首页 > 文库大全 > 精品范文库 > 12号文库

有理数的除法导学案(第一课时)

有理数的除法导学案(第一课时)



第一篇:有理数的除法导学案(第一课时)

有理数的除法导学案(第一课时)

学习目标:

1、使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法的运算

2、让学生理解有理数倒数的意义,了解有理数除法也可分为商的符号确定和绝对值运算两部分组成。

3、知道除法是乘法的逆运算,0不能作除数,培养学生的逆向思维。学习重点:有理数的除法法则和倒数概念。

学习难点:对0不能作除数与0没有倒数的理解,以及除法与乘法的互换。学习过程:

一、课前自主学习教材p34页内容,完成预案。

1.填空:① 8÷(-2)=8×(); ② 6÷(-3)=6×();

12③ -6÷()=-6×; ④ -6÷()=-6×。

做完填空后你有什么发现归纳:

①有理数除法法则:除以________________的数,等于___________________ . 这个法则也可以表示成:ab_________().②从有理数除法法则,可得出:

两数相除,同号得_____ ,异号得____ ,并把_________相____ , 0除以_______________________的数,都得_____ .(你能说说为什么吗?)2计算:

28(1)32(4);

(2)()()

(3)(3)0.3

5二、重点难点突破: 例5(详见教材34页)

分析强调:(1)符号法则;在进行除法运算时一定先确定商的符号(2)法则运用:一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.完成下面的练案。

练习:1 计算下列各题:(1)(-18)÷6;(2)(-(3)

12)÷(-); 5564÷(-)(4)1÷(-9)(5)0÷(-8)2552.若两个有理数的商是负数,那么这两个数一定().A.都是正数 B.都是负数 C.同号 D.异号 3.若ab=1,且a=-14.课本p35练习

例6 化简下列分数:详见课本p35页

分析:在进行分数化简时,可以理解成分子除以分母,按照有理数除法法则计算。

三、巩固提高,完成下面的练案。

1.计算。(一0.75)÷0.25

(-18)÷6;

(-63)÷(-7)2.下列计算正确的是().

2,则b= . 3ac3.若b> 0,b< 0,c< 0,则a__0,b__0.

4.若a< b< 0,则下式成立的是()

11aa

A.a< b

B.ab< 1

C.b >1

D.b< 1 6.选做题

1已知:︱x︳=4, ︱y︱=5.则x/y的值是多少?

四.总结、收获

有理数除法是乘法的逆运算,是借助倒数为媒介,将除法运算转化为乘法运算进行(特别注意,因为0没有倒数,所以除数不能为0);第二,有理数除法的运算步骤:第一步,确定商的符号,第二步,求出商的绝对值。五.布置作业:习题1.4第3、4、6题。

第二篇:有理数除法导学案7

有理数的除法导学案

学习目标:

1、使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。

2、让学生理解有理数倒数的意义,了解有理数除法也可分为商的符号确定和绝对值运算两部分组成。

3、知道除法是乘法的逆运算,0不能作除数,培养学生的逆向思维。

学习重难点:

重点:有理数的除法法则和倒数概念。

难点:对0不能作除数与0没有倒数的理解,以及乘法与除法的互换。

自学指导

一、预习课文53----54页有关知识填空

1、倒数:

(注意:一个正有理数的倒数仍是正有理数;一个负有理数的倒数仍是负有理数;0没有倒数。即:a(a≠0)的倒数是1/a,0没有倒数。)

2、除以一个不等于零的数,等于乘以这个数的,用字母表示为:a÷b=。(注意:这表明除法可以转化为乘法来进行)

3、同号两数相除得,异号两数相除得,零除以任何一个不等于零的数都得。合作探究

1.写出下列各数的倒数:

(1)5/6;(2)3/7;(3)–5;(4)1;(5)–1;(6)0.22、计算下列各题:

(1)(-18)÷6;(2)(-1/5)÷(-2/5);(3)6/25÷(-4/5)。

注意:先确定符号,再算数值。

3、简下列分数:

(1)-12-24(2)4-16

解:

4、算下列各题:

(1)(解:-17417473-)÷(-6);(2)-3.5÷×(-)。6846

能力提升

6733.5246784

1、计算:(1)(2)

2、下列计算正确吗?为什么?

3÷11 ÷44

=3÷1

=3

达标测评

1、若ab<0,则a/b的值是()

A、大于0B、小于0C、大于或等于0D、小于或等于02、下列说法正确的是()

A、任何数都有倒数B、-1的倒数是-1

C、一个数的相反数必是分数D、一个数的倒数必小于13、若x=1/x,则x=。

4、倒数等于它本身的数是。

5、若a、b互为倒数,则ab=。

6、计算:

(1)((3)(-

3.化简下列分数:-3618)÷6(2)(-18)÷(-12)÷(-)55395)÷3(4)(-6)÷(-4)÷(-)44

(1)212547(2)(3)(4)1871

2我的收获:

1、有理数的除法是乘法的逆运算,会求一个数的倒数。

2、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

3、0不能作除数。

第三篇:青岛版有理数除法导学案

有理数的除法导学案

教学目标:

1、使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。

2、让学生理解有理数倒数的意义,了解有理数除法也可分为商的符号确定和绝对值运算两部分组成。

3、知道除法是乘法的逆运算,0不能作除数,培养学生的逆向思维。

教学重难点:

重点:有理数的除法法则和倒数概念。

难点:对0不能作除数与0没有倒数的理解,以及乘法与除法的互换。

课前预习

1、同号两数相除得,异号两数相除得,零除以任何一个不等于零的数都得。

2、除以一个不等于零的数,等于乘以这个数的,用字母表示为:a÷b=。

课堂探究

导入新课

与小学学过的一样,除法是乘法的逆运算。这里与小学所学不同的是被除数和除数可以是任意有理数(0作除数除外)例1 计算:(-6)÷2。

这也就是要求一个数“?”,使(?)×2=-6。

根据有理数的乘法运算,有(-3)×2=-6,所以(-6)÷2=-3。另外,我们知道:(-6)×

12=-3,所以(-6)÷2=(-6)×

12。

这表明除法可以转化为乘法来进行。练习:

填空:① 8÷(-2)=8×(); ② 6÷(-3)=6×(); ③ -6÷()=-6×; ④ -6÷()=-6×

3123。

做完填空后,同学们有什么发现?

对于有理数仍然有:乘积是1的两个数互为倒数,如:2与别互为倒数。

12、-2与-

12分因此,一个正有理数的倒数仍是正有理数;一个负有理数的倒数仍是负有理数;0没有倒数。

即:a(a≠0)的倒数是

1a,0没有倒数。

这样,有理数的除法都可以转化为乘法,即: 除以一个数等于乘以这个数的倒数。用式子表示为:a÷b=a×

1b,(b≠0)。注意:0不能作除数。

例2 规定向东为正,向西为负。

一人向东走了15千米,用了3小时,问平均1小时向东走多少千米? 一人向西走了15千米,用了3小时,问平均1小时向西走多少千米? 第一个人向西走了15千米,第二个人向西走了3千米,问第一个人走的路程是第二个人走的路程的几倍?

因为除法可化为乘法,所以与乘法类似有有理数除法法则: 两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。例1 计算下列各题:

(1)(-18)÷6;(2)(-)÷(-);(3)

5512625÷(-

45)。

解:略

注意:先确定符号,再算数值。例

2、简下列分数:(1)123;(2)

2416。

解:略。

3、算下列各题:(1)(-24解:略。巩固练习: 67)÷(-6);(2)-3.5÷

78×(-

34)。

1.写出下列各数的倒数:(1)56;(2)37;(3)–5;(4)1;(5)–1;(6)0.2 2.计算:(1)363;(2)

212(3)16(4)05

7380.2(5)(6)84

3.计算: 3934(1)

(2)(-6)÷(-4)÷(-

114)

4.下列计算正确吗?为什么?

3141113313444

四、课堂小结

1、有理数的除法是乘法的逆运算,会求一个数的倒数。

2、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。3、0不能作除数。

课后延伸

1、若ab<0,则ab的值是()

A、大于0 B、小于0 C、大于或等于0 D、小于或等于0

2、下列说法正确的是()

A、任何数都有倒数 B、-1的倒数是-1 C、一个数的相反数必是分数 D、一个数的倒数必小于1

3、若x=1x,则x=。

4、倒数等于它本身的数是。

5、若a、b互为倒数,则ab=。

6、计算:(1)(-934)÷3 15(2)641 4.下列计算正确吗?为什么?

3141113313 444

六、教(学)后反思

第四篇:有理数的除法(第一课时)

1.4.2有理数的除法

教学目标: 知识与技能:理解倒数的意义,会求有理数的倒数。了解有理数除法的意义,理解有理数除法的法则,会进行有理数的除法运算.

过程与方法:通过有理数除 法的法则的导出及运用,学生能体会转化的思想。

感知数学知识具有普遍联系性、相互转化性。

情感与态度:通过有理数乘法运算的推广,体会知识系统的完整性。

体会在解决问题的过程中与他人合作的重要性。通过对解决问题的过程的反思,获得解决问题的经验。

教学重点

有理数的除法法则及其运用 教学难点

商的符号的确定0不能作除数的理解。教学教具:多媒体课件 教学方法

引导发现法 类比归纳法 课时安排

第一课时 教学过程 一 新课导入

问题:有四名同学参加数学测验,以90分为标准,超过得分数记为正数,不足的分数记为负数,评分记录 如下:+

5、-20。-19。-14。求:这四名同学的平均成绩是超过80 分或不足80分? 学生在教师的激情互动中,思考列式(+5-20-19-14)÷4 化简:(-48)÷4=——(但不知如何计算)

从实际生活引入,体现数学知识源于生活及数学的现实意义。二 探究规律

求下列各数的倒数:

(1)-;(2)4 ;(3)0.2(4)-0.25;(5)-1 学生对老师的提问进行抢答 为学习今天的有理数除法先复习小学倒数概念 1探究活动

填空:

① 8÷(-2)=8×(); ② 6÷(-3)=6×(); ③ -6÷()=-6× ;

④ -6÷()=-6×。

教师强调0没有倒数。学生填空后试着得出互为倒数的概念(乘积是1的两个数互为倒数)

培养学生发现问题总结问题的能力

2探究活动

计算:(-6)÷2 根据除法是乘法的逆运算,引导学生 将有理数的除法运算转化为学生已知的乘法运算。

强调0不能作除数。(举例强化已导出的法则)学生自主探究有理数的除法运算转化为学生一致的乘法运算

学生归纳导出法则,小组合作交流探究发现结果 3探究活动

计算(1)(-105)÷7(2)6÷(-0.25)

(3)(-0.09)÷(-0.3)教师强调(1)除法法则与乘法法则相近,只是“乘”“除”二字不同,很容易记。.(2)此法则是有理数的除法运算的又一种 方法。

学生自己观察回忆,进行自主学习和合作交流, 得出有理数的除法法则(两数相除,同号得正,异号得负,并把绝对值相乘。0除以任何不等于0的数都得0)激发学生学习的积极性和主动性满足学生的表现欲和探究欲 三 巩固练习

1、计算 :

(1)(- 4)÷(-6)÷(-8)(2)(-5)÷(-8)

学生试着独立完成 有理数的除法法则的灵活应用,并渗透了除法、分数、比可互相转化。

2、通过本节的学习,你有哪些体会?请与同学交流。同学之间进行交流,小结本节内容 培养了学生总结问题的能力 作业布置:练习册 板书设计

有理数的除法

有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数。表达式:a÷b=a×(1/b)

(b≠0)

两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0.教学反思

《有理数的除法》一课是传统内容,在设计理念上,我努力体现“以学生为主”的思想,从学生已有的知识经验出发,展开教学,使学生自然进入状态,一切都很顺畅,达到了课前设计的构想。在教学中,突出了学生在教学学习过程的主体地位,突出了 探索式学习方式,让学生经历了观察、实践、猜测、推理、交流、反思等活力,既应用了基本概念、基础知识又锻炼了学生能力。

在这节课中,本人认为也有不足之处,由于学生的层次各异,在总结问题时,中等以下和学习有困难的学生明显信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题。

湖北十堰

第五篇:1.4.2 有理数的除法(第一课时)

1.4.2 有理数的除法(第一课时)

教学目标 1.知识与技能

①了解有理数除法的定义.

②经历有理数除法法则的过程,会进行有理数的除法运算.

③会化简分数. 2.过程与方法

①通过有理数除法法则的导出及运用,让学生体会转化思想.

②培养学生运用数学思想指导数学思维活动的能力. 3.情感、态度与价值观

在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.

教学重点难点

重点:正确应用法则进行有理数的除法运算.

难点:怎样根据不同的情况来选取适当的方法求商.

教与学互动设计

(一)创设情境,导入新课

我们在前几节课和大家一起学习了有理数的乘法.并且还由乘法而认识了有理数的倒数问题.那大家知道乘法的逆运算是什么?该如何计算和应用.这就是本节课我们学习的内容.

(二)合作交流,解读探究

试一试(-10)÷2=?

交流 因为除法是乘法的逆运算,也就是求一个数“?”,使(?)×2=-10 显然有(-5)×2=-10,所以(-10)÷2=-5 我们还知道:(-10)×

12=-5 由上式表明除法可转为乘法.即:(-10)÷2=(-10)× 再试一试:(-12)÷(-3)=?

【总结】 除以一个数,等于乘以这个数的倒数(除数不能为0).•用字母表示成a÷b=a×1b,(b≠0).

(三)应用迁移,巩固提高 例1 计算:(1)(-36)÷9(2)(-63)÷(-9)(3)(-(4)0÷3(5)1÷(-7)(6)(-6.5)÷0.13(7)(-451225)÷

35)÷(-

25)(8)0÷(-5)

提出问题:在大家的计算过程中,应用除法法则的同时,有没有新的发现?

学生活动:分组讨论.

【总结】 两数相除,同号得正,异号得负,并把绝对值相除.0•除以任何一个不等于0的数,都得0.

【点拨】 这个运算方法的得出为计算有理数除法又添了一种方法.我们要根据具体情况灵活选用方法.大家试来比较一下,以上各题分别用哪种运算法则更简便.

【讨论】(1)、(2)、(5)、(6)用确定符号,并把绝对值相除.

(3)、(7)用除以一个数,等于乘以这个数的倒数.

【引导】 小学里我们都知道,除号与分数线可相互转换.如个关系,我们可以将分数进行化简.

例2 化简下列分数

(1)-45-15-123=-12÷3.•利用这(2)

12-36(3)

-7-14(4)

0-8

学生活动:口答.

备选例题(202_·福建南平)

a|a|+

b|b|(ab≠0)的所有可能的值有(C)

A.1个 B.2个 C.3个 D.4个

【点拨】本题含有绝对值符号,故要考虑a、b的正负情况.当a>0时,a|a|=1;当a<0时,a|a|=-1.

【答案】 C 例3 试着用计算器计算

(1)-0.056÷1.4 =-0.04;(2)1.252÷(-4.4)=-0.285

(3)(-3.561)÷(-1.96)=1.817

【说明】 让学生练习用计算器进行有理数的除法计算.通过自己的亲身的探索、操作而增强学生的独立意识和动手能力.

(四)总结反思,拓展延伸

本节课大家一起学习了有理数除法法则.有理数的除法有2种方法,•一是根据除以一个数等于乘以这个数的倒数,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种.

1.(1)m为负整数,它的倒数

1m,它的相反数为-m,试比较m,1m和-m的大小.

(2)m为正整数,结论又怎样?

(3)m为非零有理数,讨论m,【答案】(1)-m>时,-•m>1m1m1m和-m的大小.

1m≥m(2)m≥

1m>-m(3)①-1m>

1m1m,②m≤-1≥m,③当0m>-m,④m≥1时,m≥>-m.

(六)课堂跟踪反馈

夯实基础 1.选择题

(1)如果一个数除以它的倒数,商是1,那么这个数是(D)A.1 B.2 C.-1 D.±1(2)若两个有理数的商是负数,那么这两个数一定是(D)

A.都是正数 B.都是负数 C.符号相同 D.符号不同

(3)|a|a=-1,则a为(B)

A.正数 B.负数 C.非正数 D.非负数

(4)若a+b<0,ba>0,则下列成立的是(B)

A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 2.计算题

(1)(-217)÷(-

514)=6(2)3.5÷

78÷(-

117)=-

(3)-32÷(-7)÷(-

514)=-

35(4)(-1)÷(+

35)÷(-

37)=

359

提升能力 3.填空题

(1)若a、b是互为倒数,则3ab= 3 .

(2)相反数是它本身的数有 0,绝对值等于它本身的数是 非负数,倒数等于它本身的数是 1,-1 .

(3)若<0,且yz<0,那么x > 0.(填“)”、“〈”〉

(4)当 x=2 时,代数式没有意义.

(5)±1 的倒数等于本身,0 的相反数等于本身,非负数 的绝对值等于本身,•一个数除以 1 等于本身,一个数除以 –1 等于这个数的相反数.

开放探究

4.一家公司为了开发某种产品,需要每年向银行存款或取款,到今年,•存取款结果正好为零.如果把向银行的存款数(万元)记为正数,那么向银行的取款数(万元)就应当记为负数;如果把现在起向后的时间(年)记为正数,那么把现在起向前的时间(年)记为负数,在这个问题中,(1)(-100)÷4的实际意义是___________;

(2)(-100)÷(-4)的实际意义是_____________.

仿照上题,请你举一个实例,使问题的数量为:

(1)16÷(-2)(2)(-10)÷(-2)

【答案】 略 5.新中考题

(202_·北京)-13的倒数是(B)A.3 B.-3 C.

(七)资料采撷

D.-

大数学家维纳的故事

维纳(1894─1964)是最早在美洲数学界赢得国际荣誉的大数学家,关于他的轶事多极了.

维纳早期在英国,后来赴美国麻省理工学院任职,长达25年.他是校园中大名鼎鼎的人物,人人都想与他套近乎.有一次一个学生问维纳怎样求解一个具体问题,维纳思考片刻就写出了答案.实际上这位学生并不想知道答案,只是问他“方法”.维纳说:“可是,就没有别的方法了吗?”思考片刻,他微笑着随即写出了另一种解法.维纳最有名的故事是有关搬家的事.一次维纳乔迁,妻子熟悉维纳的个性,搬家前一天晚上再三提醒他.她还找了一张便条,上面写着新居的地址,并用新居的房门钥匙换下旧房的钥匙.第二天维纳带着纸条和钥匙上班去了.白天恰有一人问他一个数学问题,维纳把答案写在那张纸条的背面递给人家.晚上维纳习惯性地回到旧居.他很吃惊,家里没人.从窗子望进去,家具也不见了.掏出钥匙开门,发现根本对不上.于是他使劲拍了几下门,随后在院子里踱步.突然发现街上跑来一个小女孩.维纳对她讲:“小姑娘,我真不走运.我找不到家了,我的钥匙插不进去.”小女孩说道:“爸爸,没错,妈妈让我来找你.”

有一次维纳的一个学生看见维纳正在邮局寄东西,很想介绍一番.在麻省理工学院真正能与维纳直接说上几句话、握握手,还是十分难得的.但这位学生不知道怎样接近他才好.这时,只见维纳来来回回踱着步,陷于沉思之中.这位学生更担心了,生怕打断了先生的思维,而损失了某个深刻的数学思想.但最终还是鼓足勇气,靠近这个伟人:“早上好,维纳教授!”维纳猛地一抬头,拍了一下前额,说道:“对,维纳!”原来维纳正欲往邮签上写寄件人姓名,但忘记了自己的名字„„.

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.feisuxs.com/wenku/jingpin/12/2646525.html

相关内容

热门阅读

最新更新

随机推荐