首页 > 文库大全 > 精品范文库 > 1号文库

北师大版八年级数学下册:5.4分式方程学案

北师大版八年级数学下册:5.4分式方程学案



科目:

数学

制作人:

时间

审核人

组长:

课题:分式方程

课时

教学目标:1、了解分式方程的概念,了解增根的概念。

2、会解可化为一元一次方程的分式方程。

3、会检验一个数是不是分式方程的增根。

教学方法:师友互助

教学过程

一、交流预习

5分钟学生活动的内容、要求及方法。

复习:1.什么叫做一元一次方程?

像这样,分母中含有未知数的方程叫做分式方程。

以前学过的分母中不含有未知数的方程叫做整式方程。

二.自主探究

下列方程中,哪些是分式方程?哪些整式方程.三.互助释疑

下面我们一起研究怎么样来解分式方程:

在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想(化归思想)。

方程两边同乘以x(x-6),得:

90(x-6)=60x

解得:

x=18

检验:当x=18时,检验:当x=18时,左边=右边

∴x=18是原分式方程的解。

增根:在去分母,将分式方程转化为整式方程的过程中出现的不适合于原方程的根.使分母值为零的根

产生的原因:分式方程两边同乘以一个零因式后,所得的根是整式方程的根,而不是分式方程的根.解分式方程时,去分母后所得整式方程的解有可能

使原方程的分母为0,所以分式方程的解必须检验.

检验方法:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则这个解就不是原分式方程的解

检验

例:解分式方程:

解:每项乘以最简公分母___________,得

X(x+2)-(x-1)(x+2)=3

解,得

x

=

检验:当x

=

时,(x-1)

(x+2)=0,∴x=1不是原分式方程的解,原分式方程无解.

巩固拓展

应用新知

解分式方程(注意验根)(学师注意指导学友验根)

五总结提高

你会吗?相信自己你能行!

解方程:

1.当m为何值时,方程

会产生增根

2.解关于x的方程

产生增根,则常数m的值等于()

(A)-2

(B)-1

(C)

(D)

3.若关于x的方程,有增根,求a的值。

会产生增根

则()

A、k=±2

B、k=2

C、k=-2

D、k为任何实数

4.若方程

5.若分式方程有增根,则增根是

6.解分式方程(注意验根)

相关内容

热门阅读

最新更新

随机推荐