第一篇:地基稳定性分析
建筑地基的稳定性分析和评价
《岩土工程勘察规范》(GB 50021-202_)(202_年版)4.1.11第3款规定应“分析和评价地基的稳定性„„”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。
一、地基稳定性
地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。按照(GB 50021-202_)(202_年版)14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。
二、地基稳定性分析评价内容
影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。
通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。按照《岩土工程勘察规范》(GB 50021-202_)(202_年版)、《高层建筑岩土工程勘察规程》(JGJ72-202_)和《建筑抗震设计规范》(GB 50011-202_)规定,对山东地区该问题常见的几种情况罗列如下:
1、地基承载力计算与验算
验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。应严格按照《建筑地基基础设计规范》(GB 50007-202_)5.2和《高层建筑岩土工程勘察规程》(JGJ 72-202_)8.2.6~8等条款执行。
2、变形验算
建筑物的地基变形计算值,不应大于建筑物地基允许变形值。在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变形参数,供上部结构计算条件具备时按照(GB 50007-202_)5.3、(JGJ 72-202_)8.2.9~12和《建筑地基处理技术规范》(JGJ 79-202_)有关条款计算。
3、基础埋置深度的确定
对高层建筑和高耸构筑物基础的埋置深度,应满足地基承载力、变形和稳定性要求。位于岩石地基上的高层建筑,其基础埋深应满足抗滑稳定性要求。天然地基上的箱形或或筏形基础埋置深度不宜小于1/15H;桩箱或桩筏基础不宜小于1/18H,H为建筑物高度。
4、位于稳定土坡坡顶上的建筑
应根据建(构)筑物基础形式,按照(GB 50007-202_)5.4.1~2有关规定确定基础距坡顶边缘的距离和基础埋深。需要时,还应按照《建筑边坡工程技术规范》(GB 50330-202_)5.1~3有关规定验算坡体的稳定性。验算方法对均质土可采用圆弧滑动条分法,发育软弱结构面、软弱夹层及层状膨胀岩土时,应按最不利的滑动面验算。当坡体中分布膨胀岩土时应考虑坡体含水量变化的影响;具有胀缩裂缝和地裂缝的膨胀土边坡,应进行沿裂缝滑动的验算。
5、受水平力作用的建(构)筑物
①山区应防止平整场地时大挖大填引起滑坡;
②岸边工程应考虑冲刷、因建筑物兴建及堆载引起地基失稳。
6、土岩组合地基
该类地基下卧基岩面为单向倾斜时,应描述岩面坡度、基底下的土层厚度、岩土界面上是否存在软弱层(如泥化带)。
7、岩石地基
①地基基础设计等级为甲、乙级的建筑物,同一建筑物的地基存在坚硬程度不同,两种或多种岩体变形模量差异达2倍及2倍以上,应进行地基变形验算;
②地基主要受力层深度内存在软弱下卧岩层时,应考虑软弱下卧岩层的影响进行地基稳定性验算; ③当基础附近有临空面时,应验算向临空面倾覆和滑移稳定性。
岩土工程勘察报告中,应提供岩层产状、岩石坚硬程度、岩体完整程度、岩体基本质量等级,以及软弱结构面特征等。
8、软弱地基
首先,应判定地基产生失稳和不均匀变形的可能性;当工程位于池塘、河岸、边坡附近时,应验算其稳定性。其次,其承载力特征值应根据室内试验、原位测试、当地经验结合地层物理力学特征和建(构)筑物特征以及施工方法和程序等多因素综合确定。该类地基应按照(GB 50007-202_)第7章和《软土地区岩土工程勘察规程》(JGJ 83-202_)7.2~4有关规定分析评价其稳定性;抗震设防烈度等于或大于7度的厚层软土分布区,应按照(JGJ 83-202_)第6章判别软土震陷的可能性和估算震陷量。
9、存在液化土层的地基
地面下存在饱和砂土和饱和粉土时,除6度外,应进行液化判别。按照(GB 50011-202_)4.3.3~6规定进行。
10、岩溶和土洞
在碳酸盐岩为主的可溶性岩石地区,当存在岩溶(溶洞、溶蚀裂隙等)、土洞等现象时,应考虑其对地基稳定的影响。按照(GB 50021-202_)5.1.10~12和《建筑地基基础设计规范》(GB 50007-202_)6.6的规定分析评价地基稳定性。
11、填土
当地基主要受力层中有填土分布时,如填土底面的天然坡度大于20%时,应验算其稳定性。
12、桩土复合地基
对需验算复合地基稳定性的工程,提供桩间土、桩身的抗剪强度。
13、桩基
①应选择较硬土层作为桩端持力层。
②嵌岩桩深度应综合荷载、上覆土层、基岩、桩径、桩长诸因素确定;
③嵌岩灌注桩桩端以下3倍桩径且不小于5m范围内应无软弱夹层、断裂破碎带和洞穴分布,且桩底应力扩散范围内应无临空面。
④当基桩持力层为倾斜地层,基岩面凹凸不平或岩土中有洞穴时,应评价桩基的稳定性,并提出处理措施的建议。
14、箱形基础
箱形基础地基的破坏形式,除地基内饱和松砂在地震液化和局部软弱夹层侧向的问题外,它的破坏形式主要表现在偏心时水平荷载下的整体倾斜或倾覆。
一般情况下,该类基础形式均匀地基同时满足以下条件时,可不进行地基稳定性分析评价: ①基础边缘最大压力不超过地基承载力特征值20%;
②在抗震设防区,考虑了瞬时作用的地震力,同时基础埋置深度不小于1/10H; ③偏心距小于或等于1/6b。
特殊条件下,应根据地基岩土条件和地质环境条件进行分析评价。
15、地下水的影响
当场地内地下水位升降时,应考虑可能引起地基土的回弹、附加沉降和附加的托浮力对地基的影响;对软质岩石、强风化岩石、残积土、湿陷土、膨胀岩土和盐渍土,应评价地下水的聚集和散失所产生的软化、崩解、湿陷、胀缩和潜蚀的有害作用。
四、地基稳定性验算方法
1、地基整体稳定性验算方法
在竖向和水平荷载共同作用下,当不能确定最危险滑动面时,对于均匀地基,一般采用极限平衡理论的圆弧滑动条分法。应满足下式要求:
MR/MS≥FS
MR——抗滑力矩(kN•m)MS——滑动力矩(kN•m)
FS——抗滑稳定安全系数。当滑动面为圆弧时,取1.2;当滑动面为平面时取1.3。
2、抗水平滑动验算
对于承受较大水平推力、地基可能发生侧向滑动的建(构)筑物,应满足下式要求: E/H≥FS
E——水平抗力(kN)
H——作用于基础底面的水平推力(kN)
FS——抗滑稳定安全系数。当滑动面为圆弧时,取1.2~1.3。
目前国际上关于刚性桩复合地基支承路堤的稳定分析方法是英国加筋土及加筋填土规范(《Code of practice for strengthened/reinforced soils and other fills》BS8006:1995)[107]对于桩-网支承路堤的整体稳定性提出了建议方法,即仍采用传统的复合地基稳定分析方法进行计算,当桩体和加筋垫层存在时,将滑动面经过的桩的作用按下法考虑,如图1-12所示,即将滑动面以下桩的竖向承载力作为阻滑力作用在滑动面上,而不是考虑桩体截面的抗剪强度,对于加筋垫层考虑其最大张拉力提供抗滑贡献,具体计算模式见图1-12。采用传统的复合地基稳定分析方法计算时,通常采用有效应力参数,并考虑孔隙水压力,但如果进行短期稳定分析,则应采用不排水条件下的参数。为保证路堤的整体稳定性,需要满足如下条件:
MDMRSMRPMRR
式中,MD为土体滑动力矩;MRS为土体抗滑力矩;MRP为桩体提供的抗滑力矩;MRR为加筋垫层提供的抗滑力矩。
其中土体滑动力矩MD为:
MD[(Wibiwsi)sini]Rd
土体抗滑力矩MRS为:
MRS[{cibiseci((Wibiwsi)cosiuibiseci)tancvi}]Rd
桩体提供的抗滑力矩MRP为:
MRPFPiXPi
加筋垫层提供的抗滑力矩MRR为:
MRRTYi
式中,Wi为条块i的自重;bi为条块i的宽度;i为条块i的切线与水平线的夹角;ci为条块i的粘聚力;cvi为条块i的内摩擦角;ui为作用在条块i的平均孔隙压力;wsi为路堤顶面的均布荷载;Rd为圆弧滑动面的半径;FPi为第i根桩的竖向承载力,这里取滑动面与桩相交处桩的轴力;Ti为加筋垫层的最大张拉力;XPi为第i根桩到滑动中心的水平距离;Y为加筋垫层到滑动中心的竖向距离。
圆弧滑动中心XP2XiXP1荷载ws路堤Y土条i填土Wibi桩体加筋体桩帽Rd圆弧滑动面α地基土体FP1FP2
第二篇:建筑场地和地基的稳定性评价
建筑场地和地基的稳定性评价
济南市建设工程勘察设计质量监督站
郜宪存
摘要:场地和地基的稳定性分析评价是现行规范、规程强条规定的内容,本文从地质环境条件和岩土工程条件两方面对需要进行稳定性分析评价的内容进行了论述。
关键词:场地稳定性;地基稳定性;地质环境条件;岩土工程条件
在《岩土工程勘察规范》(GB 50021-202_)(202_年版)4.1.11第3款规定应“分析和评价地基的稳定性……”,14.3.3,第9款规定进行“场地稳定性和适宜性评价”;《高层建筑岩土工程勘察规程》(JGJ 72-202_)8.2“天然地基评价”中规定应分析评价的内容包括“场地、地基稳定性和处理措施的建议”;《房屋建筑和市政基础设施工程勘察文件编制深度规定》(202_年版)4.6.2第1款“场地稳定性评价”,对“地基稳定性评价”提及很少。各位同行在编写岩土工程勘察报告时,往往感到需要论证的内容不是太多就是无从下笔。本人根据多年来的工作实践,对这一问题在济南地区常见的几种情况进行了总结归纳。由于我国地域广阔,新型的建构筑物、岩土工程地质条件和环境条件多样,该文观点和阐述仅是一管之见,不当之处,望不吝赐教。一 场地稳定性评价
场地稳定性评价主要是指对各种不良地质作用,包括:断裂、地裂缝、滑坡、崩塌、岩溶、土洞塌陷、建筑边坡等影响场地整体稳定性的岩土工程问题进行评价。
场地稳定性评价是岩土工程勘察可行性研究阶段的基本任务,是初勘阶段的主要任务,详勘阶段应进行“地基稳定性”分析评价。在(GB 50021-202_)(202_年版)论述较笼统,但在《高层建筑岩土工程勘察规程》(JGJ 72-202_)“8岩土工程评价”中明确了分析评价的内容。
场地稳定性评价内容主要包括以下几个方面的岩土工程问题: 区域地质构造稳定性。针对拟建场地及附近是否存在活动性断裂; 场地地震效应,主要针对场地所处的基本地震烈度区划,划分出场地地段; 是否发育直接危害场地稳定的不良地质作用,包括:岩溶、滑坡、危岩和崩塌、泥石流、采空区、地面沉降和活动断裂等。建筑边坡稳定稳定性的影响等。
按照(GB 50021-202_)(202_年版)14.1.3规定,可仅作定性分析,确定场地稳定性、工程建设的适宜性,必要时应建议进行地震安全性评价或地质灾害危险性评估,由此影响到地基稳定性的工程要进行地基稳定性分析评价。二 地基稳定性评价
地基稳定性主要是指由于地形、地貌、设计方案造成建筑地基侧限削弱或不均衡,而可能导致基础整体失稳;或软弱地基、局部软弱地基,如暗浜、暗塘等,超过承载能力极限状态的地基失稳。其含义包含以下几个方面: 地基在外部荷载(包括基础重量在内的建筑物所有的荷载)作用下抵抗剪切破坏的稳定安全程度——承载力特征值的确定; 各类工程在施工和使用过程中,地基承受荷载的稳定程度——变形验算; 与地基岩土体在承受建筑荷载条件下的沉降变形、深层滑动等对工程建设安全稳定的影响程度——与岩土工程条件和地质环境条件的关联度。
评价的目的是为了避免由于建(构)筑物的兴建可能引起地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。按照(GB 50021-202_)(202_年版)14.1.3规定,应在定性分析的基础上进行定量分析,评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。三 地基稳定性评价内容
影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。
一般情况下,需要对以下建(构)筑物进行地基稳定性评价:经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等。
通常涉及到岩土工程方面的内容主要有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、1地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。
按照(GB 50021-202_)(202_年版)、(JGJ72-202_)和《建筑抗震设计规范》(GB 50011-202_)规定要求,通常需要分析评价的内容总结如下: 地基承载力特征值确定
验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。现行规范在地基承载力特征值的确定过程中强调变形控制,特征值不再是单一的强度概念,而是一个满足正常使用要求(及变形控制相关)的岩土的综合特征指标,其涵义即为在发挥正常使用功能时所允许采用的抗力设计值。由此可见,这一计算过程的本身,就涵盖着进行了地基稳定性分析评价的部分内容。在验算地基承载能力时,不但持力层承载力特征值应满足荷载要求,而且要考虑到下卧层、特别是软弱下卧层承载力特征值是否满足。地基特征值计算和确定时,应严格按照《建筑地基基础设计规范》(GB 50007-202_)5.2和《高层建筑岩土工程勘察规程》(JGJ 72-202_)8.2.6~8等条款执行。地基变形验算
建筑物的地基变形计算值,不应大于建筑物地基允许变形值。在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变形参数,供上部结构计算条件具备时,按照(GB 50007-202_)5.3、(JGJ 72-202_)8.2.9~12和《建筑地基处理技术规范》(JGJ 79-202_)有关条款计算。基础埋置深度的确定
对高层建筑和高耸构筑物基础的埋置深度,应满足地基承载力、变形和稳定性要求。位于岩石地基上的高层建筑,其基础埋深应满足抗滑稳定性要求。天然地基上的箱形或筏形基础埋置深度不宜小于1/15H;桩箱或桩筏基础不宜小于 1/18H,H为建筑物高度。位于稳定土坡坡顶上的建筑
该类建(构)筑物应根据其基础形式,按照(GB 50007-202_)5.4.1~2有关规定确定基础距坡顶边缘的距离和基础埋深。需要时,还应按照《建筑边坡工程技术规范》(GB 50330-202_)5.1~3有关规定验算坡体的稳定性。验算方法对均质土可采用圆弧滑动条分法,发育软弱结构面、软弱夹层及层状膨胀岩土时,应按最不利的滑动面验算。
当坡体中分布膨胀岩土时应考虑坡体含水量变化的影响;具有胀缩裂缝和地裂缝的膨胀土边坡,应进行沿裂缝滑动的验算。受水平力作用的建(构)筑物
①山区应防止平整场地时大挖大填引起滑坡;
②岸边工程应考虑冲刷、因建筑物兴建及堆载引起地基失稳。土岩组合地基
该类地基下卧基岩面为单向倾斜时,应描述岩面坡度、基底下的土层厚度、岩土界面上是否存在软弱层(如泥化带)。岩石地基
①地基基础设计等级为甲、乙级的建筑物,同一建筑物的地基存在坚硬程度不同,两种或多种岩体变形模量差异达2倍及2倍以上,应进行地基变形验算;
②地基主要受力层深度内存在软弱下卧岩层时,应考虑软弱下卧岩层的影响进行地基稳定性验算;
③当基础附近有临空面时,应验算向临空面倾覆和滑移稳定性。
岩土工程勘察报告中,应提供岩层产状、岩石坚硬程度、岩体完整程度、岩体基本质量等级,以及软弱结构面特征等。岩溶和土洞
在碳酸盐岩为主的可溶性岩石地区,当存在岩溶(溶洞、溶蚀裂隙等)、土洞等现象时,应考虑其对地基稳定的影响。按照(GB 50021-202_)5.1.10~12和《建筑地基基础设计规范》(GB 50007-202_)6.6的规定分析评价地基稳定性。软弱地基
地基主要受力层主要由淤泥、淤泥质土、冲填土、杂填土或其他高压缩性土层构成的地基称为软弱地基。首先,应判定地基产生失稳和不均匀变形的可能性;当工程位于池塘、河岸、边坡附近时,应验算其稳定性。其次,其承载力特征值应根据室内试验、原位测试、当地经验结合地层物理力学特征和建(构)筑物特征以及施工方法和程序等多因素综合确定。该类地基应按照(GB 50007-202_)第7章和《软土地区岩土工程勘察规程》(JGJ 83-202_)7.2~4有关规定分析评价其稳定性;抗震设防烈度等于或大于7度的厚层软土分布区,应按照(JGJ 83-202_)第6章判别软土震陷的可能性和估算震陷量。2
存在液化土层的地基
地面下存在饱和砂土和饱和粉土时,除6度外,应进行液化判别;根据液化震陷量的估计适当调整抗液化措施。按照(GB 50011-202_)4.3.3~6规定进行。桩土复合地基
对需验算复合地基稳定性的工程,提供桩间土、桩身的抗剪强度。填土地基
当地基主要受力层中有填土分布时,如填土底面的天然坡度大于20%时,应验算其稳定性。桩基
①应选择较硬土层作为桩端持力层。桩端全断面进入持力层的深度,对于粘性土、粉土不宜小于2d、砂土不宜小于1.5d,碎石类土不宜小于1d。当存在软弱下卧层时,桩端以下硬持力层厚度不宜小于3d;
②嵌岩桩深度应综合荷载、上覆土层、基岩、桩径、桩长诸因素确定;对于嵌入倾斜的完整和较完整岩的全断面深度不宜小于0.4d且不小于0.5m,倾斜度大于30%的中风化岩,宜根据倾斜度及岩石完整性适当加大嵌入深度;对于嵌入平整、完整的坚硬岩和较硬岩的深度不宜小于0.2d,且不应小于0.2m。
③嵌岩灌注桩桩端以下3倍桩径且不小于5m范围内应无软弱夹层、断裂破碎带和洞穴分布,且桩底应力扩散范围内应无临空面。
④当基桩持力层为倾斜地层,基岩面凹凸不平或岩土中有洞穴时,应评价桩基的稳定性,并提出处理措施的建议。箱形基础
箱形基础地基的破坏形式,除地基内饱和松砂在地震液化和局部软弱夹层侧向的问题外,它的破坏形式主要表现在偏心时水平荷载下的整体倾斜或倾覆。
一般情况下,该类基础形式均匀地基同时满足以下条件时,可不进行地基稳定性分析评价:
①基础边缘最大压力不超过地基承载力特征值20%;
②在抗震设防区,考虑了瞬时作用的地震力,同时基础埋置深度不小于1/10H;
③偏心距小于或等于1/6b。
特殊条件下,应根据地基岩土条件和地质环境条件进行分析评价。地下水的影响
当场地内地下水位升降时,应考虑可能引起地基土的回弹、附加沉降和附加的托浮力对地基的影响;对软质岩石、强风化岩石、残积土、湿陷土、膨胀岩土和盐渍土,应评价地下水的聚集和散失所产生的软化、崩解、湿陷、胀缩和潜蚀的有害作用。
四 地基稳定性验算方法 地基整体稳定性验算方法
位于稳定斜坡上的建(构)筑物或当地基有可能整体滑动时,应进行稳定性验算。在竖向和水平荷载共同作用下,当不能确定最危险滑动面时,对于均匀地基,一般采用极限平衡理论的圆弧滑动条分法。应满足下式要求:
MR/MS≥FS
MR——抗滑力矩(kN•m)MS——滑动力矩(kN•m)
FS——抗滑稳定安全系数。当滑动面为圆弧时,取1.2;当滑动面为平面时取1.3。抗水平滑动验算
对于承受较大水平推力、地基可能发生侧向滑动的建(构)筑物,应满足下式要求:
E/H≥FS
E——水平抗力(kN)
H——作用于基础底面的水平推力(kN)FS——抗滑稳定安全系数。当滑动面为圆弧时,取1.2~1.3。五 结束语
现行国家标准涵盖区域多、建设工程种类多,对待不同的工程要结合实际工程地质条件和具体的设计及施工工况,进行有针对性的、相关性的分析和突出重点的详细评价,而不要去泛泛地,模板式地,断章取义地评价。参考文献:
1.岩土工程勘察规范 GB50021-202_ 中国建筑工业出版社
2.建筑地基基础设计规范 GB50007-202_中国建筑工业出版社
3.高层建筑岩土工程勘察规程 JGJ72-202_中国建筑工业出版社
4.北京地区建筑地基基础勘察设计规范 DBJ 11-501-202_ 中国计划出版社
第三篇:电压稳定性分析
电压稳定性分析
目录 电压稳定基本概念 2 电压稳定分析方法的分类 3 潮流雅可比矩阵奇异法 4 电压稳定研究方向展望 5 改善电压稳定的技术 6 结论 7 参考文献
电压稳定性是指系统维持电压的能力.当负荷导纳增大时,负荷功率亦随之增大,并且功率和电压都是可控的.电压崩溃是指由于电压不稳定导致系统内大面积、大幅度的电压下降的过程。压稳定性分析则是对这一过程进行理论分析,使得这个过程变得可以认为控制。
随着负荷需求的不断增长和电源点越来越远离负荷中心,我国电力系统正在向远距离、大容量、超高压输电方式发展。同时由于电力市场的引入带来的经济性及可能出现的环境保护等方面的压力,迫使电力系统运行状态正逐渐趋近于极限状态,电网的稳定性问题将变得日益突出。
电力系统的稳定性问题是多种多样的,其中机电方面的稳定问题可以简化为:(1)单机——无穷大系统(纯功角稳定问题):
(2)单机通过阻抗接在“静态”负荷上(纯电压稳定问题)。
在实际电力系统中,上述两个问题可能同时存在或相继发生。功角稳定问题现在从理论和数学分析上都已完全解决了。相反,电压稳定问题的发生机理现在仍不完全清楚,更不用说可以被广泛接受的分析工具了。近年来,由于电压崩溃恶性事故的相继发生,如1983年12月27日瑞典电网、1987年法国西部电网、1987年7月23日日本东京电网等,运行和研究单位都逐渐关注电压大幅下降前,母线角度及电网频率都相对稳定,显然经典的功角稳定性已不适于上述事故的分析。在这些电网事故发生前,由于母线电压角度、电网频率甚至电压幅值都相对稳定,常规的报警装置没有发挥作用,其中1987年的日本东京电网事故过程长达20分钟,可是运行人员并没有采取手动切换负荷等安全措施来阻止电压崩溃事故的发生,这也说明了进行电压稳定性研究的重要性。
具体到安徽电网的实际分析,我们认为导致电压稳定破坏事故可能有以下两个问题:1.在淮北电厂及淮北二电厂小开机方式下,淮北通过系统联络线受进较大潮流,若发生淮北母线故障等大扰动,使淮北电网同时失去大量发电出力及与系统的联络线;2.江北小开机大负荷方式下,若发生洛河电厂Ⅰ母线故障,使江北电网同时失去洛河电厂#5联变及洛河电厂#1机。我们使用了BPA程序对以上问题进行了经典的功角稳定仿真计算,发现功角的震荡和电压的剧烈下降是同时发生的,到底是电压崩溃造成的功角失步还是失步造成的电压崩溃呢,若是电压崩溃事故,那么现有的预防稳定破坏事故措施都是针对于功角稳定破坏事故的,并不适应于电压稳定破坏事故。显然我们迫切需要了解电压稳定问题的机理,掌握电压稳定分析的工具,同时采取相应的预防措施。为此,我们对众多关于电压稳定问题的研究成果进行了调研,通过分析和总结,希望能够对电压稳定问题有一个比较清晰的概念,得到适合实际应用的工具。 电压稳定基本概念
电压稳定性这一概念对于电力系统运行人员并不陌生。在低压配电系统中,电压稳定破坏这一现象早已被发现。但直到近些年,这一现象才在高压输电系统中发现,并越来越被重视起来。
现在,一般认为电压稳定破坏事故是这样发生的:当出现扰动、负荷增大使电压下降至运行人员及自动装置无法控制时,系统就会进入电压不稳定的状态,电压的下降时间可能只需要几秒钟,也可能长达几十分钟。在电压下降过程中,以下几个方面有着重要影响:
(1)有载调压变压器的动作将使低压配电网的电压上升,高压输电网的电压下降,民用有功、无功负荷将逐渐回升,导致一次侧的高压输电网电压进一步下降,一次系统中的线路充电功率和电容器的无功补偿均将减少,同时一次网络中的无功损耗将增加,因此,一次侧电压进一步下降。如此循环下去,有载调压变压器将处于或接近极限运行位置。
(2)工业负荷主要是感应电动机负荷对于电压变化非常敏感,在电压起初的下降过程中,它随着电压的下降而下降,但当电压进一步下降时,由于转差的增大而使电流增大,因而电动机漏抗中消耗的无功功率急剧增大,当电动机因不稳定而停止转动时,将吸收大量无功功率。这时由于级联效应,会有更多的电动机停转,最终将出现大范围的电压崩溃事故。
(3)发电机励磁调节器在电压下降过程中,将增加无功出力,帮助维持电压。然而当无功负荷超过发电机的容量时,电厂的运行人员、发电机的过励保护、过流保护等自动装置将降低励磁,减少无功出力,使无功缺额增大,迫使远方发电机承担起维持电压的任务,致使一次网络中的无功损耗增加,电压进一步下降。
(4)电压问题如同线路过负荷一样容易造成级联停运。当重载线路的受端电压下降时,施加在送瑞系统上的无功功率可能是受端所收到的无功功率的许多倍。
如果电压不停地衰减下去,电压崩溃事故就会发生。因为这一过程持续时间在几秒到几十分钟的范围内,所以有些文献根据这一过程的持续时间将电压稳定问题划分为暂态电压稳定(时间从零秒到大约10秒钟)、经典电压稳定(时间从1分钟到5分钟)、长期电压不稳定(包含20到30分钟的电压恶化)。
2电压稳定问题的研究历程
电压稳定的研究最早可追溯到40年代,但直到1978年法国大电网的灾难性电压崩溃事故前,这一课题并没有得到电力系统的广泛注意。从70年代末期以来,人们对电压稳定进行了大量研究。过去十年中,有两次大规模的调查活动进一步强调了电压稳定问题的重要意义。一项是IEEE电压稳定专题工作组于1988年进行的,目的是确定在工业中,这一问题存在的范围。另一项由EDF主持的研究,发现全球有20次重大故障可以归咎于电压稳定问题。
过去很长一段时间内,在电压稳定问题的研究上一直存在着争论,这就是:电压稳定问题究竟是静态的还是动态的,相应的分析方法也就分为基于潮流方程性质的静态方法和基于微分方程性质的动态方法。近年来,随着研究工作的进一步深入,用静态方法研究电压稳定遇到了越来越多的困难,计算结果与实际事故相比较,也难以令人信服。现在,人们普遍认为电压稳定问题是一个动态问题,应该用基于微分方程的动态分析方法加以解决。鉴于这种情况,国际大电网会议(CIGRE)于1993年提出专题报告,从动态角度严格定义了电压稳定问题,在此基础上将其分为小干扰电压稳定性、暂态电压稳定性和长期电压稳定性。 3 电压稳定分析方法的分类
结合国外电网的经验和我省电网的实际,我们认为对电压稳定问题的分析要解决以下三个问题:
a.当前系统离电压崩溃点的距离即电压稳定裕度是多少?
b.电压崩溃发生时,影响电压稳定的关键因素是什么,电压薄弱点在哪儿,哪些区域是电压不稳定的? c.在大扰动发生后,当前稳定的系统是否有可能发生电压崩溃事故?
确定一个电压稳定程序是否符合要求,要根据以上要求进行判断。虽然电压稳定静态分析方法从原理上讲并不严格,所得结果也令人难以信服,但有着计算简单,不需要较难获得的元件动态模型等优点。目前的实用化电压稳定分析程序基本采用了静态分析方法,其中P-V曲线法、灵敏度分析法、潮流多解法、雅可比矩阵奇异法使用较广泛,下面我们将详细介绍这四种方法。
(1)P-V曲线法
这是一种基于物理概念的计算分析。给定系统基态潮流计算结果,逐步增加系统负荷,求出系统各运行点,利用负荷特性,从而得到反映负荷实际吸收功率与节点电压关系的一系列(P,V)点,将这些相连便可得到P-V曲线。与功角曲线相似,这条曲线的拐点处被认为是电压稳定的分界点,拐点右侧高电压区,被认为是电压稳定点,拐点左侧低电压区被认为是电压不稳定点。当前系统运行点距离拐点的距离远近反映了系统的电压稳定裕度。然而,在考虑了系统元件的特性后,这一判据的正确与否值得进一步研究,例如电网技术1998年第九期中刊出的《电力系统动态元件特性对于电压稳定性的影响》一文中指出,负荷电压静特性、发电机励磁系统稳态增益对于电压稳定极限点的影响巨大。在某些情况下,系统有可能在P-V曲线的右侧高电压区就已失稳,也有可能直到P-V曲线的左侧低电压区仍能保持电压稳定。利用P-V曲线拐点判断电压稳定性造成的误差究竟是偏保守还是偏冒进难以估算。
(2)灵敏度分析法
给定基态潮流计算结果,通过增加有功、无功负荷来获得电压幅值和电压角度的变化量。所有受控变量的敏感度由电压幅值和电压角度的敏感度得到,受控变量包括受限的无功源、受限的联络线传输功率、变压器分接头的变化等。通过对受控变量的敏感度指标进行排序,得出与电压下降密切相关的无功源、联络线等强相关变量集,同时得出电压下降最大的节点集称为弱节点集。
灵敏度分析方法可以应用于电压稳定的在线监控,其中强相关变量集说明了当前系统中影响电压稳定的关键因素,如哪些发电机的停运、联络线的检修对电压稳定至关重要。而弱节点集说明了哪些区域是电压不稳定,系统最可能首先在这些区域内失稳,要对这些弱节点进行监控,同时考虑增加对这些节点的无功补偿。
(3)潮流多解法
潮流解的非唯一性的提法首先在1975年由KLOS和KERNER发表的专著《thenon-uniquenessofloadflowsolution》中提出,文中提出潮流的解往往是成对出现的,解的个数随着负荷水平的加重而减少,当系统接近极限运行状态时,将只存在两个解。在所有这些解中,只有一个解是和电力系统的实际运行状态相对应的,称为“可运行”的解。其余的解对应于电力系统的不稳定运行点,在电压稳定分析中,这些不稳定的解叫做“低电压解”。但是也有文献指出,在重负荷情况下,潮流方程的解由高电压解转移到低电压解这一跳跃现象,并未在动态仿真中出现过,更不曾在实际运行状态中观察到,潮流多解仅仅是潮流方程非线性的数学结果,各解稳定与否不取决于解的本身,而取决于电力系统各元件的动态特性,例如如果考虑负荷等元件的动态特性而认为是恒阻抗负荷时,高、低电压解将都是稳定的解。
目前潮流多解研究的主要意义在于为计算系统的极限运行状态提供一种简单方法,多解的个数及多解之间的距离是反映系统接近极限运行状态的指标。
电压稳定性分析电压稳定研究方向展望
综合各有关电压稳定问题的研究成果,结合实际电网运行的需要,以下几方面还需进一步研究,这些方面的研究可以使我们更好地理解电压失稳现象,并有可能象功角暂态稳定理论一样提供电压失稳的判据,最终得到电压动态稳定分析的实用化程序。(1)元件动态模型的建立
尽管有关电压稳定问题的文献很多,但是电压失稳特别是在动态、非线性方面的机理还不十分清楚。非线性动态理论为解决这方面的问题提供了适合的数学工具,元件动态特性的建模越来越受到重视。元件的动态特性包括发电机、负荷、OLTC有载调压器等等,其中负荷模型的完善最为重要。对于发电机来说,已有研究成果严格证明了系统是否发生非周期电压失稳与发电机调节系统的结构和时间常数无关,只取决与它的稳态增益《电力系统动态元件特性对于电压稳定性的影响》一文更进一步证明了对于发电机来说,系统电压稳定极限与原动机及其调速系统的稳态增益无关,只与励磁系统的稳态增益有关。(2)在线电压稳定监控
电压稳定监控程序应帮助调度员根据当前或未来一段时间内可能出现的运行状态,迅速、准确地做出判断,诸如当前系统是否可能发生电压崩溃等等,从而正确采取预防措施,因此非常需要在线电压稳定监控指标及其相应的程序。目前,国内电力系统在这一方面也开展了相当多的研究,例如天津大学利用局部L指标,对电力系统在线电压稳定局部监控做了相关研究,提出了只对弱节点集即系统内负荷关键点实施监控的方案。(3)数字仿真技术
属于时域仿真分析法,能够很好地反映电压崩溃的全过程,但是无法提供敏感度和稳定域度的信息。同时模拟过程需要占用大量的CPU时间,对硬件要求很高,对结果的分析需要消耗大量的人工。为了能准确、快速的得出结果,可能需要发展一种应用专家系统或神经网络等技术的专门的分析方法。改善电压稳定的技术
前面已经通过分析得出了在电压崩溃过程中的一些关键因素,从而可以定性地给出一些防止电压崩溃的技术手段。(1)使用串联和并联电容器
对于110-35kV的架空线路,如线路长度很长、负荷变化范围很大,可在线路上串联电容器。使用串联电容器可以有效地减小线路电抗,从而降低无功网损。线路可以从送端向无功短缺的受端送更多的无功,从而减小线路级联效应对电压稳定的负作用。虽然过多使用并联电容器可能是导致电压不稳定的部分原因,但适当使用并联电容器可在发电机中留出“旋转无功储备”,这部分旋转无功储备对保持电压稳定起着积极的作用。(2)使用SVC静止无功补偿器
SVC的使用可以有效的控制电压和防止电压崩溃。(3)使用低电压切负荷装置
过重的负荷是导致电压崩溃的直接原因,根据一次侧电压的下降切除受端系统的部分负荷,对于防止电压崩溃非常有效。(4)发电机的控制
根据灵敏度分析,可以指出系统中哪些发电机的停运使电压下降最明显,只要有可能,就应该投入这些发电机,以提供电压支持。发电机励磁系统受限是导致电压崩溃的重要原因,因此要进一步定义无功过负荷的能力,训练运行人员使用它,并重新整定保护装置以便不再阻碍无功过负荷的使用。在无功短缺地区,应当选用额定功率因数为0.85或0.8的低功率因数发电机。(5)有载调压变压器OLTC的控制
根据电压稳定在线监控,如果当前系统的电压稳定域度较小,那么为防止电压崩溃现象的发生,调度员在电压持续降低时,应当停止上调有载调压变压器低压侧的分接头,而采用手动切负荷的方法来恢复电压。结论
(1)现有的电压稳定分析程序大多基于静态电压稳定分析,可以解决前面提出的第一、第二两个问题,即给出当前系统运行状态的电压稳定裕度,指出系统中影响电压崩溃的关键因素和可能首先发生电压崩溃的区域等。需要指出的是,现在普遍认为,用静态分析方法得出的结果,难以令人信服,需要接受动态机理的检验。要解决前面提出的第三个问题即大扰动下系统是否发生电压崩溃,需要采取动态的电压稳定分析方法,现在这方面还处于研究过程,缺乏实用化程序。
(2)要进行动态的电压稳定分析方法,首先要建立系统的动态元件模型。因此下一阶段的工作重点在于建模,具体包括发电机励磁系统的稳态增益、OLTC的动作、负荷模型等,其中负荷动态模型的建立是关键。同时要进一步研究发电机无功过负荷能力,以便尽可能的利用发电机和励磁机的过负荷能力来推迟电压崩溃。
(3)在现阶段缺乏可靠的元件动态模型及电压稳定分析程序的时候,我们对于可能发生电压崩溃的地区如淮北乃至整个江北220kV电网,装设了18套低电压切负荷自动装置,其中安庆变装设在110kV母线上。在洛河电厂装设的220kVⅠ母线跳闸远切负荷装置对于防止江北大受电方式下,可能导致的电压崩溃事故有着重要作用。同时我们还在进一步研究淮北电网的稳定问题,包括功角稳定和可能出现的电压稳定问题。参考文献
1.段献忠、何仰赞、陈德树,电力系统电压稳定性的研究现状。电网技术,1995;NO4 2.Y.H.Song、J.F.Macqueen、D.T.Y.Cheng,onvoltagestabilityinelectricpowersystems。1994 3.余贻鑫、王成山,电力系统稳定性理论与方法。科学出版社,1999 4.Hsiao-DognChiang、lanDobson、RobertJ.Thomas,onvoltagecolltagecollapseinElectricPowerSystems。IEEE,1990;NO2 5.郭剑、王伟胜、吴中习,电力系统动态元件对电压稳定极限的影响。电网技术,1998;NO9
6.贾宏杰、余贻鑫、王成山.利用局部指标进行电压稳定在线监控的研究, 电网技术,1999;NO1
7.韩祯祥、吴国炎.电力系统分析, 浙江大学出版社, 1993 8.华中理工学电力系统分析课题组,静态电压稳定安全分析软件系统总体设计简介, 1998
第四篇:地基质量事故分析
基础质量事故分析
基础质量取决于勘察、设计、施工等许多因素,稍有不慎,就可能造成质量事故。对质量事故的分析与处理是否正确,往往影响建筑物的安全使用,工程造价及工期。基础质量取决于勘察、设计、施工等许多因素,销有不慎,就可能造成质量事故。对质量事故的分析与处理是否正确,往往影响建筑物的安全使用,工程造价及工期。根据我对工程事故的学习和了解,认为造成桩基质量事故主要原因有以下几类。
一、桩基础事故定义及桩基础事故原因
桩基础事故是指由于勘察、设计、施工和检测工作中存在的问题,或者桩基工程完成后其他环境变异原因,造成桩基础受损或破坏现象。
由桩基础事故定义可看出桩基础事故主要原因有:
1.工程勘察质量问题
工程勘察报告提供的地质剖面图、钻孔柱状图、土的物理力学性质指标以及桩基建议设计参数不准确,尤其是土层划分错误、持力层选取错误、侧阻端阻取值不当,均会给设计带来误导,产生严重后果。
2.桩基础设计质量问题
主要有桩基础选型不当、设计参数选取不当等问题。不熟悉工程勘察资料、不了解施工工艺,主观臆断选择桩型,会导致桩基础施工困难,并产生不可避免的质量问题;参数指标选取错误,结果造成成桩质量达不到设计要求或造成很大的浪费。
3.桩基础施工质量问题
施工质量问题一般是桩基础质量问题的直接原因和主要原因。桩基础施工质量事故原因很多,人员素质、材料质量、施工方法、施工工序、施工质量控制手段、施工质量检验方法等各方面出现疏忽,都有可能导致施工质量事故。
4.基桩检测存在问题
基桩检测理论不完善、检测人员素质差、检测方法选用不合适、检测工作不规范等,均有可能对基桩完整性普查、基桩承载力确定,给出错误结论与评价。
5.环境条件的影响
例如,软土地区,一旦在桩基础施工完成后发生基坑开挖、地面大面积堆载、重型机械行进、相邻工程挤土桩施工等环境条件变化,均有可能造成基桩严重的桩身质量问题,而且常常造成的是大范围的基桩质量事故。
二、几种主要桩型常见施工质量事故分析
1.打入式预制桩
①桩身本身质量问题。主要原因有预制桩生产过程中材料、胎膜、生产工艺、养护龄期等控制不严导致桩身强度不够,桩身几何尺寸偏差大等质量问题,装卸、运输、堆放不当造成桩身裂缝等缺陷,在施工前又未能及时发现。桩身本身质量有缺陷的桩经锤击打入后,将严重影响基桩承载力,造成的事故是很难处理的。
②接桩质量问题。主要原因有接桩材料、接桩方法等原因,如上下节平面偏差、焊接不牢、焊接后停歇时间过短、螺栓未拧紧、胶泥质量差等。可采用对接桩部位进行补强的方法处理。③桩身垂直度问题。原因很多,如施工中垂直度控制、布桩密度、打桩路线、持力层面坡度、地面超载、基坑开挖、相邻工程挤土桩施工等,造成基桩倾斜,严重影响桩身质量及基桩承载力。处理方法将根据事故原因采用纠偏补强、补桩等方法。
④“拒打”造成的质量问题。打入式预制桩施打过程中常出现送桩困难或无法送桩现象,桩长达不到设计要求。主要原因有勘察资料失实,设计参数、桩型、持力层选用不当,施工中采用的锤重锤垫不当,停歇时间长,或出现复杂地质现象(如夹砂土层等硬土层、地下孤石等),过多的重锤打击,易导致桩头碎裂,桩身损伤。
⑤“上浮吊脚”造成的承载力不足问题。在深厚软土地区,已打入的桩在施工其相邻基桩时,往往会发生整桩“上浮”、桩端离开持力层的现象。这种现象对基桩承载力影响很大,但如果采取措施将“上浮吊脚”桩压回原位,一般说其承载力能满足设计要求。
⑥锤打出现的桩身质量问题。当重锤打击桩头时,由桩头向桩身射入的压力波,当桩长较长、桩尖为软土层时,桩尖将反射回拉力波,此时的拉力波往往会集中在桩的中部0.3~0.7倍桩长的位置;当桩尖为硬土层时,桩尖将反射回压力波,压力波到达桩顶后又产生拉力波,该拉力波一般集中在桩头部分。如果拉力波产生的拉应力超过预制桩桩身混凝土抗拉强度,混凝土将会出现裂缝,形成断裂面。应选用合适的桩型,采用合适的重锤与锤垫,避免锤打中出现桩身质量问题。
2.钻(冲)孔灌注桩
钻孔灌注桩施工包括泥浆护壁、水下成孔、水下下笼、清孔、水下灌注等工序,每道工序多或轻或重会出现一些缺陷。
①钻孔倾斜。在钻进过程中,遇孤石等地下障碍物使得钻杠偏斜,桩倾斜程度不同,对基桩承载力的影响不同,由于该类事故无法通过基桩质量检测手段测定,所以施工中的垂直度检验显得尤其重要,特别是大直径钻孔灌注桩。
②坍孔。易造成断桩、沉渣、孔径突变等缺陷。主要原因有:
1)由于护壁不力。如泥浆质量差,易沉淀,比重小,护筒内无足够压力水头,护筒埋深不够,导致筒底漏土等。
2)钻进速度过快。
3)操作碰撞。如下落提升钻具、放置钢筋笼时碰撞,由于无导向装置的正循环钻机,钻杆细,刚度小,摇晃大而造成钻头导向圈碰撞孔壁。
4)土质原因。如粉砂土等粗颗粒土层以及松散地层中成孔时,常易发生坍孔事故。
5)有较强的承压水,并且水头较高,易造成孔底翻砂和孔壁坍塌。
③充盈系数过大。一般设计要求混凝土浇灌充盈系数在1.05~1.25之间,但由于成孔的工艺,地质条件等原因,造成充盈系数超过1.3,甚至于达到1.6或更大,这都属于施工不正常现象,它既造成材料的浪费,也造成左右桩刚度不一致的弊病。
④桩身缩径、夹泥、断桩、离析,均为不同程度的桩身质量问题,对基桩承载力有很大影响,一般说发生原因有:
1)断桩。混凝土浇注过程中,导管不慎拔出混凝土面,或由于堵管、停电等原因而采取的拔管措施,或软土层中流土,砂土层中流砂挤入钢筋笼内,或是导管大量进水。混凝土灌注中出现的这些事故,会使混凝土灌注面与护壁泥浆混合,形成断裂面。此外,采用机械挖土时,机械设备对桩头的碰撞易使桩浅部断裂。钻孔灌注桩在使用商品混凝土时,在混凝土浇注过程中,由于坍孔较大,实际灌注的混凝土量大大超过预估的混凝土量,在再灌时的混凝土超过原混凝土的初凝时间,产生桩身浅部局部裂缝。
2)夹泥。混凝土灌注过程中,出现坍孔和内挤,坍落和挤入的土体混入混凝土中,这是一种严重桩身缺陷。
3)离析。混凝土和易性差、混凝土初灌量过小、导管进水、导管埋深不足、在混凝土初凝前地下水位变化等,造成桩身局部断面混凝土胶结不良,离析。
4)缩径。钢筋笼设计太密,如果混凝土级配和流动性差时,造成桩身某些断面尺寸达不到设计要求,或地下承压水对桩周混凝土侵蚀。
⑤孔底沉渣。孔底沉渣对端承桩、摩差端承桩来说,孔底沉渣对其承载力有着致命的影响,处理也很困难。施工中未按有关规范要求清孔、清孔后未及时灌注混凝土、下钢筋笼时碰撞孔壁、混凝土初灌量太小、混凝土灌注前出现坍孔,这些现象多会造成孔底沉渣超标,采用正循环法施工时沉渣问题更为突出。
⑥初灌方法不当造成的质量事故。在混凝土初灌过程中存在一定的质量隐患,如采用阻球法进行初灌时,如果桩径较小,阻球常夹在导管与钢筋笼之间而无法上浮,采用混凝土块法又易堵塞导管,采用砂袋法时,由于砂袋密度与混凝土接近,但强度低于混凝土,一旦沉于桩底易造成沉渣,夹在桩身造成桩身质量缺陷。故建议采用混凝土袋法,能达到不堵管,不造成沉渣,满足桩身强度的要求。
⑦桩头浮浆。这是正常现象,但桩头必须处理后才能使用,由于桩顶是承受荷载最大的部位,所以这里着重要提出的是如何处理桩顶浮浆,对大直径钻孔桩,建议先采用气泵等机械方法进行上部清桩,在距设计标高0.5米时,必须采用人工凿除法,对小直径桩建议采用人工凿除法,避免机械施工。另外,对现场灌注桩在可能的情况下应加大超灌长度。
3.人工挖孔桩
理论上讲,人工挖孔是最容易控制施工质量的桩型,但实际施工中应保证以下的施工质量:
①桩底积水。桩底积水如果可以人工清除,必须清除、擦干。如果存在地下渗水,人工无法清干,必须采用机械降水,否则极易造成桩底混凝土离析,由于一般的挖孔桩属端承桩,桩底混凝土离析造成的事故很难处理。
②桩身混凝土的灌注。对桩长较短的桩,可采用滑板法灌注,不应采用直接倾倒法。桩长较长的桩,严禁直接倾倒,否则极易造成混凝土离析、混凝土夹气、夹泥;不应采用滑板法,也易造成混凝土离析、混凝土夹气、夹泥;应采用导管法送浆,边送边采用机械振捣。
4.沉管灌注桩
在多层工业与民用建筑工程中,就地沉管灌注桩与其技术经济综合比较上的优势被广泛采用。沉管灌注桩为挤土型桩,桩径一般为Ф377、Ф426,桩长20m左右。近些年由于施工设备与技术的提高,桩径有着逐步增大的趋势,出现了Ф500、Ф550桩径的沉管桩,桩长在浙江省宁波地区最长达到45m左右,长径比达到80~90。沉管桩有振动、静压等施工方法,鉴于沉管灌注桩截面尺寸的特点,无论哪种施工方法,施工中易产生以下质量问题有:
① 缩径、夹泥、离析。混凝土充盈系数硬土中小于1.1,软土中小于1.2。原因主要有:
1)土的性状原因。在软土中沉桩时,土受到强制扰动产生超孔隙水压力,在桩管拔出后挤向刚灌注的混凝土,使桩身局部缩径或夹泥。所以软土层中一定要控制拔管速度。在软硬土层交界处,也极易发生缩径现象,如回填的池塘,回填土下夹有未被清除的河底淤泥,在这种地层中沉管施工,缩径往往发生在淤泥地层中。在桩身埋置范围内的土层中有承压地下水,桩身会产生局部缩径现象。
2)拔管速度过快。施工中不按有关规范要求,拔管速度过快,造成管内混凝土高度过低,使得混凝土的排挤力小于地层地侧压力而造成缩径夹泥。
3)管内混凝土量少。管内混凝土应保持2m左右高程,并高于地下水位1.0~1.5m或不低于地面高程,否则管外土体挤入造成缩径夹泥。
4)混凝土质量差。坍落度小,和易性差,拔管时管壁对混凝土产生摩阻力造成缩径离析。
5)桩间距过小,邻近桩施工时挤压也有可能造成缩径。
6)采用反插法施工工艺时,反插深度太大,易把孔壁周围的土体挤入桩身,形成夹泥。
7)桩身渗水引起的离析。沉桩时,土受到强制扰动产生超孔隙水压力,桩周土如果为渗透系数较大的土层时,在桩管拔出混凝土灌注的过程中,土中的超空隙水压力会向尚未初凝的桩身混凝土中渗透,沿桩身向水压力较小的桩顶上移,常见桩顶冒水现象,造成桩身上部混凝土离析,这种质量事故很难控制,施工中应加强观察。
②断桩。一般为贯穿全截面的水平向裂缝,造成断桩的原因与缩径基本相同,主要是工程地质、施工工艺、混凝土质量、设计桩距、挖土碰撞等原因。尤其在软土地区,当布桩密度较大时,邻近桩互相水平向挤压,常常在钢筋笼底部形成断裂面,断桩严重程度大于缩径。
③“吊脚桩”。桩底混凝土架空或桩底进泥砂,在桩底部形成薄弱层,造成原因一般有:
1)预制桩尖质量差。在沉管时,桩尖由于强度不足被挤压破损后进入桩管,在振拔时未能将桩尖压出,直到管拔至一定高度才落下,但未能落到原标高,形成“吊脚”;或者桩尖被挤压破碎后,泥砂和水从破损处挤入桩管,与桩底混凝土混合成松软的薄弱层。
2)桩长度较长时,活瓣桩尖被周围土体包围打不开,拔管至一定高度后才打开。
3)混凝土级配不合理,和易性差,在拔管时,混凝土拒落,造成桩尖下没有混凝土或量少,一般称为“软桩”,类似这种故障可使用大流动性的混凝土或如压拔管的办法来杜绝事故的出现。
5.环境变异
导致桩基础事故的环境因素很多,常见的因素有:
①基础开挖对工程桩造成的影响。例如,机械挖土时,挖机碰撞桩头,一般容易导致桩的浅部裂缝或断裂。在软土地区深基坑开挖时,基坑支护结构出现问题时,会使基坑附近的工程桩产生较大的水平位移,灌注桩桩身中上部会裂缝或断裂,薄壁预应力管桩桩身上部裂缝或断裂,厚壁预应力管桩与预制方桩在第一接桩处发生桩身倾斜,基坑降水产生的负摩阻力对桩身强度较差的桩产生局部拉裂缝。
②相邻工程施工的影响。间距较近的邻近建筑施工密集的挤土型桩时,如不采取防护措施,土体水平挤压可能造成桩身一处甚至多处断裂。
③地面大面积堆载,桩身倾斜,桩中上部裂缝或断裂。
④在刚施工完成的桩基础上重型机械行进,尤其是预制桩桩基础工程,对桩头水平向挤压造成桩头水平位移,桩身中上部裂缝或断裂。
三、结语
基桩工程是建筑工程中最重要的隐蔽工程,但桩基工程质量受多项因素的影响,如工程勘察、基桩设计、环境变化、施工质量等,尤其施工质量最难控制,对桩基工程质量影响最大,所以熟悉桩基础施工中常见质量事故以及事故发生原因,并了解常见质量事故的处理方法,才能有效控制桩基工程质量,保证整体工程的安全。
第五篇:稳定性回报分析提供材料 2
稳定回报论证报告
《项目稳定回报论证》报告是国际投、融资领域投资商确定项目投资与否的重要依据。任何投资人,对于其所投资的项目,永远追求的不是高额利润,而是稳定的投资回报。主要对项目背景和由来、投资环境、相关产业状况、项目地地理环境、项目企业资源和能力、SWOT、产品市场情况、销售策略、财务详细评价、项目价值估算,尤其是项目收益估算和投资风险规避等进行客观的分析和研究,反映项目各项经济指标,得出科学、客观的投资结论。
项目稳定回报论证报告是在全面系统分析目标企业和项目背景的基础上,按照国际通行的企业财务测算方法,站在第三方角度客观公正地对企业、项目的投资回报进行分析。不仅为投融资双方充分认识投资项目的投资价值与风险,更重要的是通过充分评定项目优势,加速企业或项目法人拥有的人才、管理、技术、市场、项目经营权等无形资源与企业的有形资本的有机融合,对企业和投资机构提供重要的投融资决策参考依据。
项目稳定回报论证报告的意义:
追求稳定的投资回报是投资领域奉行的一贯准则,因此,投资人最为关心的是稳定的投资回报,并将可能出现的风险控制在自己可以预防的范围。而可控的风险标准就是:是否能够达到稳定的预期的投资回报。利用精确、科学、可靠的风险预测分析手段,对未来将可能
出现的投资风险,提出周密的防范措施和解决办法,避免可能带来的经济损失。
为顺利完成贵公司稳定性回报分析,应结合公司以下一些材料说明,1、公司介绍
主要包括有:公司简介、股权构成、发展历程、经营目标、管理制度。
2、产品产品与技术
主要包括有:产品介绍、公司的主要产品、产品加工技术性能。
3、市场分析
产品市场供需分析、产品市场供需分析、公司的目标市场客户、相关行业政策。
4、竞争分析:
行业竞争格局分析、行业的巨头、国内产业特点与趋势、国内市场竞争能力分析、公司产品竞争优势。
5、市场营销
产品定价机制分析、产品价格影响分析、产品供销格局分析、产品供应渠道分析
6、投资前景预测
投资背景、公司当前运营情况、融资用途、股本结构、202_-202_年发展战略、投融资策略分析。
7、风险分析
市场风险、生产风险、竞争风险、政策风险、成本控制风险、财
政风险
8、管理
公司组织结构、管理团队、管理目标、产业管理机制。
9、附件
营业执照、组织机构代码证、税务登记证、组织机构代码证、安全生产许可证、公司的资产负债表、公司产品的图片。