第一篇:桥梁抗震加固设计方案
桥梁抗震加固设计方案
引言
随着我国现在化城市和经济的飞速发展,交通线路的重要性越加突出,公路交通是国民经济大动脉,同时,也是抗震救灾生命线工程之一。桥梁工程是公路工程的咽喉要道,在保障公路通畅中起着至关重要的作用。而一旦地震使交通线路瘫痪,将会给国家和人民带来极大的损失和不便。大跨度桥梁是交通运输的关键枢纽,对其进行有效的抗震设计,确保其抗震安全性意义深远。
一、大跨度桥梁抗震设计发展
大跨度桥梁的抗震设计是一项综合性的工作,反应比较复杂,相应的抗震设计也比较复杂。目前,国内外现有的大多数桥梁工程抗震设计规范只适用于中等跨径的桥梁,超过使用范围的大跨度桥梁则无规范可循。我国公路大跨度桥梁的抗震设计规范仍在初步阶段,存在许多需要进一步解决的问题。近年来,美国、日本等一些国家的地震工程专家提出了分级设防的抗震设计思想,一般可概括为:小震不坏、中震可修、大震不倒。我国《公路工程抗震设计规范》规定地震烈度7度以上地区的新建桥梁都必须抗震设防。其中,最主要的建议是要采用两水平的抗震设计方法,即要求结构在两个概率水平的地震作用下,分别达到两个不同的性能标准。
二、抗震设计
“小震不坏,中震可修,大震不倒”的分类设防抗震设计思想已广为接受,而能力设计思想也越来越广泛地被国内外专家学者所接受。能力设计思想要求在一座桥梁内部建立合理的强度级配,以保证地震破坏只发生在预定的部位,而且是可控制的。具体来说,要选择理想的塑性铰位置并进行仔细的配筋设计以保证其延性抗震能力;而不利的塑性铰位置或破坏机制(脆性破坏)则要通过提供足够的强度加以避免。大跨度桥梁的抗震设计应分两阶段进行:1)在方案设计阶段进行抗震概念设计,选择一个较理想的抗震结构体系;2)在初步或技术设计阶段进行延性抗震设计,并根据能力设计思想进行抗震能力验算,必要时进行减、隔震设计提高结构的抗震能力。
1、抗震概念设计
对结构抗震设计来说,“概念设计”比“计算设计”更为重要。正是由于地震发生的不确定性和复杂性,再加上结构计算模型的假定与实际情况的差异,使“计算设计”很难控制结构的抗震性能,因而不能完全依赖计算。结构抗震性能的决定因素是良好的“概念设计”。因此,在桥梁的方案设计阶段,不能仅仅根据功能要求和静力分析就决定方案的取舍,还应考虑桥梁的抗震性能,尽可能选择良好的抗震结构体系。在抗震概念设计时,为了保证桥梁结构的经济性和抗震安全性,要特别重视上、下部结构连接部位的设计,桥墩形式的选取,过渡孔处
连接部位的设计以及塑性铰预期部位的选择。通常允许桥梁结构在强震下进入塑性工作状态,在预期的部位形成塑性铰以耗散能量,但不允许出现脆性破坏,如剪切破坏。为了保证所选择的结构体系在桥址处的场地条件下确实是良好的抗震体系,必须进行简单的分析(动力特性分析和地震反应评估),然后结合结构设计分析结构的抗震薄弱部位,并
进一步分析是否能通过配筋或构造设计保证这些部位的抗震安全性。最后,根据分析结果综合评判结构体系抗震性能的优劣,决定是否要修改设计方案。
2、延性抗震设计
桥梁的延性抗震设计应分两个阶段进行:1)对于预期会出现塑性铰的部位进行仔细的配筋设计;2)对整个桥梁结构进行抗震能力分析验算,确保其抗震安全性。这两个阶段可以反复,直到通过抗震能力验算,或进行减、隔震设计以提高抗震能力。
3、桥梁减、隔震设计
减、隔震技术是简便、经济、先进的工程抗震手段。减、隔震装置是通过增大结构主要振型的周期使其落在地震能量较少的范围内或增大结构的能量耗散能力来达到减小结构地震反应的目的。在进行抗震设计时,要根据结构特点和场地地震波的频率特性,通过选用合适的减隔震装置、相应参数以及设置方案,合理分配结构的受力和变形。一方面,应将重点放在提高吸收能量能力从而增大阻尼和分散地震力
上,不可过分追求加长周期。另一方面,应选用作用机构简单的减、隔震体系,并在其力学性能明确的范围内使用。减、隔震设计的效果,需
要进行非线性地震反应分析来验证。
大量研究表明,最适宜进行减、隔震设计的情况主要有:
1)桥梁墩柱较刚性,即自振周期较小;
2)桥梁很不规则,如墩柱的高度变化较大,有可能导致受力不均匀;
3)预测的场地地震运动的能量主要集中在高频分量,而低频分量的能量较少(浅震、近震、岩石地基)。因此,要根据结构特点和场地震动特点决定是否要进行减、隔震设计,以及采取什么减、隔震装置。
近年来国内外学者提出在桥梁结构中设置粘滞阻尼器来改善结构的抗震性能,已在多座桥梁中得以应用。有研究表明:将隔震支座与粘滞阻尼器组合使用既能减小结构地震力,又能有效地控制梁体位移及墩、梁相对位移。
三、抗震加固技术
在决定一座桥梁是否如何加固以前,应先评估其抗震能力。主要是先决定墩柱的破坏形式及墩柱的最大延性能力,其次计算整体屈服的地震加速度及整体的最大延性能力,最后算出桥梁的抗震能力Ac值。
1、桥梁震害介绍
从我国历次破坏地震中,调查得到的公路桥梁震害产生的主要原因有以下几类:
(1)支承连接件失效———由于上下部结构产生了支承连接件不能承受的相对位移,使支承连接件失效,上部与下部结构脱开,导致梁体坠毁。由于落梁的强烈冲击力,下部结构将遭受严重破坏。支承连接件失效的原因,主要是设计低估了相邻跨之间的相对位移。为了解决这个问题,目前国内外的通常做法是增加支承面宽度和在简支的相邻梁之间安装纵向约束装置。
(2)下部结构失效———主要是指桥墩和桥台失效。桥墩和桥台如果不能抵抗自身的惯性力和由支座传递来的上部结构的地震力,就会开裂甚至折断,其支承的上部结构也将遭受严重的破坏。
钢筋混凝土柱式桥墩大量遭受严重损坏,是近期桥梁震害的一个特点。其原因主要是横向约束箍筋数量不足和间距过大,因而不足以约束混凝土和防止纵向受压钢筋屈曲。目前的解决办法是通过能力设计和延性设计,使桥梁的屈服只发生在预期的塑性铰部位,其余结构保持弹性。
(3)软弱地基失效———如果下部结构周围的地基易受地震震动而变弱,下部结构就可能发生沉降和水平移动。如砂土的液化和断层等,在地震中都可能引起墩台的毁坏。地基失效引起的桥梁结构破坏,有时是人力所不能避免的,因此在桥梁选址时就应该重视,并设法加以避免。如果无法避免时,则应考虑对地基进行处理或采用深基础。
2、研究现状
针对桥梁在地震中的震害类型,目前,国内外桥梁抗震加固主要采
取以下技术措施:
(1)在伸缩缝、铰和梁端等上部接缝处采用拉杆、挡块或者增加支承面宽度等措施,以防止落梁震害的发生;
(2)增加钢筋混凝土桥墩的横向约束,提高其抗弯延性和抗剪强度,防止桥墩弯曲和剪切震害;
(3)采用减隔震技术及专门的耗能装置,提高桥梁的抗震性能。例如采用铅芯橡胶耗能支座等。对隔震而言,利用周期、阻尼与位移等相依变量进行参数分析,配合加固目标的订定,最后提出结合位移设计法的隔震装置加固设计程序。隔震装置的分析采用铅芯橡胶支座(LRB)以及摩擦单摆支座(FPS)两种。对减震而言,亦可结合位移设计法进行减震加固设计。可使用替代结构法,将结构以等效劲度及等效阻尼比以线性迭代的方式来进行粘滞性阻尼器的加固设计。
3、发展趋势
从桥梁震害调查中发现,遭受严重破坏和倒塌的桥梁结构,绝大部分是源于落梁和抗弯延性不足。因此,国外主要的多震国家,开始强调桥梁结构整体的延性能力,其它一些国家则在原有规范的基础上,也相应地对保证桥梁结构整体的延性能力,并通过设计和构造保证桥梁结构的整体延性能力。为了保证结构的整体延性能力,目前通常的做法是增加防落梁构造措施和在预期出现塑性铰的关键部位增加横向约束,以提高桥墩的抗弯延性和抗剪强度。从加固的对象上来看,美国、日本等桥梁抗震加固水平最高的国家,已经把加固的重点从以前单一的防落梁构造措施,转移到重视桥墩整体延性上来,以保证加固后的桥梁与新建桥梁的抗震能力相当。国内外地震工程研究人员总结了近年来国内外的震害资料,开始检讨过去单纯“强度抗震”设计的指导思想,研究考虑基于性能的抗震设计原则。基于性能的设计被广泛的认为是未来结构抗震设计规范的基本思想。抗震设计的性能指标,可以是单一指标,也可以是多指标或组合指标。在研究手段方面,整个抗震工程学都出现了越来越重视和依靠地震模拟试验的发展趋势。应该注意到现在的试验已经不再是传统意义上的简单试验,而是和现代科技融为一体的高科技试验.四、结语
随着对地震机理认识的逐步加深,提高和完善桥梁结构物的各项功能,以及桥梁抗震构造措施进一步的改进和完善,可以很好地达到桥梁结构的防震和抗震效果。而桥梁抗震加固技术研究已经有了较好的基础,建议针对我国公路桥梁的特点,得出适合于我国公路桥梁的抗震加固技术,并推广应用,为提高我国公路桥梁的抗震性能和抵御地震灾害的能力提供可靠的技术保证。
第二篇:桥梁加固
乐昌至广州高速公路坪石至樟市段T15合同段
黄浪水桥加固方案
中国中铁
中铁七局集团有限公司
二O一二年五月
1.工程概况
黄浪水桥约建于60年代,位于原广东韶关市境内国道323线K357+321处,桥长83m,桥面宽9m,共5跨,跨径组合为8.5+22+22+8.5m,其中中跨有10m挂梁,共有2个桥墩处于水中,水深约3.5m。见下图:
黄浪水桥是我部四分部通往施工现场及项目部的唯一施工通道,但由于该桥年限久远,来往车辆频繁,目前已无法满足大型施工车辆通行的要求。
图1:第一跨左翼缘板0#墩4.25m处渗水
图2:第3跨左腹板地面距2#墩1m砼剥落,钢筋锈蚀开裂
图3: 3#墩挂梁层砼开裂
图4:第4跨右腹板外侧距3#墩出现竖向贯通裂缝L=0.9M,d=0.15mm
图5:左幅2#护栏出现弯曲变形
因此,业主委托广州承信公路工程检验有限公司对黄浪水桥进行试验检测,其检测内容主要包括:桥梁外观检测、桥梁静动载试验和水上基础检测等内容。检测结果如下:
(1)外观检测结果:
1)两端桥台(0#、5#)存在垃圾堆积、杂草丛生等现象;桥墩部位出现混凝土坡顺、渗水现象;上部承重结构存在混凝土开累、钢筋锈蚀、渗水、杂草丛生等现象,其中第2跨、第3跨10m处挂梁、第4跨情况严重,出现大量竖向贯穿裂缝、渗水状况;
2)桥面铺装多处出现混凝土开裂,桥头存在沉降跳车现状,人行道出现裂缝,栏杆歪斜;
(2)静载试验结果:不能满足汽车-20级、挂-100的通行;
(3)动载评定结果:动力性能较差,实测基频4.258Hz,低于理论基频4.87Hz;
(4)水下桩基检测情况:
1)2#桥墩桩基发现1处B桩,3处桩,其余桥墩桩基正常;
2)河床未发现下切现象;
(5)建议:
1)黄浪水桥承载力不足,需严格限重行驶,特别是10t以上车辆;
2)针对桥梁检测发现的病害,应尽快对该桥进行加固维修;对桥梁上部结构采用增大截面或体外预应力进行加固。
2、黄浪水桥加固方案
根据广州市承信公路检测有限公司关于黄浪水桥的检测报告,发现该桥桥墩及桩基正常,其主要病害为桥面铺装及上部结构出现混凝土开裂、钢筋锈蚀等现象,项目部决定采取单层双排贝雷梁片架空方式对黄浪水桥进行加固处理。具体见下图,单位为mm。
加固断面图5300φ48*3.5防护栏杆@2.5m(高1.2m)25b槽钢@30cm25b工字钢@60cm单层双排贝雷片@250cm32b工字钢@30cm(单根长7.0m)32b工字钢@30cm(单根长300cm)360014a槽钢@600cm14a槽钢@600cm*********6507650
设计加固参数如下:
本桥加固按挂车-100设计,冲击系数取1.3;
(1)桥面设计:分配梁采用25b工字钢,间距60cm,长度5.3m;上铺25b槽钢作为面板,间距30cm;
(2)纵梁设计:纵梁采用单层双排贝雷片(150*300cm),横向布置为90+80+90+80cm,搁置于间距30cm的32b工字钢上;
(3)支垫设计:纵梁支垫设于桥墩正上方,底层纵向采用32b工字钢(1#、4#墩长度2m,2#、3#墩长度3m),间距30cm;横向分配梁采用32b工字钢,间距30cm,长度5.3m;
(4)为加强2#、3#墩贝雷片抗剪强度,在贝雷片上设计竖向支撑(采用25b工字钢,每片工字钢设计竖向支撑3道);
(5)桥台设计,具体见附图2;
(6)黄浪水桥加固设计工程数量表,见下表
(6)黄浪水桥加固设计图具体见附图1及附图2。
3、存在问题
黄浪水桥是我部四分部通往施工现场及项目部的唯一施工通道,但根据广州市承信公路工程检验有限公司关于黄浪水桥的检测报告(严格限制载重10t以上车辆通行),我部施工车辆及物资器材将无法运送至施工车辆,严重影响我部四分部的施工,因此对黄浪水桥进行加固处理迫在眉睫。但黄浪水桥加固施工还存在一些问题:
(1)加固后桥面标高将比原地面高约2.7m,需增设桥台进行填土施工,因此填土所属位置存在征地协调问题。
(2)黄浪水桥尾转弯处为入碧涛公园及停车场,桥台填土施工将将该路阻断,需进行改路施工。
(3)根据黄浪水桥加固方案,材料估价约89万元,总造价约150万,费用较高,恳请业主给予支持。
第三篇:校舍抗震加固
汶川地震后,国家对全国范围内存在安全隐患的中小学校舍房屋进行抗震加固,以下是对中小学校舍房屋抗震加固流程、加固设计、方案选择等做简单的介绍。
一、校舍的后续使用年限
1)在20世纪70年代及以前建造经耐久性鉴定可继续使用的现有校舍,其后续使用年限不应少于30年;在20世纪80年代建造的现有校舍,宜采用40年或更长,且不得少于30年。
2)在20世纪90年代建造的现有校舍,后续使用年限不宜少于40年。3)在2001年以后建造的现有校舍,后续使用年限宜采用50年。
二、抗震加固基本原则
抗震加固设计应注重概念设计,以提高结构整体的抗震性能为目标,确保加固工程及其周边环境的安全,采用合理的抗震加固措施。抗震加固设计应符合下列要求: 1)维持原有结构的完整性和稳定性。
2)抗震加固着重于提高结构抗侧力性能和延性、建立或完善抗震多道防线、加强整体性,而不以提高结构承受静载能力为目标。3)结构加固的关键部位(如:承重墙、柱、梁、梁和屋架的支座等部位)。4)建立多道抗震防线:
1、砌体结构后加构造柱、圈梁、钢拉杆。
2、框架结构增设抗震墙或支撑等。
3、建筑的隔震和消能减震技术。
4、抗震加固设计中,应采取成熟、可靠、安全、环保的材料和技术。
5、当无地勘资料时,可参考附近场地的地勘资料或现场查看结构是否存在不均匀沉降而决定补勘与否。
三、校舍抗震加固
1、校舍抗震加固工程在保证安全、有效的前提下,应尽量兼顾经济性、便于操作性进行设计。若优化设计后,测算加固费用仍超新建工程费用70%以上时,宜拆除重建。
2、校舍抗震加固工程暂不考虑保温节能设计,对已有门窗、外墙面砖尽量考虑保留。
3、加固设计应遵循实事求是的原则,对满足条件的工程尽量不加固或少加固。
4、加固设计、检测等单位应在墙面(主要是内墙)铲除后实地勘察,根据现场情况完善加固设计。
5、超过现行规范规定高度、层数的教学楼,应通过抗震验算判别结构是否满足抗震承载力要求,然后进行抗震加固设计。
6、对于无施工图设计文件的老旧教学楼建筑,教学楼抗震加固设计施工图审查以《抗震鉴定报告》为依据。
7、采用砌体-框架混合结构的教学楼,分别按砌体结构和框架结构的要求进行抗震加固设计。1)外走廊的悬臂梁加固。宜在梁底加设型钢托梁进行加固。对于单跨框架结构,若在悬臂梁尽端增加框架柱,应保证节点的刚性连接构造,悬臂梁应按框架梁进行加固。新增框架柱并不承担楼面原有静荷载,结构计算模型应准确反映实际情况。
2)楼梯间的梯段斜梁、梯板、休息平台梁、柱加固。可根据实际情况,在休息平台梁支座处增设构造柱。梯段斜梁和休息平台梁采用扩大断面、增设受力钢筋、加强箍筋、包角钢等措施。
3)混凝土构件加固。一般采用加设型钢托梁、加大截面、增设受力钢筋、加强箍筋;外包型钢加固;粘贴碳纤维加固等方法。
4)墙体加固。山墙、填充墙等砌体墙体根据建筑的实际情况,可采用:单面或双面钢筋(丝)网水泥砂浆面层加固;增设钢筋混凝土板墙;四角和纵、横墙交接处外设构造柱、圈梁; 5)对不符合鉴定要求的砖砌女儿墙、栏杆的加固。根据建筑的实际情况,局部拆除、降低高度、增设钢筋混凝土构造柱、圈梁或压顶梁。
6)预制板加固。对楼地面预制板面层较好的(如地砖、水磨石、新近找平的面层),预制板加固建议采用角钢支托法加固,且保证预制板与上、下墙体有可靠连接;对楼地面预制板面层较差的(如找平层已开裂、破损的),预制板加固可采用少浇叠合层法加固,但必须保证新老砼结构粘结牢靠,且凿除面层时不能破坏原预制板结构的上表面。
(本文来源于网络,悍马加固整理报道,如有侵权,请联系删除。另,转载请注明出处,否则后果自负。)
第四篇:有关房屋建筑抗震加固
来源:http://
外加柱一般通过拉结钢筋,销键,压浆锚杆,锚筋与墙体连接,并符合下列要求:在楼层1/3和2/3层高处同时设置拉接钢筋和销键与墙体连接:沿墙体高度每隔500mm设置胀管螺栓、压浆锚杆、螺栓或锚筋与墙体连接:外加柱在室外地坪标高和外墙基础的大放脚处应设销键、压浆锚杆或锚筋与墙体连接。所有钢筋应有保护层,以避免潮湿引起的锈蚀。外加圈梁、钢拉杆外加圈梁、钢拉杆的结构要求有:
外加的圈梁宣在楼、层盖标高的同一平面内闭合;外加的圈梁在阳台、雨篷、楼梯间窗户附近标高变换处需拐转通过,并应有局部加强措施:变形缝两侧增设的圈梁应分别闭合,在该变形缝区段范围内交圈闭合,并可用拉杆或型钢代替混凝土圈梁。
根据要加固砖混结构房屋的具体特点,要设置不同形式的钢拉杆,主要有横向钢拉杆,纵向刚拉杆,代替内墙圈梁的钢拉杆。
外加圈梁、钢拉杆的施工要求有:
圈梁的施工。外加圈梁处的墙面有酥碱或饰面层时应凿掉,墙面的油污和苔藓应刷洗干净,墙体的裂缝应补强:连接的锚筋和膨胀螺栓应注意检查是否可靠:圈梁的混凝土宜连续浇筑。
钢拉杆的施工。钢拉杆一般采用直径不小于14的钢筋,锚固于圈梁内不小于30d,且端头设弯钩:钢拉杆通过端头加焊的锚板埋入圈梁内或通过钢管穿过圈梁,然后用螺帽拧紧的方法与圈梁连接:钢拉杆在原墙体锚固时,应采用钢板垫板,拉杆端部应加焊相应的螺栓,以调直拉杆,压紧垫板,使之与原墙体紧密结合。
石结构的抗麓加固措施.1石结构房屋整体性抗震加固措施干砌石结构房屋的整体性比砖混结构还差,为了有效地抗御地震作用,总结国内外对这类工程进行加固的实践经验,可以采取以下抗震加固的方法和措施:
设置竖向扶壁柱 .在进行抗震分析和验算的基础上,根据具体房屋的结构特点,确定增设扶壁柱的部位和数量。一般可在石结构房屋的转角处、楼梯间横墙与外墙交接处、横墙较多的建筑物在间隔适当开问的横纵墙交接处、空旷建筑物在间隔适当距离的窗问墙部位、以及在某些薄弱的关键部位分别设置。
扶壁柱的施工做法与要求:必须紧贴在被加固部位的墙面:扶壁柱必须与原石墙有水平穿墙缝的联结:应沿着建筑物高度上下贯通:必须与每层增设的水平圈梁连成一体,使之形成一个类似“小框架”的空间结构。
设置水平圈梁圈梁的设置数量可根据建筑物的具体情况区别对待。一般是原结构没设圈梁者应每层增设圈梁:若原结构已设有圈粱,应在未设圈梁的楼层增设新圈梁。增设的圈梁做法要求:圈梁内纵筋宜用焊接,且应放置在扶壁柱的竖向钢筋之内:要沿房屋周圈连通闭合:必须以扶壁柱为支承点,且应紧贴原石墙,并加竖向穿墙拉结箍。
设置内拉或内撑构件内拉构件一般可采用圆钢,且必须固定在相对的外扶壁柱或外圈梁上:内拉圆钢宜间隔二到三个开问布一道,立面高度宜设在内墙项侧、楼板底下的交接处。支撑构件一般指在单层空旷建筑物内相对的内壁柱之间所增设的水平钢筋混凝土梁,其高度位置一般设在屋架下弦之下或楼、屋面板之下,使之与内壁柱形成一个门式结构,内撑水平梁的间隔距离一般取壁柱间隔的两倍。
石结构墙体的抗震加固墙体加固一般可采用加钢筋网与高压喷射混凝土。墙体加钢筋网可分为单侧加网与双面加网二种。在双面钢筋网之间加水平拉结筋,而对单侧加网的墙体,则应加竖向拉结筋,此拉结筋必须穿过水平石缝绕过石块厚度而成箍形,并搭系在墙面钢筋网上。加钢筋网的内墙可间隔二个开间。总之,加固措施和方法,应根据不同建筑物以及在同一建筑物之内的不同部位灵活布局,并经设计人员确定。
灌浆加固采用压力灌浆加固法可能更适合于石结构的抗震加固。主要是对石砌体灰缝进
行灌浆以提高砂浆饱满度,提高石砌体的抗剪强度。施工简单,又可有效地保持建筑物的外观,对建筑物的影响较小。
木结构抗麓加固措施.1增强木结构整体性的措施木结构房屋在抗震加固时,应采用纯木柱承重的方式。对于木屋架,宜采取加强其节点连接的措施,并在可能时通过增设支撑来改善其纵横向稳定性。
对于空旷房屋,宜每一纵向柱列间设置1到2道剪力墙或斜撑,以提高房屋的整体稳定性木柱是木结构的主要抗侧力构件,现在已有多种加固方式可供采用,如采用局部做成钢板或石砼柱脚等。维护墙与柱之间拉结不足时,应增加可靠拉结措施,改善墙体的稳定性能。木结构构件的加强措施木构件常见的补强加固方法有增加约束法,增大截面法,增设拉杆法,增设销钉法等。
增加约束法常见的增强约束措旌有铁丝缠绕,U形铁或其他非金属材料加固等。铁丝缠绕一般用8号镀锌铁丝密排缠绕木构件的开裂处。其特点是简单易行。
不足之处是:在较多的情况下,处理效果不甚理想。u形铁的加固方法是用螺栓将其紧固在木材之上,防止裂缝开展。这种加固方法较铁扮缠绕的效果好,在实际工程中应用的也较多。但加固时应注意U形铁的间距,一般来说其间距不宜大于被加固构件的最小截面尺寸。
增大截面法增大截面法主要用于受压杆件的加固,也可用于受拉杆件的加固。这种方法既可以用于增强构件的强度,也可以增加杆件的稳定性。常用的增大截面法主要是用原构件材料相同的材料进行加固,也可用钢材和钢筋混凝土外包加固。
增设钢拉杆增设钢拉杆主要是用于屋架木制下弦的加固以及其他受拉构件的加固,其作用是利用钢材抗拉强度高的特点,部分或全部顶替受拉木构件。
销栓加固通常是使用钢制螺栓穿透被加圃截面,利用螺栓起到销栓作用提高截面的抗剪能力,利用扮紧螺栓所提供的压力限制裂缝的开展。
结语为最大限度的减轻震害,本文总结了以上几点有针对性的抗震加固措施。
同时,建筑工程技术人员也应努力从抗震设防、抗震设计和施工质量三方面出发,将房屋建筑质量提高到一个新的水平,只有这样才能确保建筑工程具备合理的抗御地震的能力。
第五篇:桥梁加固方案
桥梁加固方案
(一)一、体外预应力加固:
加固措施:通过体外预应力索施加反向荷载的方法对该桥进行加固,此外考虑箱梁两侧腹板出现大量的斜剪裂缝,为了约束斜裂缝进一步发展,加强对腹板混凝土的约束,增强腹板抗剪承载能力和刚度,采用腹板内侧粘贴钢板。预应力施工工艺1.锚固端部横梁与跨中转向横肋!墩顶导向槽的施工2.钢绞线下料与穿束3.钢绞线张拉4预紧5.高应力张拉6.压浆
缺点:
1.预应力的施工工艺,在钢绞线下料与穿束中粘接段段的长度和位置,新老混凝土之间的粘结,后加预应力对原预应力的影响,很难确定。
2.施加预应力索加固现在存在的问题:如合理的加固预应力筋的位置和数量后加固的预应力钢筋对已经存在的预应力钢筋的影响
3.体外预应力钢筋松弛、断筋等失效的现象也较为常见
二、体外预应力的加固另外的加强措施
1、弯曲加强
采用体外预应力加固法可提高结构构件的受弯承载力。预应力筋布置应符合优化布置原则,即加固筋外形与外荷载产生的弯矩图形相似。因此,加固梁式结构时,体外预应力筋多采用折线形连续筋,以充分发挥加固筋的抗拉强度。体外筋的灵活布置,可以有效地补强加固不同受力情况的简支梁和连续梁。若连续梁中仅有个别跨需要加固,则可采取在这些跨上单独布置预应力筋进行局部加固;若连续梁普遍较差,则可用各跨布置给予整体加固,若连续梁普遍较弱,但个别跨更弱,则可采取通长布置与局部布置相结合的办法进行加固。
2、剪切加强
梁的剪切强度可通过外部加设扁钢!钢板和钢箍等方法来提高。扁钢通常箍在构件上用后张法拉紧并已开发了一种后张不锈钢钢箍的方法。后张法能使新材料平分恒载及活载,这样就能更有效地利用新增材料。提高剪切强度的另外一种方法为采用后张的附加预应力钢筋。预应力钢筋可以加在垂直和倾斜方向上,而且既可安装在梁腹板内,又可安装在箱内。施加预应力时应当小心谨慎,避免结构某些部分出现超限应力。若构件中存在裂缝,一个好的实施方法是在施加预应力之前,先在裂纹上注射环氧树脂。
三、粘贴碳纤维法与钢板粘贴加强法基本原理是一致的,均是将其增强材料粘贴在混凝土结构的受拉边缘或薄弱部位,使之与结构形成整体,代替需增设的补强钢筋,提高梁的承载能力达到补强的目的。
粘贴碳纤维法
碳纤维加固桥梁构件的部位:用粘结材料将碳纤维材料有序地缠绕粘贴于构件表面,实现对构件变形的约束并因此提高构件的极限强度和承载能力。在桥梁加固运用中,可粘贴在混凝土梁的顶面或底板上,以提高混凝土梁的截面强度和刚度:也可粘贴在梁的腹板上,以提高其抗剪强度
具体的施工工艺:
1、处理结构混凝土表面,涂敷基底树脂并整平
2、涂刮整平胶并对其表面作砂光处理
3、滚刷粘结剂粘结碳纤维
4、对已贴的碳纤维作压面处理
5、表面整饰(如抹砂浆等)
粘贴钢板(碳纤维)法:(1)对结构抗弯和抗剪加固效果明显,但对结构静刚度影响不大(静刚度包括等直杆件扭转刚度、受弯梁的弯曲强度、薄板受弯曲载荷作用、薄壳变形计算)。(2)在借用桥面铺装层参与受力时,新老混凝土的可靠连接,始终存在问题如粘结剂的老化问题
此外粘贴钢板法存在以下自己特殊的缺点:(1),钢板面积大,刚度大,适型性差,很难与原结构紧密粘接,此外,自重很大,加上锈迹等原因,底、侧粘贴很易脱落(钢板易受腐蚀或脱落)(2)对于大跨度梁来说,钢板的重量可能太重粘贴碳纤维法存在以下自己特殊的缺点(1碳纤维的抗剪强度低,延展性又不好,所以,其受力的不均匀性必须充分注意(2)碳纤维用于桥梁加固,其老化问题不容忽视。
四、体系转换法:
是通过改变桥梁结构体系以减少梁内应力,提高承载能力的一种加固方法这是一种‘变被动加固为主动加固’的方法,该方法需要对原结构的现状进行仔细的调查,对其承载潜能进行正确评价,用周密、细致、可靠的汁算分析确定体系转换的方法和施工工艺流程,以达到加固修复病桥的目的。一般可通过简支梁下增一设支架或桥墩;或把简支梁与简支梁加以连接,使结构由简支变为连续等。
施工工艺:(1)揭开桥面铺装层。将梁顶保护层凿除。使主筋外露。沿梁顶增设纵向受力主筋,数量根据计算决定。
(2)浇注端头混凝土
(3)拆除或改变原有支座
(4)重新做好桥面铺装
该加固方法主要对于大、中简支梁桥的加固,将多跨简支梁的梁端连接起来,变为多跨连续梁,可以有效改善结构的受力状况,提高桥梁的承载能力,但不适合连续刚构桥的后期加固。
五、桥面系减载。
对大跨度连续刚构而言,恒载在总重量中占有相当大的比重,减小桥跨内桥面的恒载重量诸如变硷桥面铺装为沥青硷桥面铺装、变硷栏杆系为钢质栏杆系、减薄人行道铺装厚度等能有效地减小跨中的下挠量。
六、扩大或增加原结构构件截面,以提高原结构的强度和刚度;该方法虽然能提高结构承载力,但也会因而加大结构自重。
自重加大产生的内力增量会消抵部分或全部结构承载能力的提高。且新增结构面积或体外施加的预应力与原结构体的界面能否良好结合此外(1)扩大或增加原结构构件截面,以提高原结构的强度和刚度;(2)改变原结构的受力体系,使其减小受力;(3)以新的结构代替旧的应力不够的结构这三种方法均不能用于大跨径连续刚构桥深固工程技术系统总结:增大截面、粘贴钢板(碳纤维)、体外预应力等加固方法都属于二次超静定受力结构。加固前原结构已经承受荷载(即第一次受力),特别是当承载能力不足时,加固前原结构的截面应力、应变水平一般都很高。新加固部分加固后并不立即承受荷载,而是在新荷载(即二次加载)下才开始受力。从而导致整个加固结构在其后的第二次受力过程中新加部分的应力、应变始终滞后于原结构的累计应力、应变,这决定了此时混凝土结构加固计算分析不能够完全按普通结构概念进行。加固结构的承载力与新旧两部分的应力差值或应变差值直接相关,与原结构的极限变形值有关,与两部分材料的应力—应变关系有关。
桥梁加固方案
(二)一、公路桥梁存在的常见病害
1.主拱圈裂缝病害
a.主拱圈中波纵向裂缝,检查时常发现各孔中波波顶均存在纵向裂缝。
b.肋、波连接处裂缝。各孔拱波与拱肋连接处大部分均发生裂缝。
c.拱肋裂缝。各孔拱肋均有横向裂缝,有不少是U形裂缝,这些裂缝多发生在拱顶前后10m左右范围内。
d.横系梁裂缝
2.钢筋锈蚀病害
钢筋发生锈蚀时,锈蚀部分的体积可膨胀至原来体积的10倍以上,从而对周围混凝土形成挤压,造成混凝土开裂、剥蚀、使截面有效尺寸减小,导致结构承载能力下降,锈蚀剥蚀,使截面有效尺寸减小,导致结构承载能力下降。锈蚀的直接后果是钢筋断面面积减小,对于以钢筋作为抗弯能力。钢筋锈蚀还会降低混凝土对钢筋的握裹力,锈蚀物外流,在结构表面形成锈迹,影响结构美观。
3.墩台基础病害
桥梁墩台基础在常年使用过程中,除了承受上部构造荷载外,还将承受土压力,风力,流水压力,冰压力和浮力等等各种力的作用。另外,自然界各种因素的影响作用,以及由于过桥车辆的日益重型化,墩台基础经常受到过重荷载的作用,因此,桥墩台将会出现不同程度的损坏。
4.主梁裂缝及主梁变形病害
主梁裂缝多发生在锚跨中部(正弯矩区)梁的下缘及悬臂梁根部(负弯矩区)上缘,后者大都贯穿整个车行道翼板。此类裂缝显然是由于大量重车通过使梁的受拉区开裂,属正常现象。但由于负变矩区裂缝在上面,雨水易从裂缝渗入梁内,引起钢筋锈蚀及砼强度降低。
二、公路桥梁加固的重要性
1.在公路桥梁使用期间内,任何桥梁都会成为旧桥。早期修建的桥梁,由于当时人们对铺装功能、病害认识有限,往往存在配筋偏小,钢筋直径过细,铺装与承载构件的界面连续不牢靠等问题。由于桥梁是建在大地上的特殊产品,不仅受自然环境的影响(如大气腐蚀、温度、湿度变化等),而且还受到使用环境的影响,难以避免产生损坏现象。这使桥梁的维修、养护、加固、改造已成为必然。
2.从经济上分析,桥梁加固可以节省大量投资,收到良好的社会经济效益。采用适当的加固技术和拓宽措施,不仅可以避免因拆除旧桥与重建新桥而增加工程费用;而且对现有交通运输影响有的甚至可以在不中断交通的情况下完成,早期设计施工的高速公的桥梁在长期大交通量、重荷载的运营情况下大部分出现了病害;同时也恢复和提高了旧桥的承载能力及通行能力,延长桥梁的使用寿命,满足现代化交通运输的需求。
3.同时桥梁的改造和加固,不仅可以提高公路桥梁的通行能力和服务水平,而且在更大程度上能够消除交通安全隐患。从发展中分析,旧的公路桥梁加固有利于促进桥梁建设的可持续发展。既满足现代人的需求以不损害后代人满足需求的能力,使经济、社会、资源和环境保护协调发展。
三、公路桥梁加固的方法
1、桥面铺装加固法
1)局部修复凿补法。将水泥混凝土铺装层的表面凿毛,深度以使骨料露出为准;用清水冲洗干净断面并充分润湿,涂刷上同标号的水泥砂浆(或其他粘结材料),最后在桥梁承载能力容许范围内,铺筑一层1~5cm厚的水泥混凝土铺装层。
2)重新浇筑混凝土面板。桥面板的破裂和其他损坏特别严重,混凝土质量或施工状况特别不良,且无适用的修补方法时,就必须采用重新浇筑新的混凝土桥面板的措施,施工时,将原有的行车道铺装全部拆除,再将行车道表面清扫干净,必要时铺入适量短钢筋,配置上1~2层钢筋,浇筑整体化混凝土。
3)桥面补强层加固法。即在旧有桥面上,重新加铺一层混凝土或钢筋混凝土补强层,此方法既修补已出现裂缝、剥离等损坏的桥面板,又能加高原有梁板的有效高度,增加梁板的抗弯能力,改善铰结梁板的荷载横向分布,从而提高桥梁的承载能力。
4)其他方法。如加铺一层沥青混凝土,采用混凝土粘结剂或环氧树脂材料修补法,钢纤维混土修补法,聚合物混凝土罩面法等。
2、加大截面加固法
也称为外包混凝土加固法,是用增大混凝土结构物的截面面积和配筋进行加固的一种方法。加大截面加固法一般采用两种方式:一种是加厚桥面板;另一种是加大主梁梁肋的高度和宽度。该法工艺简单、适应性强,具有成熟的设计和施工经验,适用于较小跨径的T梁桥或板桥的加固。采用此法加固后桥梁刚度明显提高,承载能力也能取得较好的效果。但现场施工的湿作业时间较长,加固后的建筑物净空有一定减小。
3、粘贴碳纤维增强塑料加固法
采用专门的树脂将碳纤维粘贴于混凝土结构受拉表面,碳纤维与原结构形成新的受力整体,碳纤维与钢筋共同承受荷载,降低了钢筋应力,从而使结构达到了加固和补强效果。此法几乎不增加结构自重和截面尺寸,不改变净空高度,施工方便,对原结构几乎不会造成新的损伤,具有良好的耐腐蚀性、耐久性和抗疲劳性能,根据受力分析可进行多层粘贴进行补强,其方向性也可以灵活掌握。缺点是环氧树脂在温度高于60℃时会呈现软化现象,而桥梁一般受到阳光直射,桥面温度高于60℃的可能性很大,不利于采用树脂胶作粘贴剂。
4、桥下部结构加固法
桥台特别是高度较大的桥台,受行车荷载和土压力作用,常见病害有桥台开裂、凸肚,翼墙外崩、开裂、错位等。对于跨径较小、水流不大的石拱桥,可采用在桥跨内加钢筋混凝土框架进行加固。
5、灌缝胶灌注法
当梁体变形及裂缝严重,承载能力下降。当梁体存在严重变形和裂缝,应加强桥梁观测及试验检测,分析原因,制定加固处理方对承载能力、刚度不足的梁体,首选用灌缝胶灌注处理裂缝,采用种植或粘贴钢筋加固法、新浇注混凝土增大梁体截面加固法、粘贴钢板(筋加固法、粘贴碳纤维加固法、体外预应力加固法等方案进行进行结构补强,提高梁体的抗弯承载力。