首页 > 文库大全 > 精品范文库 > 12号文库

2.2有理数的减法gq

2.2有理数的减法gq



第一篇:2.2有理数的减法gq

2.2有理数的减法(1)一:教学目标

1. 经历探索有理数减法法则的过程,理解有理数减法法则。2. 能熟练进行有理数的减法运算。

3. 通过把减法运算转化为加法运算,让学生了解数学转化思想。二:教学重点、难点

掌握减法运算法则是本节课的重点。

探索有理数的减法法则,正确完成减法到加法的转化是本节课的难点。三:教学过程 1. 复习提问 1. 计算

(1)

(-5.2)+(-4.8)

(2)

(+6.5)+(+13.5)(3)

12.6+(-9.8)

(4)

—4.8+5.7(5)

—3.75+(+3.75)

(5)

0+(—9)在解答以上各题时,同时提问有理数加法法则 2. 做一做

(1)小明身高170厘米,小林身高168厘米,问小明比小林高多少厘米? 列式为:170-168=2(2)珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8844米-154米,问珠穆朗玛峰比吐鲁番盆地高多少米?

本题提示学生先列出算式8844-(-154)怎样进行这题的计算? 2.新课讲解 先看一个问题

(?)+(-3)= -8 根据有理数的加法运算,有(-5)+(-3)=-8 所有(-8)-(-3)=-5

① 试一试

(-8)+()=-5 易得

(-8)+(+3)=-5

② 比较①、②两式,得

(-8)-(-3)=(-8—)+(+3)③ 概括:由③式可得

有理数的减法法则:减去一个数,等于加上这个数的相反数 3. 例题讲解

例1. 计算

(1)(-32)-(+50)(2)7.3-(-6.8)

(3)(-2)-(-25)(4)12-21 分析:在解以上各题时注意先找减数,并求出它的相反数

解:略

例2. 计算

(1)0-(-3.18)-0.18(2)5.14-(-14.3)-(-8.12)

分析:以上各题可以先转化为加法,再运用加法的运算律进行计算 解:略。

例3. 我国吐鲁番盆地最低点的海拔是-154米,死海湖面的海拔是-329米。哪里的海拔更低?低多少?

4. 课堂练习

课本

课内练习1,2 5. 课堂小结

让学生看书读有理数减法法则后强调:由于把减数变为它的相反数,从而减法转化为加法.不论减数是正数、负数或零,都符合有理数减法法则。作业:课本

作业题 1~4.

第二篇:1.3.2有理数的减法练习2[定稿]

1.3.2有理数的减法练习2 1.一天广州的温度是+18℃,而吉林的温度是-22℃,这天广州比吉林的温度高()A.-4℃

B.4℃

C.40℃

D.-40℃ 2.与(-a)-(-b)相等的式子是()

A.(+a)-(-b)

B.(-a)+b

C.(-a)+(-b)

D.(-a)-(+b)3.关于算式-4-6,下列说法不正确的是()

A.表示-4与6的差

B.表示-4与-6的和 C.表示-4与-6的差

D.读作-4减去6 4.比-18小4的数是___,比-18小-4的数是___.5.A,B两种海拔高度分别为200米、-120米,B地比A地低___.0.026.一种机器零件,图纸标明是Ф400.02,合格品的最大直径与最小直径的差是___.7.已知m是6的相反数,n比m的相反数小6,求m比n大多少.211)- -(-).(2)-70-28-(-19)+(+24)-(-12).312433(3)|+12|-(-|+15|).848.计算:(1)(-

9.已知a=-3,b=5,c=-8,求下列各式的值.(1)a+b-c;(2)a-b+c;(3)a-b-c.10.一辆货车从超市出发,向东走了2km到小明家,继续走了2.5km到小奇家,又向西走了8.5km到达小华家,最后回到超市.(1)以超市为原点,向东为正方向,用1个单位长度表示1km,画数轴表示小明、小奇、小华家的位置;

(2)小华家距小奇家多远?(3)货车共行驶了多少千米?

参考答案

1.C.提示:(+18)-(-22)=40℃,故选C; 2.B.提示:(-a)-(-b)=-a+b.故选B; 3.C.提示:-4-6是省略加号的和的形式.4.-

22、-14.提示:-18-4=-22,-18-(-4)=-14; 5.320米.提示:200-(-120)=320(米);

6.0.04.提示:最大直径是30.02,最小直径是39.98,其差是40.02-39.98=0.04.7.因为m是6的相反数,所以m=-6,又因为n比m的相反数小6,所以n=-6-6=-12,所以m-n=-6-(-12)=-6+12=6,答:m比n大6.8.(1)(-=-2112118136)- -(-)=(-)+(-)+(+)=(-)+(-)+(+)=-***21.(2)-70-28-(-19)+(+24)-(-12)=(-70)+(-28)+(+19)+(+24)+(+12)=[(-233370)+(-28)+(-24)]+[(+19)+(+12)]=(-122)+31=-91.(3)|+12|-(-|+15|)=12-(-

848333115)=12+15=28.48489.当a=-3,b=5,c=-8时,(1)a+b-c=(-3)+5-(-8)=(-3)+5+(+8)=10.(2)a-b+c=(-3)-5+(-8)=(-3)+(-5)+(-8)=-16.(3)a-b-c=(-3)-5-(-8)=(-3)+(-5)+(+8)=0.10.(1)如图所示.(2)4.5-(-4)=8.5,小华家距小奇家8.5km.(3)2+2.5+8.5+4=17,共行驶了17km.

第三篇:有理数减法教案

有理数的减法

教学目标

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算; 2.培养学生观察、分析、归纳及运算能力. 教学重点

有理数减法法则 教学难点

有理数减法法则 教学过程

(一)、从学生原有认知结构提出问题

1.计算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0. 2.化简下列各式符号:

(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3). 3.填空:

(1)______+6=20;(2)20+______=17;

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.

(二)、师生共同研究有理数减法法则

问题1(1)(+10)-(+3)=______ ;(2)(+10)+(-3)=______.

教师引导学生发现:两式的结果相同,即(+10)-(+3)=(+10)+(-3).

教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性? 问题2(1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

(2)的结果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教师引导学生归纳出有理数减法法则: 减去一个数,等于加上这个数的相反数.

教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.

减数变号(减法============加法)

(三)、运用举例 变式练习例1 计算:

(1)(-3)-(-5);(2)0-7. 例2 计算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18). 通过计算上面一组有理数减法算式,引导学生发现:

在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数. 例3 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?

(四)、小结

1.教师指导学生阅读教材后强调指出:

由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.(五)、课堂练习

1.计算:

(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8; 2.计算:

(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;(5)123-190(6)(-112)-98;(7)(-131)-(-129);(8)341-249. 3.计算:

(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;(4)(-5.9)-(-6.1);(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

第四篇:有理数的减法

有理数的减法

1.计算:

(1)(-2)-(-3)

(2)(-1)-(+11)552(3)4.2-5.7

(4)12-(-2.7)(5)0-(-4)

72.计算:(1)(-5(6)(-12)-(-1)

22)-(+1)-(-5)-(-1);(2)(-81)-(+12)-(-701)-(-81);

3263

(3)0-(-1.52)-(+7.52)-(-13);

(5)0-14-(+13)-(-32)-(+56

(7)71012

(9)12.37.22.315.2

323(4)(-17)-(-8)-(-9)-(+6)-(-14);

(6)0-(-1.52)-(+7.52)-(-13).(8)1513312174387

212223411172217)

(10)小测11(1)(-6)-(-3)=

(2)(-2)-(+1)=

(3)0-(-2.5)-(+1.5)-(-3)

(4)(-8.37)-(-2.43)

(5)(-5.5)-(+31 4)-(+734)-(-812)

小测12 1121(8)15348

3737

(9)12.37.2 2.315.2

12111(10)22421 23727

第五篇:有理数减法教案

一、课题2.4有理数的减法

二、教学目标

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力.

三、教学重点

有理数减法法则

四、教学难点

有理数减法法则

五、教学用具

三角尺、小黑板、小卡片

六、课时安排

1课时

七、教学过程

(一)、从学生原有认知结构提出问题

1.计算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:

(1)-(-6);(2)-(+8);(3)+(-7);

(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:

(1)______+6=20;(2)20+______=17;

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.

(二)、师生共同研究有理数减法法则

问题1(1)(+10)-(+3)=______ ;

(2)(+10)+(-3)=______.

教师引导学生发现:两式的结果相同,即(+10)-(+3)=(+10)+(-3).

教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性? 问题2(1)(+10)-(-3)=______ ;

(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

(2)的结果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教师引导学生归纳出有理数减法法则:

减去一个数,等于加上这个数的相反数.

教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)

(三)、运用举例变式练习

例1计算:

(1)(-3)-(-5);(2)0-7.

例2计算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

通过计算上面一组有理数减法算式,引导学生发现:

在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.

例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?

阅读课本63页例3

(四)、小结

1.教师指导学生阅读教材后强调指出:

由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

(五)、课堂练习

1.计算:

(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;

2.计算:

(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;

(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.

3.计算:

(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;

(4)(-5.9)-(-6.1);

(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

利用有理数减法解下列问题

4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?

八、布置课后作业:

课本习题2.6知识技能的2、3、4和问题解决1

九、板书设计

2.5有理数的减法

(一)知识回顾

(三)例题解析

(五)课堂小结

1、例

2、例3

(二)观察发现

(四)课堂练习练习设计

十、课后反思

相关内容

热门阅读

最新更新

随机推荐