首页 > 文库大全 > 精品范文库 > 12号文库

24GHz雷达传感器原理

24GHz雷达传感器原理



第一篇:24GHz雷达传感器原理

24GHz雷达传感器原理

一:CW多普勒雷达传感器

将24GHz选为发射频率,利用发送与接收信号的频率差,通过公式计算出物体运动的速度。经过参考信号与回波信号的混频,双通道传感器输出两个频率幅度相同,相位差为90°的中频信号IF1和IF2,根据90°相位引导的信号类型,可识别物体的运动方向(远离或靠近)

二:FMCW 雷达传感器

如果要测量一个参数【距离】,如静态物体到传感器的距离,那么选用线性升坡或降坡作为发射频率的时间相关函数就足够了,并定期重复这些坡,以期得到可能的平均值。根据延迟效应的计算公式可以得到物体的距离。

24GHz雷达传感器运用

交通监测

A:交通监控:车辆流量,车辆分类,速度监控(警用雷达)

B:距离测量:停车帮助,起停巡航,ACC盲点检测,防撞控制

C:火车运用:铁路障碍检测,站台监控,调车帮助,速度测试

D:轨道车辆:导航

F:智能驾驶

物体探测

A:开门装置

B:卫生设施:水龙头,小便池

C:内部和外部侵入报警,安防管理

D:智能照明

E:计数装置

运用方面

A:跑步,滑雪,冲浪等运动中测距,测速

B:球类测速

工业应用:

A:液位测量

B 流速测量

C 泥浆密度测量

D 传送带监控

E 机器人

24GHz雷达传感器案例

一:雷达传感器在物联网中运用

24GHz雷达传感器在物联网中起到一个信息采集的作用,它在家庭智能防入侵,机场防入侵,智能电网,监狱系统等上面因为其具有稳定性和受环境因素影响小的原因,可以及时的对物体做出反应而被采用,和视频以及其他各种传感技术一起发挥着重要作用。

二:雷达传感器在汽车驾驶辅助系统中的运用24GHz雷达传感器在汽车辅助驾驶,ACC自适应雷达巡航控制系统等上面起到检测与预防的作用,他和汽车的其他制动系统结合在一起,可以有效的防止交通碰撞事故,国外此项技术运用较为成熟,国内起步较晚,但有相关单位进行此项研究。

三:交通检测

在交通工程上,速度是计量与评估道路绩效和交通状况的基本重要数据之一。速度数据的搜集方法有许多种,包括人工测量固定距离行驶时间、压力皮管法、线圈法、影像处理法、雷达测速法与激光测速法等。其中后两者属于携带容易而且精确度高的方法,因此广受采用。24GHz雷达传感器可以被广泛运用于智能交通系统和雷达测速仪器等设备里面,使执法单位有了可靠而实际的数据。在越来越重要的城市智能交通信息采集中发挥着不可磨灭的重要作用。

四:运动测速

24GHz雷达传感器可以用来开发运动测速产品,可以精准的测出人或物体的运动速度,例如:跑步测速仪,高尔夫测速仪,滑冰测速仪等,在一定程度上面弥补了体育运动产品测速不准确或比较困难的尴尬局面。

五:自动门感应

24GHz雷达传感器因为其可以感应到运动物体的存在,且受外界因素影响较少,所以可以被广大的自动门生产厂商所接收。

第二篇:雷达原理

无源相控阵雷达介绍

普通雷达的波束扫描是靠雷达天线的转动而实现的,又称为机械扫描雷达。而相控阵雷达是用电的方式控制雷达波束的指向变化进行扫描的,这种方式被称为电扫描。相控阵雷达虽然不能像其他雷达那样依靠旋转天线来使雷达波束转动,但它自有自己的“绝招”,那就是使用“移相器”来实现雷达波束转动。相控阵雷达天线是由大量的辐射器(小天线)组成的阵列(正方形、三角形等),辐射器少则几百,多则数千,甚至上万,每个辐射器的后面都接有一个可控移相器,每个移相器都由电子计算机控制。当相控阵雷达搜索远距离目标时,虽然看不到天线转动,但上万个辐射器通过电子计算机控制集中向一个方向发射、偏转,即使是上万千米外的洲际导弹和几万千米远的卫星,也逃不过它的“眼睛”。如果是对付较近的目标,这些辐射器又可以分工负责,产生多个波束,有的搜索、有的跟踪、有的引导。正是由于这种雷达摒弃了一般雷达天线的工作原理,人们给它起了个与众不同的名字———相控阵雷达,表示“相位可以控制的天线阵”的含义。

相控阵雷达又分为有源(主动)和无源(被动)两类。其实,有源和无源相控阵雷达的天线阵相同,二者的主要区别在于发射/接收元素的多少。无源相控阵雷达仅有一个中央发射机和一个接收机,发射机产生的高频能量经计算机自动分配给天线阵的各个辐射器,目标反射信号经接收机统一放大(这一点与普通雷达区别不大)。有源相控阵雷达的每个辐射器都配装有一个发射/接收组件,每一个组件都能自己产生、接收电磁波,因此在频宽、信号处理和冗度设计上都比无源相控阵雷达具有较大的优势。正因为如此,也使得有源相控阵雷达的造价昂贵,工程化难度加大。但有源相控阵雷达在功能上有独特优点,大有取代无源相控阵雷达的趋势。

有源相控阵雷达最大的难点在于发射/接收组件的制造上,相对来说,无源相控阵雷达的技术难度要小得多。无源相控阵雷达在功率、效率、波束控制及可靠性等方面不如有源相控阵雷达,但是在功能上却明显优于普通机械扫描雷达,不失为一种较好的折中方案。因此在研制出实用的有源相控阵雷达之前,完全可以采用无源相控阵雷达作为过渡产品。而且,即使有源相控阵雷达研制成功以后,无源相控阵雷达作为相控阵雷达家族的一种低端产品,仍具有很大的实用价值。无源雷达的特性及沿革

无源雷达本身并不发射能量,而是被动地接收目标反射的非协同式辐射源的电磁信号,对目标进行跟踪和定位。所谓非协同式外部辐射源,是指辐射源和雷达“不搭界”,没有直接的协同作战关系。这样就使得探测设备和反辐射导弹不能利用电磁信号对无源雷达进行捕捉、跟踪和攻击。

无源雷达系统简单,尺寸小,可以安装在机动平台上、易于部署,订购与维护成本低。无源雷达不发射照射目标的信号,因此不易被对方感知,一般不存在被干扰的问题。它可以昼夜、全天候工作:可连续检测目标,一般为每秒一次,信号源是40—400兆赫的低频电磁波,有利于探测隐身目标和低空目标:不需频率分配,因此可部署在不能部署常规雷达的地区。

无源雷达自身不发射信号,既带来优点也带来缺点。由于依赖于第三方发射机,操作员对照射器无法主动控制,在被探测目标保持无线电静默、照射器又不工作的情况下,无源雷达就成了无源之水,不能发挥作用。此外,一些发射机的有效辐射功率较低,易受干扰和空射诱饵的影响而且要求发射机与目标、目标与接收机以及接收机与发射机之间信号不受阻挡,限制了无源雷达的使用。

其实无源雷达并不是新概念,它的历史几乎与雷达技术本身一样悠久。1935年,罗伯特•沃森•瓦特曾在单基地无源系统中利用英国广播公司发射的短波射频,照射10千米以外的“海福特”轰炸机。在第二次世界大战中也试验过预警无源雷达,如德国的“克莱思•海德堡”(Kleine Heidelberg)系统。但当时的系统缺乏足够的处理能力,不能计算出目标的精确坐标。

当前,有很多国家热衷于无源技术的应用研究。美国洛克希德•马丁公司是最先涉足该领域的公司之一,据称依靠电视和无线发射机,其无源系统的探测距离达到220千米以上。美国国防部国防高级研究计划局以及华盛顿大学、乔治亚技术大学等高校和雷声等公司,都开展了这一领域的研究。在欧洲,法国也进行了相应的技术研究工作、意大利演示了样机系统、英国正在研究无源相干雷达和“蜂窝’雷达(Celldar),俄罗斯和捷克也在进行类似研究。无源雷达的分类

无源雷达系统可以依据探测对象或配置方式来分类。依据配置方式,无源雷达分为固定式(地基)和机动式(安装在潜艇、舰船、飞机、地面车辆等平台上)两大类。无源雷达的探测对象可以是雷达、通信电台或其他无线辐射源,也可以是仅仅反射无线电信号的目标。无源雷达可以依据探测对象的不同,分为利用被探测目标的自身辐射进行探测和跟踪,以及利用外照射源发射的电磁波进行探测和跟踪两大类。利用被探测目标的自身辐射,在被探测目标本身就是辐射源或携带了辐射源的情况下,无源雷达利用探测目标自身辐射的电磁波进行探测和跟踪。可能的辐射源包括雷达、通信电台、应答机、有源干扰机、导航仪等电子设备。捷克研制的“维拉”系列无源雷达就属于这类无源雷达。几款典型的无源雷达

美国的“沉默哨兵”霄达

美国洛克希德•马丁公司从1983年开始研究非协同式双基地无源雷达,于1998年研制出新型的“沉默哨兵”被动探测系统。这种无源雷达利用商业调频无线电台和电视台发射的50~80兆赫连续波信号,检测、跟踪、监视区内的运动目标。该系统由大动态范围数字接收机、相控阵接收天线、每秒千兆次浮点运算的高性能并行处理器及其软件组成。试验证明,它对雷达反射面积10米2目标的跟踪距离可达180千米,改进后可达220千米,能同时跟踪200个以上目标,分辨间隔为15米。

英国的“蜂窝”霄达

英国的“蜂窝”雷达系统可探测、跟踪和识别陆上、海上和空中的移动目标,包括在树丛中运动的车辆,它理论上能够探测野外环境中10~15千米的地面目标和100千米的大型飞机。当目标进入探测区域后,引起蜂窝电话辐射波的反射,这些反射被一部或多部蜂窝电话雷达探测到。检测数据通过通信网络实时传送到中央控制系统,数据在这里进行处理,从而确定目标的位置和速度。该雷达系统除了反射蜂窝电话基站的辐射信号外,还可利用声传感器探测到目标辐射出的噪声,有助于确定目标位置。

“维拉-E”雷达

“维拉”系列无源雷达由捷克研制。“维拉-E”是该系列的最新型号,可探测定位、识别和跟踪空中、地面和海上目标,对空探测的最大距离为450千米,并可识别目标、生成空中目标图像。

“维拉-E”系统由4部分组成:分析处理中心居中,3个信号接收站呈圆弧线状分布在周围,站与站之间距离在50千米以上。分析处理中心部署在方舱车内,有完整的计算机系统以及通信、指挥和控制系统。信号接收站用重型汽车运载,可灵活部署。接收天线支架竖起时高17米,占地面积9×12米,3个人在1小时内即可竖起天线、进入监视状态。天线外形为圆柱体结构,功耗低、可靠性极高,平均无故障间隔时间达2000小时,可抵御30米/秒的大风。无源雷达的未来发展

无源雷达系统(尤其是利用外部非协同辐射源的无源雷达),可能是今后10~20年的一个重要的发展方向。随着几大国际通信卫星计划的实施,未来将有1000多颗通信卫星在轨。其中将有许多能发射出足够高的射频能量,地面上大多数地点均会同时受到几个星载辐射源的照射,无源雷达系统可充分利用这些照射源进行目标探测和跟踪。总的来看,无源雷达将会在以下几个方面得到发展:

(1)扩展可用外辐射源的种类。外部的非协同辐射源从最早的电视信号、调频信号,到现在的移动通信信号、全球定位系统卫星信号,以及将来多种卫星信号和其他各种可能的辐射源,可供选择利用的外辐射源种类将日渐增多。

(2)雷达目标的傅立叶成像。伊利诺斯州大学的研究人员已证实,可用无源多基地雷达产生飞机目标的合成孔径图像。利用不同频率和不同位置的多部发射机,就可为某个目标建立一个傅立叶域的稠密数据集合,通过逆傅立叶变换就可以重构该目标的图像。

(3)不同平台无源雷达的组网。由于可供使用的外辐射源信号种类繁多,不同的辐射源信号占据了不同的频段,同一目标在不同频段会有不同的雷达特性。因此,为尽可能地提高对目标的探测能力,可以将不同平台的无源雷达进行组网。

(4)无源雷达与有源雷达相结合。当外界电磁辐射设备关机或无法利用时,无源雷达就无法对目标进行探测定位。因此,可考虑将无源雷达与有源雷达结合使用。如以双/多基地方式合理布设无源和有源雷达,当外界电磁辐射不存在或无法利用时,利用无源雷达接收己方有源雷达的直射信号与目标的反射信号,对目标进行探测。这样既提高了无源雷达的利用率,又增强了有源雷达的隐蔽性和生存能力。

第三篇:传感器原理

传感器原理 第一章

1、测量方法:①根据获得测量值的方法,为直接测量、间接测量、组合测量。

②根据测量方式,偏差式测量、零位式测量与微差式测量。

③根据测量条件,等精度测量、不等精度测量

④根据被测量变化快慢,静态测量、动态测量

⑤根据测量敏感原件是否与被测介质接触,接触式测量、非接触式测量

⑥根据测量系统是否向被测量施加能量,主动式测量、被动式测量

2、直接测量:测得值直接与标准量进行比较

间接测量:首先对与被测量有确定函数关系的几个量进行直接测量,将直接测的值带入函数关系式,经过计算得到所需要的结果。

组合测量:被测量必须经过求解联立方程组求的偏差式测量:用仪表指针的位移决定被测量的量值。

零位式测量:用指零仪表的零位反映测量系统的平衡状态,在测量系统平衡时用已知的标准量决定被测量的量值。

微差式测量:将被测量与已知的标准量相比较,获得差值后,再用偏差法测得此差值。

等精度测量:在整个测量过程中,若影响和决定误差大小的全部因素始终保持不变,对同一被测量进行多次重复测量。

不等精度测量:在不同的测量条件下,用不同精度的仪表,不同的测量方法,不同的测量次数以及不同的测量者进行测量和对比。

3、测量误差:测量值与被测量的真值之差。

①绝对误差:测量结果与真值之差。

②相对误差:绝对误差与被测量之比。

③引用误差:绝对误差与量程之比。

④随机误差:在同一测量条件下,多次测量被测量时,绝对值和符号以不可预定方式变化的误差。通过增加测量次数减小随机误差对测量结果的影响。

⑤粗大误差:超出规定条件下预期的误差,又称疏忽误差。第二章

1、传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

2、传感器由敏感元件和转换元件组成。

敏感元件是指传感器中能直接感受或响应被测量的部分。

转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。

3、传感器的基本特性:静态特性和动态特性。

静态特性是指被测量的值处于稳定状态时的输出与输入的关系。包括灵敏度,迟滞,线性度,重复性,漂移。

灵敏度:输出量增量与引起输出量增量的相应输入量增量之比。

线性度:传感器的输出与输入之间数量关系的线性程度。

迟滞:传感器在相同工作条件下输入量由小到大及输入量由大到小变化期间其输入输出特性曲线不重合的现象。

重复性:传感器在相同工作条件下,输入量按同一方向做全量程连续多次变化时,所得特性曲线不一致的程度。

漂移:输入量不变的情况下,传感器输出量会随时间变化。第三章

应变式传感器

1.金属电阻应变片的工作原理:基于电阻应变效应。

2.电阻应变效应:导体在外界作用下产生机械变形(拉伸或压缩)时,其电阻值相应发生变化的现象。

3.半导体电阻应变片的工作原理:基于半导体材料的压阻效应。

4.压阻效应:半导体材料的电阻率ρ随作用应力的变化而发生变化的现象。5.金属电阻应变片的灵敏度推导及半导体电阻应变片的灵敏度推倒。6.金属电阻应变片的结构:由敏感栅,基片,覆盖层和引线等部分组成。

敏感栅是应变片的核心部分,它粘贴在绝缘的基片上,其上再粘贴起保护作用的覆盖层,两端焊接引出导线。

7.金属电阻应变片的材料要求:

①灵敏系数大②ρ值大③电阻温度系数小④与铜线的焊接性能好⑤机械强度高 8.电阻应变片的温度误差:由于测量现场环境温度的改变而给测量带来的附加误差,称为应变片的温度误差。

产生应变片温度误差的主要因素有下述两个方面: ①电阻温度系数的影响

②试件材料和电阻丝材料的线膨胀系数的影响

9.电阻应变片的温度补偿方法:线路补偿和应变片自补偿

应变片的自补偿法是利用自身具有温度补偿作用的应变片(称之为温度自补偿应变片)来补偿的。

10.电阻应变片的测量电路:电压灵敏度的计算,相互关系公式推导。

第四章

电感式传感器

1.变气隙式电感传感器:特点,工作原理灵敏度的公式推导 特点:灵敏度高,非线性严重

2.零点残余电压:把传感器在零位移时的输出电压称为零点残余电压,记作 3.产生零点残余电压的原因: ①由于由于两电感线圈的电气参数及导磁体几何尺寸不完全对称,因此在两电感线圈上的电压幅值和相位不同,从而形成了零点残余电压的基波分量。②由于传感器导磁材料磁化曲线的非线性(如铁磁饱和,磁滞损耗)使得激励电流与磁通波形不一致,从而形成了零点残余电压的高次谐波分量。4.为了减小电感式传感器的零点残余电压的采取措施。

①在设计和工艺上,力求做到磁路对称,铁芯材料均匀。要经过热处理以除去机械应力和改善磁性。两线圈绕制要均匀,力求几何尺寸与电气特性保持一致。②在电路上进行补偿。

5.电涡流式传感器工作原理:当传感器线圈通以交变电流

时,由于电流的变化在线圈周围产生交变磁场,使置于此磁场中的被测导体产生感应电涡流,电涡流

又产生新的交变磁场。

方向相反,因而抵消部分原磁场,从而导致传感器线圈的电感量,阻抗和品质因数发生变化,即线圈的等效阻抗发生变化。这些变化与被测导体的电阻率

磁导率

以及几何形状有关,也与线圈几何参数,激磁电流频率

有关,还与线圈与被测导体间的距离

有关,因此可写为

式中,为线圈与被测导体的尺寸因子。

第五章

1、电容式传感器结构简单、体积小、分辨率高,可非接触式测量,并能在高温、辐射、强烈震动等恶劣条件下工作。

2、电容式传感器可分为变极距型(测量位移)、变面积型(测量直线位移、角位移、尺寸)、变介电常数型(测量液体液位、材料厚度)。

3、变极距型平板电容式传感器的灵敏度推导

为了提高灵敏度,减小非线性误差,大都采用差动式结构。

4、电容式传感器的应用:电容式压力传感器,电容式加速度传感器,差动式电容测厚传感器。

第六章

压电式传感器

1.压电式传感器的定义:其工作原理是基于某些介质材料的压电效应,是一种典型的有源传感器。它通过材料受力作用变形时,其表面会有电荷产生而实现非电量测量。2.压电式传感器的特点:体积小,重量轻,工作频带宽。

3.压电效应:某些电介质,当沿这一定方向对其施力而使它变形时,内部就产生极化现象,同时。在它的两个表面上产生符号相反的电荷。到外力去掉后,又重新恢复到不带电的状态,这种现象称为压电效应。

4.把这种机械能转化为电能的现象称为正压电效应。

5.当在电介质极化方向施加电场时,这些电介质也会产生几何变形,这种现象称为逆压电效应(电致伸缩效应)。

6.压电材料的主要特性参数: 压电常数:压电常数是衡量材料压电效应强弱的参数,它直接关系到压电输出灵敏度。7.沿电轴x方向的力作用下产生电荷的压电效应称为纵向压电效应。沿机械轴 y方向的力作用下产生电荷的压电效应称为横向压电效应。沿光轴方向的力作用时不产生压电效应。8.压电式传感器的等效电路的特点

9.压电式传感器的测量电路的特点

10.压电式传感器的应用:

①压电式测力传感器②压电式加速度传感器

③压电式金属加工切削力测量④压电式玻璃破碎报警器 第七章

1、磁电感应式传感器:变磁通式、恒磁通式。

变磁通式传感器工作原理:产生磁场的永久磁铁和线圈都固定不动,通过磁通Φ的变化产生感应电动势e。又称为磁阻式,常用于角速度的测量。

恒磁通式传感器工作原理:气隙磁通保持不变,感应线圈与磁铁作相对运动,线圈切割磁力线产生感应电势。

2、磁电感应式传感器的误差主要有非线性误差和温度误差

⑴非线性误差的主要原因:当磁电式传感器在进行测量时,传感器线圈会有电流流过,这时线圈会产生一定的交变磁通,此交变磁通会叠加在永久磁铁所产生的工作磁通上,使恒定的气隙磁通变化。

补偿非线性误差的方法:在传感器中加入补偿线圈,补偿线圈被通以一定的电流,适当选择补偿线圈的参数,产生的交变补偿磁通可以与传感器线圈本身产生的交变附加磁通相互抵消。

⑵温度误差产生的主要原因:受温度变化的影响。

温度误差补偿的方法:在结构允许的情况下,在传感器的磁铁下设置热磁分路。

3、霍尔效应:置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上垂直于电流和磁场的方向上产生电动势。

霍尔电势的影响因素:霍尔电动势正比于激励电流及磁感应强度,其灵敏度与霍尔系数成正比,而与霍尔片厚度d成反比,为了提高灵敏度,霍尔元件常制成薄片形状。

4、霍尔原件的符号

5、霍尔传感器的应用:霍尔式微位移传感器,霍尔式转速传感器,霍尔计数装置。第八章

光电式传感器 1.光电效应

光电效应分为外光电效应和内光电效应两大类。

在光线作用下物体内的电子溢出物体表面向外发射的现象称为外光电效应。

在光线作用下物体的导电性能发生变化或产生光生电动势的效应称为内光电效应。2.光敏电阻的主要参数: ①暗电阻与暗电流

光敏电阻在不受光照射时的阻值称为暗电阻,此时流过的电流称为暗电流。②亮电阻与亮电流

光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。③光电流

亮电流与暗电流之差称为光电流。3.光敏电阻的基本特性

①伏安特性

在一定照度下流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。光敏电阻在一定的电压范围内,其

曲线为直线,说明其阻值与入射光量有关,而与电压,电流无关。

②光照特性

光敏电阻的光照特性是描述光电流

和光照强度之间的关系的,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。

③光谱特性

光敏电阻对入射光的光谱具有选择作用,即光敏电阻对不同波长的入射光有不同的灵敏度。光敏电阻的相对光敏灵敏度与入射波长的关系称为光敏电阻的光谱特性,亦称为光谱响应。对应于不同波长,光敏电阻的灵敏度是不同的,而且不同材料的光敏电阻光谱响应曲线也不同。④频率特性 ⑤温度特性

4.光敏二极管的工作原理

光敏二极管儿电路中一般是处于反向工作状态,在没有光照时,反向电阻很大,反向电流很小,该反向电流称为暗电流。当光照射在结上,光子打在结附近,使

结产生光生电子和光生空穴对,它们在结处的内电场作用下作定向运动,形成光电流。光的照度越大,光电流越大,因此光敏二极管在不受光照射时处于截止状态,受光照射时处于导通状态。5.光敏晶体管的工作原理

大多数光敏晶体管的基极无引出线,当集电极加上相对于发射极为正的电压而不接基极时,集电结就是反向偏压,当光照射在集电结时,就会在结附近产生电子--空穴对,光生电子被拉到集电极,基区留下空穴,基极与发射极间的电压升高,这样便会有大量的电子流向集电极,形成输出电流,且集电极电流为光电流的倍,所以光敏晶体管有放大作用。6.光电池的工作原理

基于光生伏特效应,光电池是因为有较大面积的PN结,当光照射在PN结上时,在结的两端出现电动势,从而成为电源。

第四篇:传感器原理

1.Electrochemical(toxic)检测有毒气体

电化学式传感器,用于检测有毒气体。电化学式包括定电位电解式和伽伐尼电池式氧气传感器。这里主要指的是定电位电解式传感器。

定电位电解式传感器原理:

筒状塑料池体内,装有电极,电极间充满电解液,由多孔四氟乙烯做成的隔膜在顶部封装。电极间加电位且与前置放大器连接。气体与电解质内的工作电极发生氧化还原反应,电极平衡电位发生变化,变化的值与气体浓度成正比。

2.Catalytic combustion or Infrared 检测可燃气体

催化燃烧式传感器或红外式传感器。这两种传感器主要用于检测可燃气体。催化燃烧式传感器原理:

气体扩散到传感器的催化燃烧室。燃烧室中两只传感器元件上的催化剂使可燃性气体进行无焰燃烧,产生热量。温度使感应电阻阻值发生变化,打破电桥平衡,产生微小的电压差信号,此信号与可燃气体浓度是成正比的的,从而达到检测可燃气体浓度的目的。

红外式传感器原理:

红外式传感器,是通过一个红外发生器产生红外光,穿过充有样气的气室,然后被各种气体的专用接收器接收。是利用不同元素对某个特定波长的吸收原理。

3.Diffusion fuel cell 检测氧气

扩散燃烧单元(燃料电池)。即通常所说的伽伐尼电池式氧气传感器。用于氧气的检测。

伽伐尼电池式氧气传感器原理:

塑料容器内一面装有对氧气透过性良好的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂,黄金,银等)阴电极,在容器另一面内侧或容器的空余部分形成阳极(用铅,镉等离子化倾向大的金属)。氧气在通过电解质时阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,产生电流。电流的大小与氧气的多少成正比。

半导体式气体传感器是依据金属氧化物半导体材料,在空气中,在遇到当空气的氧化还原状态发生变化时,半导体才料的电导率会发生相应的变化,比如:当空气中弥漫一定浓度的酒精蒸汽时,二氧化锡半导体材料的电导率会升高,电阻下降;而这种变化的幅度与气体的浓度直接相关,这就是半导体式气体传感器!我们家庭排油烟机下面的电子鼻就是使用的这种传感器。

电化学式气体传感器是依据气体的电化学氧化和还原的原理制备的,他的原理是与我们的电池几乎相同。比如,我们检测一氧化碳,CO在电解池的阳极被氧化成二氧化碳,而电解电流与CO的浓度有关。

电化学传感器准确而灵敏,但是,由于大量使用贵金属,另外制作工艺复杂,因此价格较高。

我国敏感元件与传感器行业现状与差距

我国电子信息业在上世纪八十年代第一次腾飞后,随着国民经济信息化进程的加快,之后又进入持续快速发展的新时期。这个时期电子信息产业的主要特征表现为:一是正在从单一的制造业转变为物质生产与知识生产,装备制造与系统集成,硬件制造与软件制造,工业生产与信息服务相结合的现代信息产业;二是产业结构,产品结构,企业结构,运行机制,管理模式等方面发生了深刻变化;三是我国信息产业成为国民经济的支柱产业和先导产业,是新世纪的战略产业,为国民经济和社会信息化建设提供主要技术和物质支撑。

传感器技术及其产业的特点是:基础、应用两头依附;技术、投资两个密集;产品、产业两大分散。基础、应用两头依附,是指传感器技术的发展依附于敏感机理、敏感材料、工艺设备和计测技术这四块基石。敏感机理千差万别,敏感材料多种多样,工艺设备各不相同,计测技术大相径庭,没有上述四块基石的支撑,传感器技术难以为继。

应用依附是指传感器技术基本上属于应用技术,其市场开发多依赖于检测装置和自动控制系统的应用,才能真正体现出它的高附加效益并形成现实市场。也即发展传感器技术要以市场为导向,实行需求牵引。技术、投资两个密集技术密集是指传感器在研制和制造过程中技术的多样性、边缘性、综合性和技艺性。它是多种高技术的集合产物。由于技术密集也自然要求人才密集。投资密集是指研究开发和生产某一种传感器产品要求一定的投资强度,尤其是在工程化研究以及建立规模经济生产线时,更要求较大的投资。增加投资和正确的投资方向是提高传感器产业水平的主要条件之一,也是企事业决策者谋求最佳经济效益的重要手段。产品、产业两大分散,产品结构和产业结构的两大分散是指传感器产品门类品种繁多,生产、研究单位分布在除地方外有12个部委(电子、机械、科学院、航空航天、教委、冶金、船舶、铁道、轻工、化工、煤炭等),其应用渗透到各个产业部门,它的发展既是各产业发展的推动力。只有按照市场需求,不断调整产业结构和产品结构,才能实现传感器产业的全面、协调、持续发展。

在国家的支持下,“八五”以来,我国的传感器技术及其产业取得了长足进步。

在学术交流方面,1989年10月由敏感元器件与传感器分会发起主办的“STC〃89 首届全国敏感元件与传感器学术会议”已延续至今,固定每两年召开一次,每逢活动不但国内学者、企业家云集且有不少其它国家的人士参加。目前,其论值组织机构为:“全国敏感元件与传感器学术团体联合组织委员会”。

在原电子工业部的努力及敏感元器件与传感器分会的积极组织下,实施的“双加工程”即:加快力度加快发展,的方针指导下,建立了我国敏感元器件与传感器生产基地。这三大基地分别为:

“安徽基地”,主要是建立力、光敏规模经济。

“陕西基地”,1990年2月成立了“陕西省敏感技术产业集团公司”主要是建立电压敏、热敏、汽车电子规模经济为主要目标。

“黑龙江基地”主要建立气、湿敏规模经济为主要目标。

多年来,三大基地在发展过程中虽然兴衰不一,历史地看,它对我国敏感元件与传感器行业的建设起到了一定的推动作用。

“九五”期间传感器技术研究国家重点科技攻关项目取得了51个品种86个规格的新产品。初步建立了敏感元件与传感器产业。

产品已进入到亿万人民的家庭生活中,并已在国民经济各部门和国防建设中得到一定应用。

近年来,在研发主力军的建设方面,主要表现在:(1)建立了“传感技术国家重点实验室”、“微米/纳米国家重点实验室”、“国家传感技术工程中心”等研究开发基地。

全国已有1688家企事业从事传感器的研制、生产和应用,其中从事MEMS研制生产的已有50多家。目前全行业正在执行“十五”规划,MEMS等5项新型传感器已列入研究开发的重点;国家计委决定从2002年开始组织实施的新型电子元器件产业化专项中有5项新型敏感元件与传感器已经启动;一些省、市新建立的“传感器产业基地”、“MEMS科技股份有限公司”,呈现出良好的发展态势。我的博客

zhanggehao2003@163.com是我的信箱QQ158458067是我的QQ号徐静蕾新浪博客http://blog.sina.com.cn/m/xujinglei 要找的东东全在我上面的网址里的,如果找不到,请和我留言要不写信,谢谢

回答者:zhanggehao-秀才 二级 4-5 23:45

第五篇:传感器原理

《传感器原理》期中课程设计题目

1. 电子秤是日常生活中常见的称重仪器,试用电阻应变式传感器自行设计一个满足如下要

求的电子秤:

1)称重范围0~10公斤;

2)能够输入商品单价;

3)能够显示商品重量及价格;

4)能够打印和存储;

5)能够进行远程数据传输。

请给出选择的传感器的选型和常见的信号调理电路,给出系统硬件结构框图和软件结构框图,并说明框图中各部分的作用。

2. 霍尔元件常用于转速的测量,请用霍尔元件设计一个满足如下要求的直流电机的转速测

控系统:

1)能够实现转速测量和显示;

2)能够实现直流电机转速增加和降低;

3)能够记录直流电机的转速变化过程。

请给出体现霍尔元件工作的原理示意图,给出直流电机的转速测控系统的硬件结构框图和软件结构框图,并说明框图中各部分的作用。

3. 在现代校园中,学生开水问题被自动热水器解决,它能够控制温度并完成水的自动注入。

试根据如下要求,选择适当的传感器设计一个自动热水器,给出系统硬件结构框图,并说明框图中各部分的作用:

1)能够显示和控制温度;

2)当水位高度不足低限时,自动注入,水位高度到高限时,停止注入。

4. 当代道路照明能够达到根据环境的光线情况来控制照明,试设计一个能完成此功能的路

灯控制系统,说明选择的传感器的类型及传感器的工作原理,说明路灯控制系统的工作原理,给出系统的硬件结构框图,并说明框图中各部分的作用。

5. 工程应用中常见加速度的测量问题,多种传感器可以用于加速度的测量,试选择适当的传感器设计一个加速度测量系统,说明选择传感器的类型及工作原理,简述该加速度测量系统的工作原理,给出系统的硬件结构框图和软件框图,并说明框图中各部分的作用。

相关内容

热门阅读

最新更新

随机推荐