进行速度测量并显示其相关信息。

这些技术目前的使用情况

目前世界发达国家的测速装备比较先进,象“DSP技术”在90年代初就已经开始用于警用;“最快速度跟踪技术”于90中期开始应用;“方向感应技术”也于98年开始普及;至于最新的“同车道测量技术”也于近年被国外的公安交通部门大批采购。而我们国内则基本局限于一般性的测量且测量结果较粗糙,在先进技术的使用方面仍然存在很大差距。我相信,随着我国交通道路的不断扩展,超速管理方面的装备也将会逐渐完善。三 参考文献

[ 1] 楼宇希著.雷达精度分析.北京: 国防工业出版社, 1979 [ 2] 许人灿, 刘朝军.基于超分辨ISAR 成像的飞机识别[ J].电子技术应用, 2005, 6(4): 24-28.

第二篇:高速雷达测速原理

高速公路雷达如何测速

目前雷达测速的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒(Christian Johann Doppler)而命名的,他于1842年首先提出了这一理论,主要内容为:物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移blue shift);当运动在波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移red shift);波源的速度越高,所产生的效应越大。根据波红(蓝)移的程度,可以计算出波源循着观测方向运动的速度。原理

多普勒效应指出,波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。但是由于缺少实验设备,多普勒当时没有用实验验证,几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,以验证该效应。假设原有波源的波长为λ,波速为c,观察者移动速度为v:当观察者走近波源时观察到的波源频率为(c+v)/λ,如果观察者远离波源,则观察到的波源频率为(c-v)/λ。一个常被使用的例子是火车的汽笛声,当火车接近观察者时,其汽鸣声会比平常更刺耳.你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。

如果把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。

产生原因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。当波源和观察者有相对运动时,观察者接收到的频率会改变.在单位时间内,观察者接收到的完全波的个数增多,即接收到的频率增大.同样的道理,当观察者远离波源,观察者在单位时间内接收到的完全波的个数减少,即接收到的频率减小。

公式:

观察者(Observer)和发射源(Source)的频率关系为:

:为观察到的频率;

:为发射源于该介质中的原始发射频率; :为波在该介质中的行进速度;

:为观察者移动速度,若接近发射源则前方运算符号为 + 号`, 反之则为号,反之则为 + 号。适用:

多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括电磁波。科学家爱德文·哈勃(Edwin Hubble)使用多普勒效应得出宇宙正在膨胀的结论。他发现远离银河系的天体发射的光线频率变低,即移向光谱的红端,称为红移,天体离开银河系的速度越快红移越大,这说明这些天体在远离银河系。反之,如果天体正移向银河系,则光线会发生蓝移。

在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低。

在交通方面的应用:

交警(测速雷达)向行进中的车辆发射频率已知的超声波同时测量反射波的频率,根据反射波的频率变化的多少就能知道车辆的速度。装有多普勒测速仪的监视器有时就装在路的上方,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。

现在你知道高速公路上的雷达是怎么测速了吧。

第三篇:雷达测速测距原理分析

雷达测速测距原理分析

一、FMCW模式下测速测距

1、FMCW模式下传输波特征

调频连续波雷达系统通过天线向外发射一列线性调频连续波,并接收目标的反射信号。发射波的频率随时间按调制电压的规律变化。

2、FMCW模式下基本工作原理

一般调制信号为三角波信号,发射信号与接收信号的频率变化如图所示。

反射波与发射波的形状相同。只是在时间上有一个延迟,t与目标距离R的关系为:

Δt=2R/c

公式1 其中

Δt:发射波与反射波的时间延迟

R:目标距离

108m/s c:光速c=3×发射信号与反射信号的频率差为混频输出中频信号频率f如图所示:

根据三角关系,得:

ΔtT2=

ΔfB公式2 其中:

Δf:发射信号与反射信号的频率差为|f1-f0| T:调制信号周期——1.5ms B:调制带宽——700MHz 由以上公式1和公式2得出目标距离R为:

R=cTΔf 4B公式3

3、FMCW模式下测距原理

由公式3可以得出,目标距离R与雷达前端输出的中频频率f成正比

4、FMCW模式下测速原理

当目标与雷达并不是相对静止时,也就是有相对运动时,反射信号中包含一个由目标的相对运动所引起的多普勒频移fd,如图所示:

此时发射信号与接收信号的频率差如图所示:

在三角波的上升沿和下降沿分别可得到一个差频,用公式表示为:

f+=f-fd

公式4

f-=f+fd

公式5 其中

f为目标相对静止时的中频频率

f+代表前半周期正向调频的差频

f-代表后半周期负向调频所得的差频

fd为针对有相对运动的目标的多普勒频移

根据多普勒效应得:

fd=2f0 c公式6 其中:

为目标和雷达的径向速度

f0为发射波的中心频率

由公式4、5、6可得:

f+ff=+-2

公式7

c|f--f+|v=×

2f02公式8 速度v的符号与相对运动方向有关系,当目标物相对雷达靠近时v为正值。当目标相对雷达离开时v为负值。

由公式3和公式7进一步得出:

cTf++f-R=×4B2

公式9

二、CW模式测速原理:

1、CW模式下传输波特征

普通连续波

2、CW模式下测速物理理论

当目标向雷达天线靠近时,反射信号频率将高于发射频率,反之,当目标远离天线时,反射信号频率将低于发射频率。如此可由频率改变数值计算出目标与雷达的相对速度

3、CW模式下测速公式

fd=2

公式10 则速度公式为:

fd=2

公式11 其中:

表示传输波的波长

表示目标物与雷达之间的相对速度

由公式11公式12得:=cf0

=c2f×f0d

公式12

公式13

第四篇:连续波雷达测速测距原理(最终版)

连续波雷达测速测距原理

一. 设计要求

1、当测速精度达到0.1m/s,根据芯片指标和设计要求请设计三角调频波的调制周期和信号采样率;

2、若调频信号带宽为50MHz,载频24GHz,三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),请用matlab对算法进行仿真。

二. 实验原理和内容 1.多普勒测速原理

xa(t)A/Dx(n)FFT谱分析P(k)峰值搜索fd

图2.1 频域测速原理

fdmaxmax|fmfd|fs/2N

vfdmax/2fs/4N/4T rmax依据芯片参数,发射频率为24GHz,由上式可以得出,当测速精度达到0.1m/s时,三角调频波的调制周期可以计算得,T=0.0325s 信号的采样率,根据发射频率及采样定理可设fs=96GHz。

2.连续波雷达测距基本原理

设天线发射的连续波信号为:① 则接收的信号为:②

xTf0(t)cos(2f0t0)R(t)R0vrtf0xR(t)cos[2f0(ttr)0]若目标距离与时间关系为:③ 则延迟时间应满足以下关系:④

将④代入②中得到

f0R2tr(R0vrt)cvr2x(t)cos{2f0[t(R0vrt)]0}cvr2R0cos[2(f0fd0)t2f00]cfd02vrf0c 其中根据上图可以得到,当得到t,便可以实现测距,要想得到

t,就必须测得fd。

已知三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),则可以通过:③

分别计算出向三个目标发出去信号,由目标反射回来的信号相对发射信号的延迟时间。

R(t)R0vrt2④ tr(R0vrt)cvr再根据调频信号带宽50MHz和载频24GHz,就可以得到信号。

代码:(还有问题,没有改好)

function

y=tri_wave(starting_value,ending_value,sub_interval,num_of_cycles)

web–browserhttp://

temp1=starting_value:sub_interval:ending_value;temp2=ending_value:-1*sub_interval:starting_value;temp3=zeros(1,length(temp1)*2-1);temp3(1,1:length(temp1))=temp1;temp3(1,length(temp1)+1:length(temp3))=temp2(1,2:length(temp2));temp4=temp3;for i=1:1:num_of_cycles-1 temp4=[temp4 temp3(1,2:length(temp3))];end

y=repmat(temp3,1,num_of_cycles);

y=tri_wave(0,50,2,4);figure;plot(y);

50454035302520***0150200250

第五篇:雷达原理

无源相控阵雷达介绍

普通雷达的波束扫描是靠雷达天线的转动而实现的,又称为机械扫描雷达。而相控阵雷达是用电的方式控制雷达波束的指向变化进行扫描的,这种方式被称为电扫描。相控阵雷达虽然不能像其他雷达那样依靠旋转天线来使雷达波束转动,但它自有自己的“绝招”,那就是使用“移相器”来实现雷达波束转动。相控阵雷达天线是由大量的辐射器(小天线)组成的阵列(正方形、三角形等),辐射器少则几百,多则数千,甚至上万,每个辐射器的后面都接有一个可控移相器,每个移相器都由电子计算机控制。当相控阵雷达搜索远距离目标时,虽然看不到天线转动,但上万个辐射器通过电子计算机控制集中向一个方向发射、偏转,即使是上万千米外的洲际导弹和几万千米远的卫星,也逃不过它的“眼睛”。如果是对付较近的目标,这些辐射器又可以分工负责,产生多个波束,有的搜索、有的跟踪、有的引导。正是由于这种雷达摒弃了一般雷达天线的工作原理,人们给它起了个与众不同的名字———相控阵雷达,表示“相位可以控制的天线阵”的含义。

相控阵雷达又分为有源(主动)和无源(被动)两类。其实,有源和无源相控阵雷达的天线阵相同,二者的主要区别在于发射/接收元素的多少。无源相控阵雷达仅有一个中央发射机和一个接收机,发射机产生的高频能量经计算机自动分配给天线阵的各个辐射器,目标反射信号经接收机统一放大(这一点与普通雷达区别不大)。有源相控阵雷达的每个辐射器都配装有一个发射/接收组件,每一个组件都能自己产生、接收电磁波,因此在频宽、信号处理和冗度设计上都比无源相控阵雷达具有较大的优势。正因为如此,也使得有源相控阵雷达的造价昂贵,工程化难度加大。但有源相控阵雷达在功能上有独特优点,大有取代无源相控阵雷达的趋势。

有源相控阵雷达最大的难点在于发射/接收组件的制造上,相对来说,无源相控阵雷达的技术难度要小得多。无源相控阵雷达在功率、效率、波束控制及可靠性等方面不如有源相控阵雷达,但是在功能上却明显优于普通机械扫描雷达,不失为一种较好的折中方案。因此在研制出实用的有源相控阵雷达之前,完全可以采用无源相控阵雷达作为过渡产品。而且,即使有源相控阵雷达研制成功以后,无源相控阵雷达作为相控阵雷达家族的一种低端产品,仍具有很大的实用价值。无源雷达的特性及沿革

无源雷达本身并不发射能量,而是被动地接收目标反射的非协同式辐射源的电磁信号,对目标进行跟踪和定位。所谓非协同式外部辐射源,是指辐射源和雷达“不搭界”,没有直接的协同作战关系。这样就使得探测设备和反辐射导弹不能利用电磁信号对无源雷达进行捕捉、跟踪和攻击。

无源雷达系统简单,尺寸小,可以安装在机动平台上、易于部署,订购与维护成本低。无源雷达不发射照射目标的信号,因此不易被对方感知,一般不存在被干扰的问题。它可以昼夜、全天候工作:可连续检测目标,一般为每秒一次,信号源是40—400兆赫的低频电磁波,有利于探测隐身目标和低空目标:不需频率分配,因此可部署在不能部署常规雷达的地区。

无源雷达自身不发射信号,既带来优点也带来缺点。由于依赖于第三方发射机,操作员对照射器无法主动控制,在被探测目标保持无线电静默、照射器又不工作的情况下,无源雷达就成了无源之水,不能发挥作用。此外,一些发射机的有效辐射功率较低,易受干扰和空射诱饵的影响而且要求发射机与目标、目标与接收机以及接收机与发射机之间信号不受阻挡,限制了无源雷达的使用。

其实无源雷达并不是新概念,它的历史几乎与雷达技术本身一样悠久。1935年,罗伯特•沃森•瓦特曾在单基地无源系统中利用英国广播公司发射的短波射频,照射10千米以外的“海福特”轰炸机。在第二次世界大战中也试验过预警无源雷达,如德国的“克莱思•海德堡”(Kleine Heidelberg)系统。但当时的系统缺乏足够的处理能力,不能计算出目标的精确坐标。

当前,有很多国家热衷于无源技术的应用研究。美国洛克希德•马丁公司是最先涉足该领域的公司之一,据称依靠电视和无线发射机,其无源系统的探测距离达到220千米以上。美国国防部国防高级研究计划局以及华盛顿大学、乔治亚技术大学等高校和雷声等公司,都开展了这一领域的研究。在欧洲,法国也进行了相应的技术研究工作、意大利演示了样机系统、英国正在研究无源相干雷达和“蜂窝’雷达(Celldar),俄罗斯和捷克也在进行类似研究。无源雷达的分类

无源雷达系统可以依据探测对象或配置方式来分类。依据配置方式,无源雷达分为固定式(地基)和机动式(安装在潜艇、舰船、飞机、地面车辆等平台上)两大类。无源雷达的探测对象可以是雷达、通信电台或其他无线辐射源,也可以是仅仅反射无线电信号的目标。无源雷达可以依据探测对象的不同,分为利用被探测目标的自身辐射进行探测和跟踪,以及利用外照射源发射的电磁波进行探测和跟踪两大类。利用被探测目标的自身辐射,在被探测目标本身就是辐射源或携带了辐射源的情况下,无源雷达利用探测目标自身辐射的电磁波进行探测和跟踪。可能的辐射源包括雷达、通信电台、应答机、有源干扰机、导航仪等电子设备。捷克研制的“维拉”系列无源雷达就属于这类无源雷达。几款典型的无源雷达

美国的“沉默哨兵”霄达

美国洛克希德•马丁公司从1983年开始研究非协同式双基地无源雷达,于1998年研制出新型的“沉默哨兵”被动探测系统。这种无源雷达利用商业调频无线电台和电视台发射的50~80兆赫连续波信号,检测、跟踪、监视区内的运动目标。该系统由大动态范围数字接收机、相控阵接收天线、每秒千兆次浮点运算的高性能并行处理器及其软件组成。试验证明,它对雷达反射面积10米2目标的跟踪距离可达180千米,改进后可达220千米,能同时跟踪200个以上目标,分辨间隔为15米。

英国的“蜂窝”霄达

英国的“蜂窝”雷达系统可探测、跟踪和识别陆上、海上和空中的移动目标,包括在树丛中运动的车辆,它理论上能够探测野外环境中10~15千米的地面目标和100千米的大型飞机。当目标进入探测区域后,引起蜂窝电话辐射波的反射,这些反射被一部或多部蜂窝电话雷达探测到。检测数据通过通信网络实时传送到中央控制系统,数据在这里进行处理,从而确定目标的位置和速度。该雷达系统除了反射蜂窝电话基站的辐射信号外,还可利用声传感器探测到目标辐射出的噪声,有助于确定目标位置。

“维拉-E”雷达

“维拉”系列无源雷达由捷克研制。“维拉-E”是该系列的最新型号,可探测定位、识别和跟踪空中、地面和海上目标,对空探测的最大距离为450千米,并可识别目标、生成空中目标图像。

“维拉-E”系统由4部分组成:分析处理中心居中,3个信号接收站呈圆弧线状分布在周围,站与站之间距离在50千米以上。分析处理中心部署在方舱车内,有完整的计算机系统以及通信、指挥和控制系统。信号接收站用重型汽车运载,可灵活部署。接收天线支架竖起时高17米,占地面积9×12米,3个人在1小时内即可竖起天线、进入监视状态。天线外形为圆柱体结构,功耗低、可靠性极高,平均无故障间隔时间达2000小时,可抵御30米/秒的大风。无源雷达的未来发展

无源雷达系统(尤其是利用外部非协同辐射源的无源雷达),可能是今后10~20年的一个重要的发展方向。随着几大国际通信卫星计划的实施,未来将有1000多颗通信卫星在轨。其中将有许多能发射出足够高的射频能量,地面上大多数地点均会同时受到几个星载辐射源的照射,无源雷达系统可充分利用这些照射源进行目标探测和跟踪。总的来看,无源雷达将会在以下几个方面得到发展:

(1)扩展可用外辐射源的种类。外部的非协同辐射源从最早的电视信号、调频信号,到现在的移动通信信号、全球定位系统卫星信号,以及将来多种卫星信号和其他各种可能的辐射源,可供选择利用的外辐射源种类将日渐增多。

(2)雷达目标的傅立叶成像。伊利诺斯州大学的研究人员已证实,可用无源多基地雷达产生飞机目标的合成孔径图像。利用不同频率和不同位置的多部发射机,就可为某个目标建立一个傅立叶域的稠密数据集合,通过逆傅立叶变换就可以重构该目标的图像。

(3)不同平台无源雷达的组网。由于可供使用的外辐射源信号种类繁多,不同的辐射源信号占据了不同的频段,同一目标在不同频段会有不同的雷达特性。因此,为尽可能地提高对目标的探测能力,可以将不同平台的无源雷达进行组网。

(4)无源雷达与有源雷达相结合。当外界电磁辐射设备关机或无法利用时,无源雷达就无法对目标进行探测定位。因此,可考虑将无源雷达与有源雷达结合使用。如以双/多基地方式合理布设无源和有源雷达,当外界电磁辐射不存在或无法利用时,利用无源雷达接收己方有源雷达的直射信号与目标的反射信号,对目标进行探测。这样既提高了无源雷达的利用率,又增强了有源雷达的隐蔽性和生存能力。

相关内容

热门阅读

最新更新

随机推荐